Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

144 lines
5.4 KiB

package org.opencv.test.features2d;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import org.opencv.calib3d.Calib3d;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.MatOfDMatch;
import org.opencv.core.MatOfKeyPoint;
import org.opencv.core.MatOfPoint2f;
import org.opencv.core.Point;
import org.opencv.core.Range;
import org.opencv.core.DMatch;
import org.opencv.features2d.DescriptorMatcher;
import org.opencv.features2d.Features2d;
import org.opencv.core.KeyPoint;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.test.OpenCVTestCase;
import org.opencv.test.OpenCVTestRunner;
import org.opencv.features2d.Feature2D;
public class Features2dTest extends OpenCVTestCase {
public void testDrawKeypointsMatListOfKeyPointMat() {
fail("Not yet implemented");
}
public void testDrawKeypointsMatListOfKeyPointMatScalar() {
fail("Not yet implemented");
}
public void testDrawKeypointsMatListOfKeyPointMatScalarInt() {
fail("Not yet implemented");
}
public void testDrawMatches2MatListOfKeyPointMatListOfKeyPointListOfListOfDMatchMat() {
fail("Not yet implemented");
}
public void testDrawMatches2MatListOfKeyPointMatListOfKeyPointListOfListOfDMatchMatScalar() {
fail("Not yet implemented");
}
public void testDrawMatches2MatListOfKeyPointMatListOfKeyPointListOfListOfDMatchMatScalarScalar() {
fail("Not yet implemented");
}
public void testDrawMatches2MatListOfKeyPointMatListOfKeyPointListOfListOfDMatchMatScalarScalarListOfListOfByte() {
fail("Not yet implemented");
}
public void testDrawMatches2MatListOfKeyPointMatListOfKeyPointListOfListOfDMatchMatScalarScalarListOfListOfByteInt() {
fail("Not yet implemented");
}
public void testDrawMatchesMatListOfKeyPointMatListOfKeyPointListOfDMatchMat() {
fail("Not yet implemented");
}
public void testDrawMatchesMatListOfKeyPointMatListOfKeyPointListOfDMatchMatScalar() {
fail("Not yet implemented");
}
public void testDrawMatchesMatListOfKeyPointMatListOfKeyPointListOfDMatchMatScalarScalar() {
fail("Not yet implemented");
}
public void testDrawMatchesMatListOfKeyPointMatListOfKeyPointListOfDMatchMatScalarScalarListOfByte() {
fail("Not yet implemented");
}
public void testDrawMatchesMatListOfKeyPointMatListOfKeyPointListOfDMatchMatScalarScalarListOfByteInt() {
fail("Not yet implemented");
}
public void testPTOD()
{
String detectorCfg = "%YAML:1.0\n---\nhessianThreshold: 4000.\noctaves: 3\noctaveLayers: 4\nupright: 0\n";
String extractorCfg = "%YAML:1.0\n---\nnOctaves: 4\nnOctaveLayers: 2\nextended: 0\nupright: 0\n";
Feature2D detector = createClassInstance(XFEATURES2D+"SURF", DEFAULT_FACTORY, null, null);
Feature2D extractor = createClassInstance(XFEATURES2D+"SURF", DEFAULT_FACTORY, null, null);
DescriptorMatcher matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE);
String detectorCfgFile = OpenCVTestRunner.getTempFileName("yml");
writeFile(detectorCfgFile, detectorCfg);
detector.read(detectorCfgFile);
String extractorCfgFile = OpenCVTestRunner.getTempFileName("yml");
writeFile(extractorCfgFile, extractorCfg);
extractor.read(extractorCfgFile);
Mat imgTrain = Imgcodecs.imread(OpenCVTestRunner.LENA_PATH, Imgcodecs.CV_LOAD_IMAGE_GRAYSCALE);
Mat imgQuery = imgTrain.submat(new Range(0, imgTrain.rows() - 100), Range.all());
MatOfKeyPoint trainKeypoints = new MatOfKeyPoint();
MatOfKeyPoint queryKeypoints = new MatOfKeyPoint();
detector.detect(imgTrain, trainKeypoints);
detector.detect(imgQuery, queryKeypoints);
// OpenCVTestRunner.Log("Keypoints found: " + trainKeypoints.size() +
// ":" + queryKeypoints.size());
Mat trainDescriptors = new Mat();
Mat queryDescriptors = new Mat();
extractor.compute(imgTrain, trainKeypoints, trainDescriptors);
extractor.compute(imgQuery, queryKeypoints, queryDescriptors);
MatOfDMatch matches = new MatOfDMatch();
matcher.add(Arrays.asList(trainDescriptors));
matcher.match(queryDescriptors, matches);
// OpenCVTestRunner.Log("Matches found: " + matches.size());
DMatch adm[] = matches.toArray();
List<Point> lp1 = new ArrayList<Point>(adm.length);
List<Point> lp2 = new ArrayList<Point>(adm.length);
KeyPoint tkp[] = trainKeypoints.toArray();
KeyPoint qkp[] = queryKeypoints.toArray();
for (int i = 0; i < adm.length; i++) {
DMatch dm = adm[i];
lp1.add(tkp[dm.trainIdx].pt);
lp2.add(qkp[dm.queryIdx].pt);
}
MatOfPoint2f points1 = new MatOfPoint2f(lp1.toArray(new Point[0]));
MatOfPoint2f points2 = new MatOfPoint2f(lp2.toArray(new Point[0]));
Mat hmg = Calib3d.findHomography(points1, points2, Calib3d.RANSAC, 3);
assertMatEqual(Mat.eye(3, 3, CvType.CV_64F), hmg, EPS);
Mat outimg = new Mat();
Features2d.drawMatches(imgQuery, queryKeypoints, imgTrain, trainKeypoints, matches, outimg);
String outputPath = OpenCVTestRunner.getOutputFileName("PTODresult.png");
Imgcodecs.imwrite(outputPath, outimg);
// OpenCVTestRunner.Log("Output image is saved to: " + outputPath);
}
}