mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
419 lines
14 KiB
419 lines
14 KiB
// Copyright 2011 Google Inc. All Rights Reserved. |
|
// |
|
// This code is licensed under the same terms as WebM: |
|
// Software License Agreement: http://www.webmproject.org/license/software/ |
|
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/ |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// Macroblock analysis |
|
// |
|
// Author: Skal (pascal.massimino@gmail.com) |
|
|
|
#include <stdlib.h> |
|
#include <string.h> |
|
#include <assert.h> |
|
|
|
#include "./vp8enci.h" |
|
#include "./cost.h" |
|
#include "../utils/utils.h" |
|
|
|
#if defined(__cplusplus) || defined(c_plusplus) |
|
extern "C" { |
|
#endif |
|
|
|
#define MAX_ITERS_K_MEANS 6 |
|
|
|
//------------------------------------------------------------------------------ |
|
// Smooth the segment map by replacing isolated block by the majority of its |
|
// neighbours. |
|
|
|
static void SmoothSegmentMap(VP8Encoder* const enc) { |
|
int n, x, y; |
|
const int w = enc->mb_w_; |
|
const int h = enc->mb_h_; |
|
const int majority_cnt_3_x_3_grid = 5; |
|
uint8_t* const tmp = (uint8_t*)WebPSafeMalloc((uint64_t)w * h, sizeof(*tmp)); |
|
assert((uint64_t)(w * h) == (uint64_t)w * h); // no overflow, as per spec |
|
|
|
if (tmp == NULL) return; |
|
for (y = 1; y < h - 1; ++y) { |
|
for (x = 1; x < w - 1; ++x) { |
|
int cnt[NUM_MB_SEGMENTS] = { 0 }; |
|
const VP8MBInfo* const mb = &enc->mb_info_[x + w * y]; |
|
int majority_seg = mb->segment_; |
|
// Check the 8 neighbouring segment values. |
|
cnt[mb[-w - 1].segment_]++; // top-left |
|
cnt[mb[-w + 0].segment_]++; // top |
|
cnt[mb[-w + 1].segment_]++; // top-right |
|
cnt[mb[ - 1].segment_]++; // left |
|
cnt[mb[ + 1].segment_]++; // right |
|
cnt[mb[ w - 1].segment_]++; // bottom-left |
|
cnt[mb[ w + 0].segment_]++; // bottom |
|
cnt[mb[ w + 1].segment_]++; // bottom-right |
|
for (n = 0; n < NUM_MB_SEGMENTS; ++n) { |
|
if (cnt[n] >= majority_cnt_3_x_3_grid) { |
|
majority_seg = n; |
|
} |
|
} |
|
tmp[x + y * w] = majority_seg; |
|
} |
|
} |
|
for (y = 1; y < h - 1; ++y) { |
|
for (x = 1; x < w - 1; ++x) { |
|
VP8MBInfo* const mb = &enc->mb_info_[x + w * y]; |
|
mb->segment_ = tmp[x + y * w]; |
|
} |
|
} |
|
free(tmp); |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// set segment susceptibility alpha_ / beta_ |
|
|
|
static WEBP_INLINE int clip(int v, int m, int M) { |
|
return (v < m) ? m : (v > M) ? M : v; |
|
} |
|
|
|
static void SetSegmentAlphas(VP8Encoder* const enc, |
|
const int centers[NUM_MB_SEGMENTS], |
|
int mid) { |
|
const int nb = enc->segment_hdr_.num_segments_; |
|
int min = centers[0], max = centers[0]; |
|
int n; |
|
|
|
if (nb > 1) { |
|
for (n = 0; n < nb; ++n) { |
|
if (min > centers[n]) min = centers[n]; |
|
if (max < centers[n]) max = centers[n]; |
|
} |
|
} |
|
if (max == min) max = min + 1; |
|
assert(mid <= max && mid >= min); |
|
for (n = 0; n < nb; ++n) { |
|
const int alpha = 255 * (centers[n] - mid) / (max - min); |
|
const int beta = 255 * (centers[n] - min) / (max - min); |
|
enc->dqm_[n].alpha_ = clip(alpha, -127, 127); |
|
enc->dqm_[n].beta_ = clip(beta, 0, 255); |
|
} |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// Compute susceptibility based on DCT-coeff histograms: |
|
// the higher, the "easier" the macroblock is to compress. |
|
|
|
#define MAX_ALPHA 255 // 8b of precision for susceptibilities. |
|
#define ALPHA_SCALE (2 * MAX_ALPHA) // scaling factor for alpha. |
|
#define DEFAULT_ALPHA (-1) |
|
#define IS_BETTER_ALPHA(alpha, best_alpha) ((alpha) > (best_alpha)) |
|
|
|
static int FinalAlphaValue(int alpha) { |
|
alpha = MAX_ALPHA - alpha; |
|
return clip(alpha, 0, MAX_ALPHA); |
|
} |
|
|
|
static int GetAlpha(const VP8Histogram* const histo) { |
|
int max_value = 0, last_non_zero = 1; |
|
int k; |
|
int alpha; |
|
for (k = 0; k <= MAX_COEFF_THRESH; ++k) { |
|
const int value = histo->distribution[k]; |
|
if (value > 0) { |
|
if (value > max_value) max_value = value; |
|
last_non_zero = k; |
|
} |
|
} |
|
// 'alpha' will later be clipped to [0..MAX_ALPHA] range, clamping outer |
|
// values which happen to be mostly noise. This leaves the maximum precision |
|
// for handling the useful small values which contribute most. |
|
alpha = (max_value > 1) ? ALPHA_SCALE * last_non_zero / max_value : 0; |
|
return alpha; |
|
} |
|
|
|
static void MergeHistograms(const VP8Histogram* const in, |
|
VP8Histogram* const out) { |
|
int i; |
|
for (i = 0; i <= MAX_COEFF_THRESH; ++i) { |
|
out->distribution[i] += in->distribution[i]; |
|
} |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// Simplified k-Means, to assign Nb segments based on alpha-histogram |
|
|
|
static void AssignSegments(VP8Encoder* const enc, |
|
const int alphas[MAX_ALPHA + 1]) { |
|
const int nb = enc->segment_hdr_.num_segments_; |
|
int centers[NUM_MB_SEGMENTS]; |
|
int weighted_average = 0; |
|
int map[MAX_ALPHA + 1]; |
|
int a, n, k; |
|
int min_a = 0, max_a = MAX_ALPHA, range_a; |
|
// 'int' type is ok for histo, and won't overflow |
|
int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS]; |
|
|
|
// bracket the input |
|
for (n = 0; n <= MAX_ALPHA && alphas[n] == 0; ++n) {} |
|
min_a = n; |
|
for (n = MAX_ALPHA; n > min_a && alphas[n] == 0; --n) {} |
|
max_a = n; |
|
range_a = max_a - min_a; |
|
|
|
// Spread initial centers evenly |
|
for (n = 1, k = 0; n < 2 * nb; n += 2) { |
|
centers[k++] = min_a + (n * range_a) / (2 * nb); |
|
} |
|
|
|
for (k = 0; k < MAX_ITERS_K_MEANS; ++k) { // few iters are enough |
|
int total_weight; |
|
int displaced; |
|
// Reset stats |
|
for (n = 0; n < nb; ++n) { |
|
accum[n] = 0; |
|
dist_accum[n] = 0; |
|
} |
|
// Assign nearest center for each 'a' |
|
n = 0; // track the nearest center for current 'a' |
|
for (a = min_a; a <= max_a; ++a) { |
|
if (alphas[a]) { |
|
while (n < nb - 1 && abs(a - centers[n + 1]) < abs(a - centers[n])) { |
|
n++; |
|
} |
|
map[a] = n; |
|
// accumulate contribution into best centroid |
|
dist_accum[n] += a * alphas[a]; |
|
accum[n] += alphas[a]; |
|
} |
|
} |
|
// All point are classified. Move the centroids to the |
|
// center of their respective cloud. |
|
displaced = 0; |
|
weighted_average = 0; |
|
total_weight = 0; |
|
for (n = 0; n < nb; ++n) { |
|
if (accum[n]) { |
|
const int new_center = (dist_accum[n] + accum[n] / 2) / accum[n]; |
|
displaced += abs(centers[n] - new_center); |
|
centers[n] = new_center; |
|
weighted_average += new_center * accum[n]; |
|
total_weight += accum[n]; |
|
} |
|
} |
|
weighted_average = (weighted_average + total_weight / 2) / total_weight; |
|
if (displaced < 5) break; // no need to keep on looping... |
|
} |
|
|
|
// Map each original value to the closest centroid |
|
for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) { |
|
VP8MBInfo* const mb = &enc->mb_info_[n]; |
|
const int alpha = mb->alpha_; |
|
mb->segment_ = map[alpha]; |
|
mb->alpha_ = centers[map[alpha]]; // for the record. |
|
} |
|
|
|
if (nb > 1) { |
|
const int smooth = (enc->config_->preprocessing & 1); |
|
if (smooth) SmoothSegmentMap(enc); |
|
} |
|
|
|
SetSegmentAlphas(enc, centers, weighted_average); // pick some alphas. |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// Macroblock analysis: collect histogram for each mode, deduce the maximal |
|
// susceptibility and set best modes for this macroblock. |
|
// Segment assignment is done later. |
|
|
|
// Number of modes to inspect for alpha_ evaluation. For high-quality settings |
|
// (method >= FAST_ANALYSIS_METHOD) we don't need to test all the possible modes |
|
// during the analysis phase. |
|
#define FAST_ANALYSIS_METHOD 4 // method above which we do partial analysis |
|
#define MAX_INTRA16_MODE 2 |
|
#define MAX_INTRA4_MODE 2 |
|
#define MAX_UV_MODE 2 |
|
|
|
static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) { |
|
const int max_mode = |
|
(it->enc_->method_ >= FAST_ANALYSIS_METHOD) ? MAX_INTRA16_MODE |
|
: NUM_PRED_MODES; |
|
int mode; |
|
int best_alpha = DEFAULT_ALPHA; |
|
int best_mode = 0; |
|
|
|
VP8MakeLuma16Preds(it); |
|
for (mode = 0; mode < max_mode; ++mode) { |
|
VP8Histogram histo = { { 0 } }; |
|
int alpha; |
|
|
|
VP8CollectHistogram(it->yuv_in_ + Y_OFF, |
|
it->yuv_p_ + VP8I16ModeOffsets[mode], |
|
0, 16, &histo); |
|
alpha = GetAlpha(&histo); |
|
if (IS_BETTER_ALPHA(alpha, best_alpha)) { |
|
best_alpha = alpha; |
|
best_mode = mode; |
|
} |
|
} |
|
VP8SetIntra16Mode(it, best_mode); |
|
return best_alpha; |
|
} |
|
|
|
static int MBAnalyzeBestIntra4Mode(VP8EncIterator* const it, |
|
int best_alpha) { |
|
uint8_t modes[16]; |
|
const int max_mode = |
|
(it->enc_->method_ >= FAST_ANALYSIS_METHOD) ? MAX_INTRA4_MODE |
|
: NUM_BMODES; |
|
int i4_alpha; |
|
VP8Histogram total_histo = { { 0 } }; |
|
int cur_histo = 0; |
|
|
|
VP8IteratorStartI4(it); |
|
do { |
|
int mode; |
|
int best_mode_alpha = DEFAULT_ALPHA; |
|
VP8Histogram histos[2]; |
|
const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_]; |
|
|
|
VP8MakeIntra4Preds(it); |
|
for (mode = 0; mode < max_mode; ++mode) { |
|
int alpha; |
|
|
|
memset(&histos[cur_histo], 0, sizeof(histos[cur_histo])); |
|
VP8CollectHistogram(src, it->yuv_p_ + VP8I4ModeOffsets[mode], |
|
0, 1, &histos[cur_histo]); |
|
alpha = GetAlpha(&histos[cur_histo]); |
|
if (IS_BETTER_ALPHA(alpha, best_mode_alpha)) { |
|
best_mode_alpha = alpha; |
|
modes[it->i4_] = mode; |
|
cur_histo ^= 1; // keep track of best histo so far. |
|
} |
|
} |
|
// accumulate best histogram |
|
MergeHistograms(&histos[cur_histo ^ 1], &total_histo); |
|
// Note: we reuse the original samples for predictors |
|
} while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF)); |
|
|
|
i4_alpha = GetAlpha(&total_histo); |
|
if (IS_BETTER_ALPHA(i4_alpha, best_alpha)) { |
|
VP8SetIntra4Mode(it, modes); |
|
best_alpha = i4_alpha; |
|
} |
|
return best_alpha; |
|
} |
|
|
|
static int MBAnalyzeBestUVMode(VP8EncIterator* const it) { |
|
int best_alpha = DEFAULT_ALPHA; |
|
int best_mode = 0; |
|
const int max_mode = |
|
(it->enc_->method_ >= FAST_ANALYSIS_METHOD) ? MAX_UV_MODE |
|
: NUM_PRED_MODES; |
|
int mode; |
|
VP8MakeChroma8Preds(it); |
|
for (mode = 0; mode < max_mode; ++mode) { |
|
VP8Histogram histo = { { 0 } }; |
|
int alpha; |
|
VP8CollectHistogram(it->yuv_in_ + U_OFF, |
|
it->yuv_p_ + VP8UVModeOffsets[mode], |
|
16, 16 + 4 + 4, &histo); |
|
alpha = GetAlpha(&histo); |
|
if (IS_BETTER_ALPHA(alpha, best_alpha)) { |
|
best_alpha = alpha; |
|
best_mode = mode; |
|
} |
|
} |
|
VP8SetIntraUVMode(it, best_mode); |
|
return best_alpha; |
|
} |
|
|
|
static void MBAnalyze(VP8EncIterator* const it, |
|
int alphas[MAX_ALPHA + 1], |
|
int* const alpha, int* const uv_alpha) { |
|
const VP8Encoder* const enc = it->enc_; |
|
int best_alpha, best_uv_alpha; |
|
|
|
VP8SetIntra16Mode(it, 0); // default: Intra16, DC_PRED |
|
VP8SetSkip(it, 0); // not skipped |
|
VP8SetSegment(it, 0); // default segment, spec-wise. |
|
|
|
best_alpha = MBAnalyzeBestIntra16Mode(it); |
|
if (enc->method_ >= 5) { |
|
// We go and make a fast decision for intra4/intra16. |
|
// It's usually not a good and definitive pick, but helps seeding the stats |
|
// about level bit-cost. |
|
// TODO(skal): improve criterion. |
|
best_alpha = MBAnalyzeBestIntra4Mode(it, best_alpha); |
|
} |
|
best_uv_alpha = MBAnalyzeBestUVMode(it); |
|
|
|
// Final susceptibility mix |
|
best_alpha = (3 * best_alpha + best_uv_alpha + 2) >> 2; |
|
best_alpha = FinalAlphaValue(best_alpha); |
|
alphas[best_alpha]++; |
|
it->mb_->alpha_ = best_alpha; // for later remapping. |
|
|
|
// Accumulate for later complexity analysis. |
|
*alpha += best_alpha; // mixed susceptibility (not just luma) |
|
*uv_alpha += best_uv_alpha; |
|
} |
|
|
|
static void DefaultMBInfo(VP8MBInfo* const mb) { |
|
mb->type_ = 1; // I16x16 |
|
mb->uv_mode_ = 0; |
|
mb->skip_ = 0; // not skipped |
|
mb->segment_ = 0; // default segment |
|
mb->alpha_ = 0; |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// Main analysis loop: |
|
// Collect all susceptibilities for each macroblock and record their |
|
// distribution in alphas[]. Segments is assigned a-posteriori, based on |
|
// this histogram. |
|
// We also pick an intra16 prediction mode, which shouldn't be considered |
|
// final except for fast-encode settings. We can also pick some intra4 modes |
|
// and decide intra4/intra16, but that's usually almost always a bad choice at |
|
// this stage. |
|
|
|
static void ResetAllMBInfo(VP8Encoder* const enc) { |
|
int n; |
|
for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) { |
|
DefaultMBInfo(&enc->mb_info_[n]); |
|
} |
|
// Default susceptibilities. |
|
enc->dqm_[0].alpha_ = 0; |
|
enc->dqm_[0].beta_ = 0; |
|
// Note: we can't compute this alpha_ / uv_alpha_. |
|
WebPReportProgress(enc->pic_, enc->percent_ + 20, &enc->percent_); |
|
} |
|
|
|
int VP8EncAnalyze(VP8Encoder* const enc) { |
|
int ok = 1; |
|
const int do_segments = |
|
enc->config_->emulate_jpeg_size || // We need the complexity evaluation. |
|
(enc->segment_hdr_.num_segments_ > 1) || |
|
(enc->method_ == 0); // for method 0, we need preds_[] to be filled. |
|
enc->alpha_ = 0; |
|
enc->uv_alpha_ = 0; |
|
if (do_segments) { |
|
int alphas[MAX_ALPHA + 1] = { 0 }; |
|
VP8EncIterator it; |
|
|
|
VP8IteratorInit(enc, &it); |
|
do { |
|
VP8IteratorImport(&it); |
|
MBAnalyze(&it, alphas, &enc->alpha_, &enc->uv_alpha_); |
|
ok = VP8IteratorProgress(&it, 20); |
|
// Let's pretend we have perfect lossless reconstruction. |
|
} while (ok && VP8IteratorNext(&it, it.yuv_in_)); |
|
enc->alpha_ /= enc->mb_w_ * enc->mb_h_; |
|
enc->uv_alpha_ /= enc->mb_w_ * enc->mb_h_; |
|
if (ok) AssignSegments(enc, alphas); |
|
} else { // Use only one default segment. |
|
ResetAllMBInfo(enc); |
|
} |
|
return ok; |
|
} |
|
|
|
#if defined(__cplusplus) || defined(c_plusplus) |
|
} // extern "C" |
|
#endif
|
|
|