mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
379 lines
12 KiB
379 lines
12 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
/* |
|
* performance.cpp |
|
* |
|
* Measure performance of classifier |
|
*/ |
|
#include "opencv2/core.hpp" |
|
#include "opencv2/core/internal.hpp" |
|
|
|
#include "cv.h" |
|
#include "highgui.h" |
|
|
|
#include <cstdio> |
|
#include <cmath> |
|
#include <ctime> |
|
|
|
#ifdef _WIN32 |
|
/* use clock() function insted of time() */ |
|
#define time( arg ) (((double) clock()) / CLOCKS_PER_SEC) |
|
#endif /* _WIN32 */ |
|
|
|
#ifndef PATH_MAX |
|
#define PATH_MAX 512 |
|
#endif /* PATH_MAX */ |
|
|
|
typedef struct HidCascade |
|
{ |
|
int size; |
|
int count; |
|
} HidCascade; |
|
|
|
typedef struct ObjectPos |
|
{ |
|
float x; |
|
float y; |
|
float width; |
|
int found; /* for reference */ |
|
int neghbors; |
|
} ObjectPos; |
|
|
|
int main( int argc, char* argv[] ) |
|
{ |
|
int i, j; |
|
char* classifierdir = NULL; |
|
//char* samplesdir = NULL; |
|
|
|
int saveDetected = 1; |
|
double scale_factor = 1.2; |
|
float maxSizeDiff = 1.5F; |
|
float maxPosDiff = 0.3F; |
|
|
|
/* number of stages. if <=0 all stages are used */ |
|
int nos = -1, nos0; |
|
|
|
int width = 24; |
|
int height = 24; |
|
|
|
int rocsize; |
|
|
|
FILE* info; |
|
char* infoname; |
|
char fullname[PATH_MAX]; |
|
char detfilename[PATH_MAX]; |
|
char* filename; |
|
char detname[] = "det-"; |
|
|
|
CvHaarClassifierCascade* cascade; |
|
CvMemStorage* storage; |
|
CvSeq* objects; |
|
|
|
double totaltime; |
|
|
|
infoname = (char*)""; |
|
rocsize = 40; |
|
if( argc == 1 ) |
|
{ |
|
printf( "Usage: %s\n -data <classifier_directory_name>\n" |
|
" -info <collection_file_name>\n" |
|
" [-maxSizeDiff <max_size_difference = %f>]\n" |
|
" [-maxPosDiff <max_position_difference = %f>]\n" |
|
" [-sf <scale_factor = %f>]\n" |
|
" [-ni]\n" |
|
" [-nos <number_of_stages = %d>]\n" |
|
" [-rs <roc_size = %d>]\n" |
|
" [-w <sample_width = %d>]\n" |
|
" [-h <sample_height = %d>]\n", |
|
argv[0], maxSizeDiff, maxPosDiff, scale_factor, nos, rocsize, |
|
width, height ); |
|
|
|
return 0; |
|
} |
|
|
|
for( i = 1; i < argc; i++ ) |
|
{ |
|
if( !strcmp( argv[i], "-data" ) ) |
|
{ |
|
classifierdir = argv[++i]; |
|
} |
|
else if( !strcmp( argv[i], "-info" ) ) |
|
{ |
|
infoname = argv[++i]; |
|
} |
|
else if( !strcmp( argv[i], "-maxSizeDiff" ) ) |
|
{ |
|
maxSizeDiff = (float) atof( argv[++i] ); |
|
} |
|
else if( !strcmp( argv[i], "-maxPosDiff" ) ) |
|
{ |
|
maxPosDiff = (float) atof( argv[++i] ); |
|
} |
|
else if( !strcmp( argv[i], "-sf" ) ) |
|
{ |
|
scale_factor = atof( argv[++i] ); |
|
} |
|
else if( !strcmp( argv[i], "-ni" ) ) |
|
{ |
|
saveDetected = 0; |
|
} |
|
else if( !strcmp( argv[i], "-nos" ) ) |
|
{ |
|
nos = atoi( argv[++i] ); |
|
} |
|
else if( !strcmp( argv[i], "-rs" ) ) |
|
{ |
|
rocsize = atoi( argv[++i] ); |
|
} |
|
else if( !strcmp( argv[i], "-w" ) ) |
|
{ |
|
width = atoi( argv[++i] ); |
|
} |
|
else if( !strcmp( argv[i], "-h" ) ) |
|
{ |
|
height = atoi( argv[++i] ); |
|
} |
|
} |
|
|
|
cascade = cvLoadHaarClassifierCascade( classifierdir, cvSize( width, height ) ); |
|
if( cascade == NULL ) |
|
{ |
|
printf( "Unable to load classifier from %s\n", classifierdir ); |
|
|
|
return 1; |
|
} |
|
|
|
int* numclassifiers = new int[cascade->count]; |
|
numclassifiers[0] = cascade->stage_classifier[0].count; |
|
for( i = 1; i < cascade->count; i++ ) |
|
{ |
|
numclassifiers[i] = numclassifiers[i-1] + cascade->stage_classifier[i].count; |
|
} |
|
|
|
storage = cvCreateMemStorage(); |
|
|
|
nos0 = cascade->count; |
|
if( nos <= 0 ) |
|
nos = nos0; |
|
|
|
strcpy( fullname, infoname ); |
|
filename = strrchr( fullname, '\\' ); |
|
if( filename == NULL ) |
|
{ |
|
filename = strrchr( fullname, '/' ); |
|
} |
|
if( filename == NULL ) |
|
{ |
|
filename = fullname; |
|
} |
|
else |
|
{ |
|
filename++; |
|
} |
|
|
|
info = fopen( infoname, "r" ); |
|
totaltime = 0.0; |
|
if( info != NULL ) |
|
{ |
|
int x, y; |
|
IplImage* img; |
|
int hits, missed, falseAlarms; |
|
int totalHits, totalMissed, totalFalseAlarms; |
|
int found; |
|
float distance; |
|
|
|
int refcount; |
|
ObjectPos* ref; |
|
int detcount; |
|
ObjectPos* det; |
|
int error=0; |
|
|
|
int* pos; |
|
int* neg; |
|
|
|
pos = (int*) cvAlloc( rocsize * sizeof( *pos ) ); |
|
neg = (int*) cvAlloc( rocsize * sizeof( *neg ) ); |
|
for( i = 0; i < rocsize; i++ ) { pos[i] = neg[i] = 0; } |
|
|
|
printf( "+================================+======+======+======+\n" ); |
|
printf( "| File Name | Hits |Missed| False|\n" ); |
|
printf( "+================================+======+======+======+\n" ); |
|
|
|
totalHits = totalMissed = totalFalseAlarms = 0; |
|
while( !feof( info ) ) |
|
{ |
|
if( fscanf( info, "%s %d", filename, &refcount ) != 2 || refcount <= 0 ) break; |
|
|
|
img = cvLoadImage( fullname ); |
|
if( !img ) continue; |
|
|
|
ref = (ObjectPos*) cvAlloc( refcount * sizeof( *ref ) ); |
|
for( i = 0; i < refcount; i++ ) |
|
{ |
|
int w, h; |
|
error = (fscanf( info, "%d %d %d %d", &x, &y, &w, &h ) != 4); |
|
if( error ) break; |
|
ref[i].x = 0.5F * w + x; |
|
ref[i].y = 0.5F * h + y; |
|
ref[i].width = sqrtf( 0.5F * (w * w + h * h) ); |
|
ref[i].found = 0; |
|
ref[i].neghbors = 0; |
|
} |
|
if( !error ) |
|
{ |
|
cvClearMemStorage( storage ); |
|
|
|
cascade->count = nos; |
|
totaltime -= time( 0 ); |
|
objects = cvHaarDetectObjects( img, cascade, storage, scale_factor, 1 ); |
|
totaltime += time( 0 ); |
|
cascade->count = nos0; |
|
|
|
detcount = ( objects ? objects->total : 0); |
|
det = (detcount > 0) ? |
|
( (ObjectPos*)cvAlloc( detcount * sizeof( *det )) ) : NULL; |
|
hits = missed = falseAlarms = 0; |
|
for( i = 0; i < detcount; i++ ) |
|
{ |
|
CvAvgComp r = *((CvAvgComp*) cvGetSeqElem( objects, i )); |
|
det[i].x = 0.5F * r.rect.width + r.rect.x; |
|
det[i].y = 0.5F * r.rect.height + r.rect.y; |
|
det[i].width = sqrtf( 0.5F * (r.rect.width * r.rect.width + |
|
r.rect.height * r.rect.height) ); |
|
det[i].neghbors = r.neighbors; |
|
|
|
if( saveDetected ) |
|
{ |
|
cvRectangle( img, cvPoint( r.rect.x, r.rect.y ), |
|
cvPoint( r.rect.x + r.rect.width, r.rect.y + r.rect.height ), |
|
CV_RGB( 255, 0, 0 ), 3 ); |
|
} |
|
|
|
found = 0; |
|
for( j = 0; j < refcount; j++ ) |
|
{ |
|
distance = sqrtf( (det[i].x - ref[j].x) * (det[i].x - ref[j].x) + |
|
(det[i].y - ref[j].y) * (det[i].y - ref[j].y) ); |
|
if( (distance < ref[j].width * maxPosDiff) && |
|
(det[i].width > ref[j].width / maxSizeDiff) && |
|
(det[i].width < ref[j].width * maxSizeDiff) ) |
|
{ |
|
ref[j].found = 1; |
|
ref[j].neghbors = MAX( ref[j].neghbors, det[i].neghbors ); |
|
found = 1; |
|
} |
|
} |
|
if( !found ) |
|
{ |
|
falseAlarms++; |
|
neg[MIN(det[i].neghbors, rocsize - 1)]++; |
|
} |
|
} |
|
for( j = 0; j < refcount; j++ ) |
|
{ |
|
if( ref[j].found ) |
|
{ |
|
hits++; |
|
pos[MIN(ref[j].neghbors, rocsize - 1)]++; |
|
} |
|
else |
|
{ |
|
missed++; |
|
} |
|
} |
|
|
|
totalHits += hits; |
|
totalMissed += missed; |
|
totalFalseAlarms += falseAlarms; |
|
printf( "|%32.32s|%6d|%6d|%6d|\n", filename, hits, missed, falseAlarms ); |
|
printf( "+--------------------------------+------+------+------+\n" ); |
|
fflush( stdout ); |
|
|
|
if( saveDetected ) |
|
{ |
|
strcpy( detfilename, detname ); |
|
strcat( detfilename, filename ); |
|
strcpy( filename, detfilename ); |
|
cvvSaveImage( fullname, img ); |
|
} |
|
|
|
if( det ) { cvFree( &det ); det = NULL; } |
|
} /* if( !error ) */ |
|
|
|
cvReleaseImage( &img ); |
|
cvFree( &ref ); |
|
} |
|
fclose( info ); |
|
|
|
printf( "|%32.32s|%6d|%6d|%6d|\n", "Total", |
|
totalHits, totalMissed, totalFalseAlarms ); |
|
printf( "+================================+======+======+======+\n" ); |
|
printf( "Number of stages: %d\n", nos ); |
|
printf( "Number of weak classifiers: %d\n", numclassifiers[nos - 1] ); |
|
printf( "Total time: %f\n", totaltime ); |
|
|
|
/* print ROC to stdout */ |
|
for( i = rocsize - 1; i > 0; i-- ) |
|
{ |
|
pos[i-1] += pos[i]; |
|
neg[i-1] += neg[i]; |
|
} |
|
fprintf( stderr, "%d\n", nos ); |
|
for( i = 0; i < rocsize; i++ ) |
|
{ |
|
fprintf( stderr, "\t%d\t%d\t%f\t%f\n", pos[i], neg[i], |
|
((float)pos[i]) / (totalHits + totalMissed), |
|
((float)neg[i]) / (totalHits + totalMissed) ); |
|
} |
|
|
|
cvFree( &pos ); |
|
cvFree( &neg ); |
|
} |
|
|
|
delete[] numclassifiers; |
|
|
|
cvReleaseHaarClassifierCascade( &cascade ); |
|
cvReleaseMemStorage( &storage ); |
|
|
|
return 0; |
|
} |
|
|
|
|