mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1332 lines
48 KiB
1332 lines
48 KiB
// Copyright 2012 Google Inc. All Rights Reserved. |
|
// |
|
// This code is licensed under the same terms as WebM: |
|
// Software License Agreement: http://www.webmproject.org/license/software/ |
|
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/ |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// Image transforms and color space conversion methods for lossless decoder. |
|
// |
|
// Authors: Vikas Arora (vikaas.arora@gmail.com) |
|
// Jyrki Alakuijala (jyrki@google.com) |
|
// Urvang Joshi (urvang@google.com) |
|
|
|
#include "./dsp.h" |
|
|
|
// Define the following if target arch is sure to have SSE2 |
|
// #define WEBP_TARGET_HAS_SSE2 |
|
|
|
#if defined(__cplusplus) || defined(c_plusplus) |
|
extern "C" { |
|
#endif |
|
|
|
#if defined(WEBP_TARGET_HAS_SSE2) |
|
#include <emmintrin.h> |
|
#endif |
|
|
|
#include <math.h> |
|
#include <stdlib.h> |
|
#include "./lossless.h" |
|
#include "../dec/vp8li.h" |
|
#include "./yuv.h" |
|
|
|
#define MAX_DIFF_COST (1e30f) |
|
|
|
// lookup table for small values of log2(int) |
|
#define APPROX_LOG_MAX 4096 |
|
#define LOG_2_RECIPROCAL 1.44269504088896338700465094007086 |
|
const float kLog2Table[LOG_LOOKUP_IDX_MAX] = { |
|
0.0000000000000000f, 0.0000000000000000f, |
|
1.0000000000000000f, 1.5849625007211560f, |
|
2.0000000000000000f, 2.3219280948873621f, |
|
2.5849625007211560f, 2.8073549220576041f, |
|
3.0000000000000000f, 3.1699250014423121f, |
|
3.3219280948873621f, 3.4594316186372973f, |
|
3.5849625007211560f, 3.7004397181410921f, |
|
3.8073549220576041f, 3.9068905956085187f, |
|
4.0000000000000000f, 4.0874628412503390f, |
|
4.1699250014423121f, 4.2479275134435852f, |
|
4.3219280948873626f, 4.3923174227787606f, |
|
4.4594316186372973f, 4.5235619560570130f, |
|
4.5849625007211560f, 4.6438561897747243f, |
|
4.7004397181410917f, 4.7548875021634682f, |
|
4.8073549220576037f, 4.8579809951275718f, |
|
4.9068905956085187f, 4.9541963103868749f, |
|
5.0000000000000000f, 5.0443941193584533f, |
|
5.0874628412503390f, 5.1292830169449663f, |
|
5.1699250014423121f, 5.2094533656289501f, |
|
5.2479275134435852f, 5.2854022188622487f, |
|
5.3219280948873626f, 5.3575520046180837f, |
|
5.3923174227787606f, 5.4262647547020979f, |
|
5.4594316186372973f, 5.4918530963296747f, |
|
5.5235619560570130f, 5.5545888516776376f, |
|
5.5849625007211560f, 5.6147098441152083f, |
|
5.6438561897747243f, 5.6724253419714951f, |
|
5.7004397181410917f, 5.7279204545631987f, |
|
5.7548875021634682f, 5.7813597135246599f, |
|
5.8073549220576037f, 5.8328900141647412f, |
|
5.8579809951275718f, 5.8826430493618415f, |
|
5.9068905956085187f, 5.9307373375628866f, |
|
5.9541963103868749f, 5.9772799234999167f, |
|
6.0000000000000000f, 6.0223678130284543f, |
|
6.0443941193584533f, 6.0660891904577720f, |
|
6.0874628412503390f, 6.1085244567781691f, |
|
6.1292830169449663f, 6.1497471195046822f, |
|
6.1699250014423121f, 6.1898245588800175f, |
|
6.2094533656289501f, 6.2288186904958804f, |
|
6.2479275134435852f, 6.2667865406949010f, |
|
6.2854022188622487f, 6.3037807481771030f, |
|
6.3219280948873626f, 6.3398500028846243f, |
|
6.3575520046180837f, 6.3750394313469245f, |
|
6.3923174227787606f, 6.4093909361377017f, |
|
6.4262647547020979f, 6.4429434958487279f, |
|
6.4594316186372973f, 6.4757334309663976f, |
|
6.4918530963296747f, 6.5077946401986963f, |
|
6.5235619560570130f, 6.5391588111080309f, |
|
6.5545888516776376f, 6.5698556083309478f, |
|
6.5849625007211560f, 6.5999128421871278f, |
|
6.6147098441152083f, 6.6293566200796094f, |
|
6.6438561897747243f, 6.6582114827517946f, |
|
6.6724253419714951f, 6.6865005271832185f, |
|
6.7004397181410917f, 6.7142455176661224f, |
|
6.7279204545631987f, 6.7414669864011464f, |
|
6.7548875021634682f, 6.7681843247769259f, |
|
6.7813597135246599f, 6.7944158663501061f, |
|
6.8073549220576037f, 6.8201789624151878f, |
|
6.8328900141647412f, 6.8454900509443747f, |
|
6.8579809951275718f, 6.8703647195834047f, |
|
6.8826430493618415f, 6.8948177633079437f, |
|
6.9068905956085187f, 6.9188632372745946f, |
|
6.9307373375628866f, 6.9425145053392398f, |
|
6.9541963103868749f, 6.9657842846620869f, |
|
6.9772799234999167f, 6.9886846867721654f, |
|
7.0000000000000000f, 7.0112272554232539f, |
|
7.0223678130284543f, 7.0334230015374501f, |
|
7.0443941193584533f, 7.0552824355011898f, |
|
7.0660891904577720f, 7.0768155970508308f, |
|
7.0874628412503390f, 7.0980320829605263f, |
|
7.1085244567781691f, 7.1189410727235076f, |
|
7.1292830169449663f, 7.1395513523987936f, |
|
7.1497471195046822f, 7.1598713367783890f, |
|
7.1699250014423121f, 7.1799090900149344f, |
|
7.1898245588800175f, 7.1996723448363644f, |
|
7.2094533656289501f, 7.2191685204621611f, |
|
7.2288186904958804f, 7.2384047393250785f, |
|
7.2479275134435852f, 7.2573878426926521f, |
|
7.2667865406949010f, 7.2761244052742375f, |
|
7.2854022188622487f, 7.2946207488916270f, |
|
7.3037807481771030f, 7.3128829552843557f, |
|
7.3219280948873626f, 7.3309168781146167f, |
|
7.3398500028846243f, 7.3487281542310771f, |
|
7.3575520046180837f, 7.3663222142458160f, |
|
7.3750394313469245f, 7.3837042924740519f, |
|
7.3923174227787606f, 7.4008794362821843f, |
|
7.4093909361377017f, 7.4178525148858982f, |
|
7.4262647547020979f, 7.4346282276367245f, |
|
7.4429434958487279f, 7.4512111118323289f, |
|
7.4594316186372973f, 7.4676055500829976f, |
|
7.4757334309663976f, 7.4838157772642563f, |
|
7.4918530963296747f, 7.4998458870832056f, |
|
7.5077946401986963f, 7.5156998382840427f, |
|
7.5235619560570130f, 7.5313814605163118f, |
|
7.5391588111080309f, 7.5468944598876364f, |
|
7.5545888516776376f, 7.5622424242210728f, |
|
7.5698556083309478f, 7.5774288280357486f, |
|
7.5849625007211560f, 7.5924570372680806f, |
|
7.5999128421871278f, 7.6073303137496104f, |
|
7.6147098441152083f, 7.6220518194563764f, |
|
7.6293566200796094f, 7.6366246205436487f, |
|
7.6438561897747243f, 7.6510516911789281f, |
|
7.6582114827517946f, 7.6653359171851764f, |
|
7.6724253419714951f, 7.6794800995054464f, |
|
7.6865005271832185f, 7.6934869574993252f, |
|
7.7004397181410917f, 7.7073591320808825f, |
|
7.7142455176661224f, 7.7210991887071855f, |
|
7.7279204545631987f, 7.7347096202258383f, |
|
7.7414669864011464f, 7.7481928495894605f, |
|
7.7548875021634682f, 7.7615512324444795f, |
|
7.7681843247769259f, 7.7747870596011736f, |
|
7.7813597135246599f, 7.7879025593914317f, |
|
7.7944158663501061f, 7.8008998999203047f, |
|
7.8073549220576037f, 7.8137811912170374f, |
|
7.8201789624151878f, 7.8265484872909150f, |
|
7.8328900141647412f, 7.8392037880969436f, |
|
7.8454900509443747f, 7.8517490414160571f, |
|
7.8579809951275718f, 7.8641861446542797f, |
|
7.8703647195834047f, 7.8765169465649993f, |
|
7.8826430493618415f, 7.8887432488982591f, |
|
7.8948177633079437f, 7.9008668079807486f, |
|
7.9068905956085187f, 7.9128893362299619f, |
|
7.9188632372745946f, 7.9248125036057812f, |
|
7.9307373375628866f, 7.9366379390025709f, |
|
7.9425145053392398f, 7.9483672315846778f, |
|
7.9541963103868749f, 7.9600019320680805f, |
|
7.9657842846620869f, 7.9715435539507719f, |
|
7.9772799234999167f, 7.9829935746943103f, |
|
7.9886846867721654f, 7.9943534368588577f |
|
}; |
|
|
|
const float kSLog2Table[LOG_LOOKUP_IDX_MAX] = { |
|
0.00000000f, 0.00000000f, 2.00000000f, 4.75488750f, |
|
8.00000000f, 11.60964047f, 15.50977500f, 19.65148445f, |
|
24.00000000f, 28.52932501f, 33.21928095f, 38.05374781f, |
|
43.01955001f, 48.10571634f, 53.30296891f, 58.60335893f, |
|
64.00000000f, 69.48686830f, 75.05865003f, 80.71062276f, |
|
86.43856190f, 92.23866588f, 98.10749561f, 104.04192499f, |
|
110.03910002f, 116.09640474f, 122.21143267f, 128.38196256f, |
|
134.60593782f, 140.88144886f, 147.20671787f, 153.58008562f, |
|
160.00000000f, 166.46500594f, 172.97373660f, 179.52490559f, |
|
186.11730005f, 192.74977453f, 199.42124551f, 206.13068654f, |
|
212.87712380f, 219.65963219f, 226.47733176f, 233.32938445f, |
|
240.21499122f, 247.13338933f, 254.08384998f, 261.06567603f, |
|
268.07820003f, 275.12078236f, 282.19280949f, 289.29369244f, |
|
296.42286534f, 303.57978409f, 310.76392512f, 317.97478424f, |
|
325.21187564f, 332.47473081f, 339.76289772f, 347.07593991f, |
|
354.41343574f, 361.77497759f, 369.16017124f, 376.56863518f, |
|
384.00000000f, 391.45390785f, 398.93001188f, 406.42797576f, |
|
413.94747321f, 421.48818752f, 429.04981119f, 436.63204548f, |
|
444.23460010f, 451.85719280f, 459.49954906f, 467.16140179f, |
|
474.84249102f, 482.54256363f, 490.26137307f, 497.99867911f, |
|
505.75424759f, 513.52785023f, 521.31926438f, 529.12827280f, |
|
536.95466351f, 544.79822957f, 552.65876890f, 560.53608414f, |
|
568.42998244f, 576.34027536f, 584.26677867f, 592.20931226f, |
|
600.16769996f, 608.14176943f, 616.13135206f, 624.13628279f, |
|
632.15640007f, 640.19154569f, 648.24156472f, 656.30630539f, |
|
664.38561898f, 672.47935976f, 680.58738488f, 688.70955430f, |
|
696.84573069f, 704.99577935f, 713.15956818f, 721.33696754f, |
|
729.52785023f, 737.73209140f, 745.94956849f, 754.18016116f, |
|
762.42375127f, 770.68022275f, 778.94946161f, 787.23135586f, |
|
795.52579543f, 803.83267219f, 812.15187982f, 820.48331383f, |
|
828.82687147f, 837.18245171f, 845.54995518f, 853.92928416f, |
|
862.32034249f, 870.72303558f, 879.13727036f, 887.56295522f, |
|
896.00000000f, 904.44831595f, 912.90781569f, 921.37841320f, |
|
929.86002376f, 938.35256392f, 946.85595152f, 955.37010560f, |
|
963.89494641f, 972.43039537f, 980.97637504f, 989.53280911f, |
|
998.09962237f, 1006.67674069f, 1015.26409097f, 1023.86160116f, |
|
1032.46920021f, 1041.08681805f, 1049.71438560f, 1058.35183469f, |
|
1066.99909811f, 1075.65610955f, 1084.32280357f, 1092.99911564f, |
|
1101.68498204f, 1110.38033993f, 1119.08512727f, 1127.79928282f, |
|
1136.52274614f, 1145.25545758f, 1153.99735821f, 1162.74838989f, |
|
1171.50849518f, 1180.27761738f, 1189.05570047f, 1197.84268914f, |
|
1206.63852876f, 1215.44316535f, 1224.25654560f, 1233.07861684f, |
|
1241.90932703f, 1250.74862473f, 1259.59645914f, 1268.45278005f, |
|
1277.31753781f, 1286.19068338f, 1295.07216828f, 1303.96194457f, |
|
1312.85996488f, 1321.76618236f, 1330.68055071f, 1339.60302413f, |
|
1348.53355734f, 1357.47210556f, 1366.41862452f, 1375.37307041f, |
|
1384.33539991f, 1393.30557020f, 1402.28353887f, 1411.26926400f, |
|
1420.26270412f, 1429.26381818f, 1438.27256558f, 1447.28890615f, |
|
1456.31280014f, 1465.34420819f, 1474.38309138f, 1483.42941118f, |
|
1492.48312945f, 1501.54420843f, 1510.61261078f, 1519.68829949f, |
|
1528.77123795f, 1537.86138993f, 1546.95871952f, 1556.06319119f, |
|
1565.17476976f, 1574.29342040f, 1583.41910860f, 1592.55180020f, |
|
1601.69146137f, 1610.83805860f, 1619.99155871f, 1629.15192882f, |
|
1638.31913637f, 1647.49314911f, 1656.67393509f, 1665.86146266f, |
|
1675.05570047f, 1684.25661744f, 1693.46418280f, 1702.67836605f, |
|
1711.89913698f, 1721.12646563f, 1730.36032233f, 1739.60067768f, |
|
1748.84750254f, 1758.10076802f, 1767.36044551f, 1776.62650662f, |
|
1785.89892323f, 1795.17766747f, 1804.46271172f, 1813.75402857f, |
|
1823.05159087f, 1832.35537170f, 1841.66534438f, 1850.98148244f, |
|
1860.30375965f, 1869.63214999f, 1878.96662767f, 1888.30716711f, |
|
1897.65374295f, 1907.00633003f, 1916.36490342f, 1925.72943838f, |
|
1935.09991037f, 1944.47629506f, 1953.85856831f, 1963.24670620f, |
|
1972.64068498f, 1982.04048108f, 1991.44607117f, 2000.85743204f, |
|
2010.27454072f, 2019.69737440f, 2029.12591044f, 2038.56012640f |
|
}; |
|
|
|
float VP8LFastSLog2Slow(int v) { |
|
assert(v >= LOG_LOOKUP_IDX_MAX); |
|
if (v < APPROX_LOG_MAX) { |
|
int log_cnt = 0; |
|
const float v_f = (float)v; |
|
while (v >= LOG_LOOKUP_IDX_MAX) { |
|
++log_cnt; |
|
v = v >> 1; |
|
} |
|
return v_f * (kLog2Table[v] + log_cnt); |
|
} else { |
|
return (float)(LOG_2_RECIPROCAL * v * log((double)v)); |
|
} |
|
} |
|
|
|
float VP8LFastLog2Slow(int v) { |
|
assert(v >= LOG_LOOKUP_IDX_MAX); |
|
if (v < APPROX_LOG_MAX) { |
|
int log_cnt = 0; |
|
while (v >= LOG_LOOKUP_IDX_MAX) { |
|
++log_cnt; |
|
v = v >> 1; |
|
} |
|
return kLog2Table[v] + log_cnt; |
|
} else { |
|
return (float)(LOG_2_RECIPROCAL * log((double)v)); |
|
} |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// Image transforms. |
|
|
|
// In-place sum of each component with mod 256. |
|
static WEBP_INLINE void AddPixelsEq(uint32_t* a, uint32_t b) { |
|
const uint32_t alpha_and_green = (*a & 0xff00ff00u) + (b & 0xff00ff00u); |
|
const uint32_t red_and_blue = (*a & 0x00ff00ffu) + (b & 0x00ff00ffu); |
|
*a = (alpha_and_green & 0xff00ff00u) | (red_and_blue & 0x00ff00ffu); |
|
} |
|
|
|
static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) { |
|
return (((a0 ^ a1) & 0xfefefefeL) >> 1) + (a0 & a1); |
|
} |
|
|
|
static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) { |
|
return Average2(Average2(a0, a2), a1); |
|
} |
|
|
|
static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1, |
|
uint32_t a2, uint32_t a3) { |
|
return Average2(Average2(a0, a1), Average2(a2, a3)); |
|
} |
|
|
|
#if defined(WEBP_TARGET_HAS_SSE2) |
|
static WEBP_INLINE uint32_t ClampedAddSubtractFull(uint32_t c0, uint32_t c1, |
|
uint32_t c2) { |
|
const __m128i zero = _mm_setzero_si128(); |
|
const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c0), zero); |
|
const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c1), zero); |
|
const __m128i C2 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c2), zero); |
|
const __m128i V1 = _mm_add_epi16(C0, C1); |
|
const __m128i V2 = _mm_sub_epi16(V1, C2); |
|
const __m128i b = _mm_packus_epi16(V2, V2); |
|
const uint32_t output = _mm_cvtsi128_si32(b); |
|
return output; |
|
} |
|
|
|
static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1, |
|
uint32_t c2) { |
|
const uint32_t ave = Average2(c0, c1); |
|
const __m128i zero = _mm_setzero_si128(); |
|
const __m128i A0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(ave), zero); |
|
const __m128i B0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c2), zero); |
|
const __m128i A1 = _mm_sub_epi16(A0, B0); |
|
const __m128i BgtA = _mm_cmpgt_epi16(B0, A0); |
|
const __m128i A2 = _mm_sub_epi16(A1, BgtA); |
|
const __m128i A3 = _mm_srai_epi16(A2, 1); |
|
const __m128i A4 = _mm_add_epi16(A0, A3); |
|
const __m128i A5 = _mm_packus_epi16(A4, A4); |
|
const uint32_t output = _mm_cvtsi128_si32(A5); |
|
return output; |
|
} |
|
|
|
static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) { |
|
int pa_minus_pb; |
|
const __m128i zero = _mm_setzero_si128(); |
|
const __m128i A0 = _mm_cvtsi32_si128(a); |
|
const __m128i B0 = _mm_cvtsi32_si128(b); |
|
const __m128i C0 = _mm_cvtsi32_si128(c); |
|
const __m128i AC0 = _mm_subs_epu8(A0, C0); |
|
const __m128i CA0 = _mm_subs_epu8(C0, A0); |
|
const __m128i BC0 = _mm_subs_epu8(B0, C0); |
|
const __m128i CB0 = _mm_subs_epu8(C0, B0); |
|
const __m128i AC = _mm_or_si128(AC0, CA0); |
|
const __m128i BC = _mm_or_si128(BC0, CB0); |
|
const __m128i pa = _mm_unpacklo_epi8(AC, zero); // |a - c| |
|
const __m128i pb = _mm_unpacklo_epi8(BC, zero); // |b - c| |
|
const __m128i diff = _mm_sub_epi16(pb, pa); |
|
{ |
|
int16_t out[8]; |
|
_mm_storeu_si128((__m128i*)out, diff); |
|
pa_minus_pb = out[0] + out[1] + out[2] + out[3]; |
|
} |
|
return (pa_minus_pb <= 0) ? a : b; |
|
} |
|
|
|
#else |
|
|
|
static WEBP_INLINE uint32_t Clip255(uint32_t a) { |
|
if (a < 256) { |
|
return a; |
|
} |
|
// return 0, when a is a negative integer. |
|
// return 255, when a is positive. |
|
return ~a >> 24; |
|
} |
|
|
|
static WEBP_INLINE int AddSubtractComponentFull(int a, int b, int c) { |
|
return Clip255(a + b - c); |
|
} |
|
|
|
static WEBP_INLINE uint32_t ClampedAddSubtractFull(uint32_t c0, uint32_t c1, |
|
uint32_t c2) { |
|
const int a = AddSubtractComponentFull(c0 >> 24, c1 >> 24, c2 >> 24); |
|
const int r = AddSubtractComponentFull((c0 >> 16) & 0xff, |
|
(c1 >> 16) & 0xff, |
|
(c2 >> 16) & 0xff); |
|
const int g = AddSubtractComponentFull((c0 >> 8) & 0xff, |
|
(c1 >> 8) & 0xff, |
|
(c2 >> 8) & 0xff); |
|
const int b = AddSubtractComponentFull(c0 & 0xff, c1 & 0xff, c2 & 0xff); |
|
return (a << 24) | (r << 16) | (g << 8) | b; |
|
} |
|
|
|
static WEBP_INLINE int AddSubtractComponentHalf(int a, int b) { |
|
return Clip255(a + (a - b) / 2); |
|
} |
|
|
|
static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1, |
|
uint32_t c2) { |
|
const uint32_t ave = Average2(c0, c1); |
|
const int a = AddSubtractComponentHalf(ave >> 24, c2 >> 24); |
|
const int r = AddSubtractComponentHalf((ave >> 16) & 0xff, (c2 >> 16) & 0xff); |
|
const int g = AddSubtractComponentHalf((ave >> 8) & 0xff, (c2 >> 8) & 0xff); |
|
const int b = AddSubtractComponentHalf((ave >> 0) & 0xff, (c2 >> 0) & 0xff); |
|
return (a << 24) | (r << 16) | (g << 8) | b; |
|
} |
|
|
|
static WEBP_INLINE int Sub3(int a, int b, int c) { |
|
const int pb = b - c; |
|
const int pa = a - c; |
|
return abs(pb) - abs(pa); |
|
} |
|
|
|
static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) { |
|
const int pa_minus_pb = |
|
Sub3((a >> 24) , (b >> 24) , (c >> 24) ) + |
|
Sub3((a >> 16) & 0xff, (b >> 16) & 0xff, (c >> 16) & 0xff) + |
|
Sub3((a >> 8) & 0xff, (b >> 8) & 0xff, (c >> 8) & 0xff) + |
|
Sub3((a ) & 0xff, (b ) & 0xff, (c ) & 0xff); |
|
return (pa_minus_pb <= 0) ? a : b; |
|
} |
|
#endif |
|
|
|
//------------------------------------------------------------------------------ |
|
// Predictors |
|
|
|
static uint32_t Predictor0(uint32_t left, const uint32_t* const top) { |
|
(void)top; |
|
(void)left; |
|
return ARGB_BLACK; |
|
} |
|
static uint32_t Predictor1(uint32_t left, const uint32_t* const top) { |
|
(void)top; |
|
return left; |
|
} |
|
static uint32_t Predictor2(uint32_t left, const uint32_t* const top) { |
|
(void)left; |
|
return top[0]; |
|
} |
|
static uint32_t Predictor3(uint32_t left, const uint32_t* const top) { |
|
(void)left; |
|
return top[1]; |
|
} |
|
static uint32_t Predictor4(uint32_t left, const uint32_t* const top) { |
|
(void)left; |
|
return top[-1]; |
|
} |
|
static uint32_t Predictor5(uint32_t left, const uint32_t* const top) { |
|
const uint32_t pred = Average3(left, top[0], top[1]); |
|
return pred; |
|
} |
|
static uint32_t Predictor6(uint32_t left, const uint32_t* const top) { |
|
const uint32_t pred = Average2(left, top[-1]); |
|
return pred; |
|
} |
|
static uint32_t Predictor7(uint32_t left, const uint32_t* const top) { |
|
const uint32_t pred = Average2(left, top[0]); |
|
return pred; |
|
} |
|
static uint32_t Predictor8(uint32_t left, const uint32_t* const top) { |
|
const uint32_t pred = Average2(top[-1], top[0]); |
|
(void)left; |
|
return pred; |
|
} |
|
static uint32_t Predictor9(uint32_t left, const uint32_t* const top) { |
|
const uint32_t pred = Average2(top[0], top[1]); |
|
(void)left; |
|
return pred; |
|
} |
|
static uint32_t Predictor10(uint32_t left, const uint32_t* const top) { |
|
const uint32_t pred = Average4(left, top[-1], top[0], top[1]); |
|
return pred; |
|
} |
|
static uint32_t Predictor11(uint32_t left, const uint32_t* const top) { |
|
const uint32_t pred = Select(top[0], left, top[-1]); |
|
return pred; |
|
} |
|
static uint32_t Predictor12(uint32_t left, const uint32_t* const top) { |
|
const uint32_t pred = ClampedAddSubtractFull(left, top[0], top[-1]); |
|
return pred; |
|
} |
|
static uint32_t Predictor13(uint32_t left, const uint32_t* const top) { |
|
const uint32_t pred = ClampedAddSubtractHalf(left, top[0], top[-1]); |
|
return pred; |
|
} |
|
|
|
typedef uint32_t (*PredictorFunc)(uint32_t left, const uint32_t* const top); |
|
static const PredictorFunc kPredictors[16] = { |
|
Predictor0, Predictor1, Predictor2, Predictor3, |
|
Predictor4, Predictor5, Predictor6, Predictor7, |
|
Predictor8, Predictor9, Predictor10, Predictor11, |
|
Predictor12, Predictor13, |
|
Predictor0, Predictor0 // <- padding security sentinels |
|
}; |
|
|
|
// TODO(vikasa): Replace 256 etc with defines. |
|
static float PredictionCostSpatial(const int* counts, |
|
int weight_0, double exp_val) { |
|
const int significant_symbols = 16; |
|
const double exp_decay_factor = 0.6; |
|
double bits = weight_0 * counts[0]; |
|
int i; |
|
for (i = 1; i < significant_symbols; ++i) { |
|
bits += exp_val * (counts[i] + counts[256 - i]); |
|
exp_val *= exp_decay_factor; |
|
} |
|
return (float)(-0.1 * bits); |
|
} |
|
|
|
// Compute the combined Shanon's entropy for distribution {X} and {X+Y} |
|
static float CombinedShannonEntropy(const int* const X, |
|
const int* const Y, int n) { |
|
int i; |
|
double retval = 0.; |
|
int sumX = 0, sumXY = 0; |
|
for (i = 0; i < n; ++i) { |
|
const int x = X[i]; |
|
const int xy = X[i] + Y[i]; |
|
if (x != 0) { |
|
sumX += x; |
|
retval -= VP8LFastSLog2(x); |
|
} |
|
if (xy != 0) { |
|
sumXY += xy; |
|
retval -= VP8LFastSLog2(xy); |
|
} |
|
} |
|
retval += VP8LFastSLog2(sumX) + VP8LFastSLog2(sumXY); |
|
return (float)retval; |
|
} |
|
|
|
static float PredictionCostSpatialHistogram(int accumulated[4][256], |
|
int tile[4][256]) { |
|
int i; |
|
double retval = 0; |
|
for (i = 0; i < 4; ++i) { |
|
const double kExpValue = 0.94; |
|
retval += PredictionCostSpatial(tile[i], 1, kExpValue); |
|
retval += CombinedShannonEntropy(tile[i], accumulated[i], 256); |
|
} |
|
return (float)retval; |
|
} |
|
|
|
static int GetBestPredictorForTile(int width, int height, |
|
int tile_x, int tile_y, int bits, |
|
int accumulated[4][256], |
|
const uint32_t* const argb_scratch) { |
|
const int kNumPredModes = 14; |
|
const int col_start = tile_x << bits; |
|
const int row_start = tile_y << bits; |
|
const int tile_size = 1 << bits; |
|
const int ymax = (tile_size <= height - row_start) ? |
|
tile_size : height - row_start; |
|
const int xmax = (tile_size <= width - col_start) ? |
|
tile_size : width - col_start; |
|
int histo[4][256]; |
|
float best_diff = MAX_DIFF_COST; |
|
int best_mode = 0; |
|
|
|
int mode; |
|
for (mode = 0; mode < kNumPredModes; ++mode) { |
|
const uint32_t* current_row = argb_scratch; |
|
const PredictorFunc pred_func = kPredictors[mode]; |
|
float cur_diff; |
|
int y; |
|
memset(&histo[0][0], 0, sizeof(histo)); |
|
for (y = 0; y < ymax; ++y) { |
|
int x; |
|
const int row = row_start + y; |
|
const uint32_t* const upper_row = current_row; |
|
current_row = upper_row + width; |
|
for (x = 0; x < xmax; ++x) { |
|
const int col = col_start + x; |
|
uint32_t predict; |
|
uint32_t predict_diff; |
|
if (row == 0) { |
|
predict = (col == 0) ? ARGB_BLACK : current_row[col - 1]; // Left. |
|
} else if (col == 0) { |
|
predict = upper_row[col]; // Top. |
|
} else { |
|
predict = pred_func(current_row[col - 1], upper_row + col); |
|
} |
|
predict_diff = VP8LSubPixels(current_row[col], predict); |
|
++histo[0][predict_diff >> 24]; |
|
++histo[1][((predict_diff >> 16) & 0xff)]; |
|
++histo[2][((predict_diff >> 8) & 0xff)]; |
|
++histo[3][(predict_diff & 0xff)]; |
|
} |
|
} |
|
cur_diff = PredictionCostSpatialHistogram(accumulated, histo); |
|
if (cur_diff < best_diff) { |
|
best_diff = cur_diff; |
|
best_mode = mode; |
|
} |
|
} |
|
|
|
return best_mode; |
|
} |
|
|
|
static void CopyTileWithPrediction(int width, int height, |
|
int tile_x, int tile_y, int bits, int mode, |
|
const uint32_t* const argb_scratch, |
|
uint32_t* const argb) { |
|
const int col_start = tile_x << bits; |
|
const int row_start = tile_y << bits; |
|
const int tile_size = 1 << bits; |
|
const int ymax = (tile_size <= height - row_start) ? |
|
tile_size : height - row_start; |
|
const int xmax = (tile_size <= width - col_start) ? |
|
tile_size : width - col_start; |
|
const PredictorFunc pred_func = kPredictors[mode]; |
|
const uint32_t* current_row = argb_scratch; |
|
|
|
int y; |
|
for (y = 0; y < ymax; ++y) { |
|
int x; |
|
const int row = row_start + y; |
|
const uint32_t* const upper_row = current_row; |
|
current_row = upper_row + width; |
|
for (x = 0; x < xmax; ++x) { |
|
const int col = col_start + x; |
|
const int pix = row * width + col; |
|
uint32_t predict; |
|
if (row == 0) { |
|
predict = (col == 0) ? ARGB_BLACK : current_row[col - 1]; // Left. |
|
} else if (col == 0) { |
|
predict = upper_row[col]; // Top. |
|
} else { |
|
predict = pred_func(current_row[col - 1], upper_row + col); |
|
} |
|
argb[pix] = VP8LSubPixels(current_row[col], predict); |
|
} |
|
} |
|
} |
|
|
|
void VP8LResidualImage(int width, int height, int bits, |
|
uint32_t* const argb, uint32_t* const argb_scratch, |
|
uint32_t* const image) { |
|
const int max_tile_size = 1 << bits; |
|
const int tiles_per_row = VP8LSubSampleSize(width, bits); |
|
const int tiles_per_col = VP8LSubSampleSize(height, bits); |
|
uint32_t* const upper_row = argb_scratch; |
|
uint32_t* const current_tile_rows = argb_scratch + width; |
|
int tile_y; |
|
int histo[4][256]; |
|
memset(histo, 0, sizeof(histo)); |
|
for (tile_y = 0; tile_y < tiles_per_col; ++tile_y) { |
|
const int tile_y_offset = tile_y * max_tile_size; |
|
const int this_tile_height = |
|
(tile_y < tiles_per_col - 1) ? max_tile_size : height - tile_y_offset; |
|
int tile_x; |
|
if (tile_y > 0) { |
|
memcpy(upper_row, current_tile_rows + (max_tile_size - 1) * width, |
|
width * sizeof(*upper_row)); |
|
} |
|
memcpy(current_tile_rows, &argb[tile_y_offset * width], |
|
this_tile_height * width * sizeof(*current_tile_rows)); |
|
for (tile_x = 0; tile_x < tiles_per_row; ++tile_x) { |
|
int pred; |
|
int y; |
|
const int tile_x_offset = tile_x * max_tile_size; |
|
int all_x_max = tile_x_offset + max_tile_size; |
|
if (all_x_max > width) { |
|
all_x_max = width; |
|
} |
|
pred = GetBestPredictorForTile(width, height, tile_x, tile_y, bits, histo, |
|
argb_scratch); |
|
image[tile_y * tiles_per_row + tile_x] = 0xff000000u | (pred << 8); |
|
CopyTileWithPrediction(width, height, tile_x, tile_y, bits, pred, |
|
argb_scratch, argb); |
|
for (y = 0; y < max_tile_size; ++y) { |
|
int ix; |
|
int all_x; |
|
int all_y = tile_y_offset + y; |
|
if (all_y >= height) { |
|
break; |
|
} |
|
ix = all_y * width + tile_x_offset; |
|
for (all_x = tile_x_offset; all_x < all_x_max; ++all_x, ++ix) { |
|
const uint32_t a = argb[ix]; |
|
++histo[0][a >> 24]; |
|
++histo[1][((a >> 16) & 0xff)]; |
|
++histo[2][((a >> 8) & 0xff)]; |
|
++histo[3][(a & 0xff)]; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
// Inverse prediction. |
|
static void PredictorInverseTransform(const VP8LTransform* const transform, |
|
int y_start, int y_end, uint32_t* data) { |
|
const int width = transform->xsize_; |
|
if (y_start == 0) { // First Row follows the L (mode=1) mode. |
|
int x; |
|
const uint32_t pred0 = Predictor0(data[-1], NULL); |
|
AddPixelsEq(data, pred0); |
|
for (x = 1; x < width; ++x) { |
|
const uint32_t pred1 = Predictor1(data[x - 1], NULL); |
|
AddPixelsEq(data + x, pred1); |
|
} |
|
data += width; |
|
++y_start; |
|
} |
|
|
|
{ |
|
int y = y_start; |
|
const int mask = (1 << transform->bits_) - 1; |
|
const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_); |
|
const uint32_t* pred_mode_base = |
|
transform->data_ + (y >> transform->bits_) * tiles_per_row; |
|
|
|
while (y < y_end) { |
|
int x; |
|
const uint32_t pred2 = Predictor2(data[-1], data - width); |
|
const uint32_t* pred_mode_src = pred_mode_base; |
|
PredictorFunc pred_func; |
|
|
|
// First pixel follows the T (mode=2) mode. |
|
AddPixelsEq(data, pred2); |
|
|
|
// .. the rest: |
|
pred_func = kPredictors[((*pred_mode_src++) >> 8) & 0xf]; |
|
for (x = 1; x < width; ++x) { |
|
uint32_t pred; |
|
if ((x & mask) == 0) { // start of tile. Read predictor function. |
|
pred_func = kPredictors[((*pred_mode_src++) >> 8) & 0xf]; |
|
} |
|
pred = pred_func(data[x - 1], data + x - width); |
|
AddPixelsEq(data + x, pred); |
|
} |
|
data += width; |
|
++y; |
|
if ((y & mask) == 0) { // Use the same mask, since tiles are squares. |
|
pred_mode_base += tiles_per_row; |
|
} |
|
} |
|
} |
|
} |
|
|
|
void VP8LSubtractGreenFromBlueAndRed(uint32_t* argb_data, int num_pixs) { |
|
int i = 0; |
|
#if defined(WEBP_TARGET_HAS_SSE2) |
|
const __m128i mask = _mm_set1_epi32(0x0000ff00); |
|
for (; i + 4 < num_pixs; i += 4) { |
|
const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); |
|
const __m128i in_00g0 = _mm_and_si128(in, mask); // 00g0|00g0|... |
|
const __m128i in_0g00 = _mm_slli_epi32(in_00g0, 8); // 0g00|0g00|... |
|
const __m128i in_000g = _mm_srli_epi32(in_00g0, 8); // 000g|000g|... |
|
const __m128i in_0g0g = _mm_or_si128(in_0g00, in_000g); |
|
const __m128i out = _mm_sub_epi8(in, in_0g0g); |
|
_mm_storeu_si128((__m128i*)&argb_data[i], out); |
|
} |
|
// fallthrough and finish off with plain-C |
|
#endif |
|
for (; i < num_pixs; ++i) { |
|
const uint32_t argb = argb_data[i]; |
|
const uint32_t green = (argb >> 8) & 0xff; |
|
const uint32_t new_r = (((argb >> 16) & 0xff) - green) & 0xff; |
|
const uint32_t new_b = ((argb & 0xff) - green) & 0xff; |
|
argb_data[i] = (argb & 0xff00ff00) | (new_r << 16) | new_b; |
|
} |
|
} |
|
|
|
// Add green to blue and red channels (i.e. perform the inverse transform of |
|
// 'subtract green'). |
|
static void AddGreenToBlueAndRed(const VP8LTransform* const transform, |
|
int y_start, int y_end, uint32_t* data) { |
|
const int width = transform->xsize_; |
|
const uint32_t* const data_end = data + (y_end - y_start) * width; |
|
#if defined(WEBP_TARGET_HAS_SSE2) |
|
const __m128i mask = _mm_set1_epi32(0x0000ff00); |
|
for (; data + 4 < data_end; data += 4) { |
|
const __m128i in = _mm_loadu_si128((__m128i*)data); |
|
const __m128i in_00g0 = _mm_and_si128(in, mask); // 00g0|00g0|... |
|
const __m128i in_0g00 = _mm_slli_epi32(in_00g0, 8); // 0g00|0g00|... |
|
const __m128i in_000g = _mm_srli_epi32(in_00g0, 8); // 000g|000g|... |
|
const __m128i in_0g0g = _mm_or_si128(in_0g00, in_000g); |
|
const __m128i out = _mm_add_epi8(in, in_0g0g); |
|
_mm_storeu_si128((__m128i*)data, out); |
|
} |
|
// fallthrough and finish off with plain-C |
|
#endif |
|
while (data < data_end) { |
|
const uint32_t argb = *data; |
|
const uint32_t green = ((argb >> 8) & 0xff); |
|
uint32_t red_blue = (argb & 0x00ff00ffu); |
|
red_blue += (green << 16) | green; |
|
red_blue &= 0x00ff00ffu; |
|
*data++ = (argb & 0xff00ff00u) | red_blue; |
|
} |
|
} |
|
|
|
typedef struct { |
|
// Note: the members are uint8_t, so that any negative values are |
|
// automatically converted to "mod 256" values. |
|
uint8_t green_to_red_; |
|
uint8_t green_to_blue_; |
|
uint8_t red_to_blue_; |
|
} Multipliers; |
|
|
|
static WEBP_INLINE void MultipliersClear(Multipliers* m) { |
|
m->green_to_red_ = 0; |
|
m->green_to_blue_ = 0; |
|
m->red_to_blue_ = 0; |
|
} |
|
|
|
static WEBP_INLINE uint32_t ColorTransformDelta(int8_t color_pred, |
|
int8_t color) { |
|
return (uint32_t)((int)(color_pred) * color) >> 5; |
|
} |
|
|
|
static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code, |
|
Multipliers* const m) { |
|
m->green_to_red_ = (color_code >> 0) & 0xff; |
|
m->green_to_blue_ = (color_code >> 8) & 0xff; |
|
m->red_to_blue_ = (color_code >> 16) & 0xff; |
|
} |
|
|
|
static WEBP_INLINE uint32_t MultipliersToColorCode(Multipliers* const m) { |
|
return 0xff000000u | |
|
((uint32_t)(m->red_to_blue_) << 16) | |
|
((uint32_t)(m->green_to_blue_) << 8) | |
|
m->green_to_red_; |
|
} |
|
|
|
static WEBP_INLINE uint32_t TransformColor(const Multipliers* const m, |
|
uint32_t argb, int inverse) { |
|
const uint32_t green = argb >> 8; |
|
const uint32_t red = argb >> 16; |
|
uint32_t new_red = red; |
|
uint32_t new_blue = argb; |
|
|
|
if (inverse) { |
|
new_red += ColorTransformDelta(m->green_to_red_, green); |
|
new_red &= 0xff; |
|
new_blue += ColorTransformDelta(m->green_to_blue_, green); |
|
new_blue += ColorTransformDelta(m->red_to_blue_, new_red); |
|
new_blue &= 0xff; |
|
} else { |
|
new_red -= ColorTransformDelta(m->green_to_red_, green); |
|
new_red &= 0xff; |
|
new_blue -= ColorTransformDelta(m->green_to_blue_, green); |
|
new_blue -= ColorTransformDelta(m->red_to_blue_, red); |
|
new_blue &= 0xff; |
|
} |
|
return (argb & 0xff00ff00u) | (new_red << 16) | (new_blue); |
|
} |
|
|
|
static WEBP_INLINE uint8_t TransformColorRed(uint8_t green_to_red, |
|
uint32_t argb) { |
|
const uint32_t green = argb >> 8; |
|
uint32_t new_red = argb >> 16; |
|
new_red -= ColorTransformDelta(green_to_red, green); |
|
return (new_red & 0xff); |
|
} |
|
|
|
static WEBP_INLINE uint8_t TransformColorBlue(uint8_t green_to_blue, |
|
uint8_t red_to_blue, |
|
uint32_t argb) { |
|
const uint32_t green = argb >> 8; |
|
const uint32_t red = argb >> 16; |
|
uint8_t new_blue = argb; |
|
new_blue -= ColorTransformDelta(green_to_blue, green); |
|
new_blue -= ColorTransformDelta(red_to_blue, red); |
|
return (new_blue & 0xff); |
|
} |
|
|
|
static WEBP_INLINE int SkipRepeatedPixels(const uint32_t* const argb, |
|
int ix, int xsize) { |
|
const uint32_t v = argb[ix]; |
|
if (ix >= xsize + 3) { |
|
if (v == argb[ix - xsize] && |
|
argb[ix - 1] == argb[ix - xsize - 1] && |
|
argb[ix - 2] == argb[ix - xsize - 2] && |
|
argb[ix - 3] == argb[ix - xsize - 3]) { |
|
return 1; |
|
} |
|
return v == argb[ix - 3] && v == argb[ix - 2] && v == argb[ix - 1]; |
|
} else if (ix >= 3) { |
|
return v == argb[ix - 3] && v == argb[ix - 2] && v == argb[ix - 1]; |
|
} |
|
return 0; |
|
} |
|
|
|
static float PredictionCostCrossColor(const int accumulated[256], |
|
const int counts[256]) { |
|
// Favor low entropy, locally and globally. |
|
// Favor small absolute values for PredictionCostSpatial |
|
static const double kExpValue = 2.4; |
|
return CombinedShannonEntropy(counts, accumulated, 256) + |
|
PredictionCostSpatial(counts, 3, kExpValue); |
|
} |
|
|
|
static Multipliers GetBestColorTransformForTile( |
|
int tile_x, int tile_y, int bits, |
|
Multipliers prevX, |
|
Multipliers prevY, |
|
int step, int xsize, int ysize, |
|
int* accumulated_red_histo, |
|
int* accumulated_blue_histo, |
|
const uint32_t* const argb) { |
|
float best_diff = MAX_DIFF_COST; |
|
float cur_diff; |
|
const int halfstep = step / 2; |
|
const int max_tile_size = 1 << bits; |
|
const int tile_y_offset = tile_y * max_tile_size; |
|
const int tile_x_offset = tile_x * max_tile_size; |
|
int green_to_red; |
|
int green_to_blue; |
|
int red_to_blue; |
|
int all_x_max = tile_x_offset + max_tile_size; |
|
int all_y_max = tile_y_offset + max_tile_size; |
|
Multipliers best_tx; |
|
MultipliersClear(&best_tx); |
|
if (all_x_max > xsize) { |
|
all_x_max = xsize; |
|
} |
|
if (all_y_max > ysize) { |
|
all_y_max = ysize; |
|
} |
|
|
|
for (green_to_red = -64; green_to_red <= 64; green_to_red += halfstep) { |
|
int histo[256] = { 0 }; |
|
int all_y; |
|
|
|
for (all_y = tile_y_offset; all_y < all_y_max; ++all_y) { |
|
int ix = all_y * xsize + tile_x_offset; |
|
int all_x; |
|
for (all_x = tile_x_offset; all_x < all_x_max; ++all_x, ++ix) { |
|
if (SkipRepeatedPixels(argb, ix, xsize)) { |
|
continue; |
|
} |
|
++histo[TransformColorRed(green_to_red, argb[ix])]; // red. |
|
} |
|
} |
|
cur_diff = PredictionCostCrossColor(&accumulated_red_histo[0], &histo[0]); |
|
if ((uint8_t)green_to_red == prevX.green_to_red_) { |
|
cur_diff -= 3; // favor keeping the areas locally similar |
|
} |
|
if ((uint8_t)green_to_red == prevY.green_to_red_) { |
|
cur_diff -= 3; // favor keeping the areas locally similar |
|
} |
|
if (green_to_red == 0) { |
|
cur_diff -= 3; |
|
} |
|
if (cur_diff < best_diff) { |
|
best_diff = cur_diff; |
|
best_tx.green_to_red_ = green_to_red; |
|
} |
|
} |
|
best_diff = MAX_DIFF_COST; |
|
for (green_to_blue = -32; green_to_blue <= 32; green_to_blue += step) { |
|
for (red_to_blue = -32; red_to_blue <= 32; red_to_blue += step) { |
|
int all_y; |
|
int histo[256] = { 0 }; |
|
for (all_y = tile_y_offset; all_y < all_y_max; ++all_y) { |
|
int all_x; |
|
int ix = all_y * xsize + tile_x_offset; |
|
for (all_x = tile_x_offset; all_x < all_x_max; ++all_x, ++ix) { |
|
if (SkipRepeatedPixels(argb, ix, xsize)) { |
|
continue; |
|
} |
|
++histo[TransformColorBlue(green_to_blue, red_to_blue, argb[ix])]; |
|
} |
|
} |
|
cur_diff = |
|
PredictionCostCrossColor(&accumulated_blue_histo[0], &histo[0]); |
|
if ((uint8_t)green_to_blue == prevX.green_to_blue_) { |
|
cur_diff -= 3; // favor keeping the areas locally similar |
|
} |
|
if ((uint8_t)green_to_blue == prevY.green_to_blue_) { |
|
cur_diff -= 3; // favor keeping the areas locally similar |
|
} |
|
if ((uint8_t)red_to_blue == prevX.red_to_blue_) { |
|
cur_diff -= 3; // favor keeping the areas locally similar |
|
} |
|
if ((uint8_t)red_to_blue == prevY.red_to_blue_) { |
|
cur_diff -= 3; // favor keeping the areas locally similar |
|
} |
|
if (green_to_blue == 0) { |
|
cur_diff -= 3; |
|
} |
|
if (red_to_blue == 0) { |
|
cur_diff -= 3; |
|
} |
|
if (cur_diff < best_diff) { |
|
best_diff = cur_diff; |
|
best_tx.green_to_blue_ = green_to_blue; |
|
best_tx.red_to_blue_ = red_to_blue; |
|
} |
|
} |
|
} |
|
return best_tx; |
|
} |
|
|
|
static void CopyTileWithColorTransform(int xsize, int ysize, |
|
int tile_x, int tile_y, int bits, |
|
Multipliers color_transform, |
|
uint32_t* const argb) { |
|
int y; |
|
int xscan = 1 << bits; |
|
int yscan = 1 << bits; |
|
tile_x <<= bits; |
|
tile_y <<= bits; |
|
if (xscan > xsize - tile_x) { |
|
xscan = xsize - tile_x; |
|
} |
|
if (yscan > ysize - tile_y) { |
|
yscan = ysize - tile_y; |
|
} |
|
yscan += tile_y; |
|
for (y = tile_y; y < yscan; ++y) { |
|
int ix = y * xsize + tile_x; |
|
const int end_ix = ix + xscan; |
|
for (; ix < end_ix; ++ix) { |
|
argb[ix] = TransformColor(&color_transform, argb[ix], 0); |
|
} |
|
} |
|
} |
|
|
|
void VP8LColorSpaceTransform(int width, int height, int bits, int step, |
|
uint32_t* const argb, uint32_t* image) { |
|
const int max_tile_size = 1 << bits; |
|
int tile_xsize = VP8LSubSampleSize(width, bits); |
|
int tile_ysize = VP8LSubSampleSize(height, bits); |
|
int accumulated_red_histo[256] = { 0 }; |
|
int accumulated_blue_histo[256] = { 0 }; |
|
int tile_y; |
|
int tile_x; |
|
Multipliers prevX; |
|
Multipliers prevY; |
|
MultipliersClear(&prevY); |
|
MultipliersClear(&prevX); |
|
for (tile_y = 0; tile_y < tile_ysize; ++tile_y) { |
|
for (tile_x = 0; tile_x < tile_xsize; ++tile_x) { |
|
Multipliers color_transform; |
|
int all_x_max; |
|
int y; |
|
const int tile_y_offset = tile_y * max_tile_size; |
|
const int tile_x_offset = tile_x * max_tile_size; |
|
if (tile_y != 0) { |
|
ColorCodeToMultipliers(image[tile_y * tile_xsize + tile_x - 1], &prevX); |
|
ColorCodeToMultipliers(image[(tile_y - 1) * tile_xsize + tile_x], |
|
&prevY); |
|
} else if (tile_x != 0) { |
|
ColorCodeToMultipliers(image[tile_y * tile_xsize + tile_x - 1], &prevX); |
|
} |
|
color_transform = |
|
GetBestColorTransformForTile(tile_x, tile_y, bits, |
|
prevX, prevY, |
|
step, width, height, |
|
&accumulated_red_histo[0], |
|
&accumulated_blue_histo[0], |
|
argb); |
|
image[tile_y * tile_xsize + tile_x] = |
|
MultipliersToColorCode(&color_transform); |
|
CopyTileWithColorTransform(width, height, tile_x, tile_y, bits, |
|
color_transform, argb); |
|
|
|
// Gather accumulated histogram data. |
|
all_x_max = tile_x_offset + max_tile_size; |
|
if (all_x_max > width) { |
|
all_x_max = width; |
|
} |
|
for (y = 0; y < max_tile_size; ++y) { |
|
int ix; |
|
int all_x; |
|
int all_y = tile_y_offset + y; |
|
if (all_y >= height) { |
|
break; |
|
} |
|
ix = all_y * width + tile_x_offset; |
|
for (all_x = tile_x_offset; all_x < all_x_max; ++all_x, ++ix) { |
|
if (ix >= 2 && |
|
argb[ix] == argb[ix - 2] && |
|
argb[ix] == argb[ix - 1]) { |
|
continue; // repeated pixels are handled by backward references |
|
} |
|
if (ix >= width + 2 && |
|
argb[ix - 2] == argb[ix - width - 2] && |
|
argb[ix - 1] == argb[ix - width - 1] && |
|
argb[ix] == argb[ix - width]) { |
|
continue; // repeated pixels are handled by backward references |
|
} |
|
++accumulated_red_histo[(argb[ix] >> 16) & 0xff]; |
|
++accumulated_blue_histo[argb[ix] & 0xff]; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
// Color space inverse transform. |
|
static void ColorSpaceInverseTransform(const VP8LTransform* const transform, |
|
int y_start, int y_end, uint32_t* data) { |
|
const int width = transform->xsize_; |
|
const int mask = (1 << transform->bits_) - 1; |
|
const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_); |
|
int y = y_start; |
|
const uint32_t* pred_row = |
|
transform->data_ + (y >> transform->bits_) * tiles_per_row; |
|
|
|
while (y < y_end) { |
|
const uint32_t* pred = pred_row; |
|
Multipliers m = { 0, 0, 0 }; |
|
int x; |
|
|
|
for (x = 0; x < width; ++x) { |
|
if ((x & mask) == 0) ColorCodeToMultipliers(*pred++, &m); |
|
data[x] = TransformColor(&m, data[x], 1); |
|
} |
|
data += width; |
|
++y; |
|
if ((y & mask) == 0) pred_row += tiles_per_row;; |
|
} |
|
} |
|
|
|
// Separate out pixels packed together using pixel-bundling. |
|
static void ColorIndexInverseTransform( |
|
const VP8LTransform* const transform, |
|
int y_start, int y_end, const uint32_t* src, uint32_t* dst) { |
|
int y; |
|
const int bits_per_pixel = 8 >> transform->bits_; |
|
const int width = transform->xsize_; |
|
const uint32_t* const color_map = transform->data_; |
|
if (bits_per_pixel < 8) { |
|
const int pixels_per_byte = 1 << transform->bits_; |
|
const int count_mask = pixels_per_byte - 1; |
|
const uint32_t bit_mask = (1 << bits_per_pixel) - 1; |
|
for (y = y_start; y < y_end; ++y) { |
|
uint32_t packed_pixels = 0; |
|
int x; |
|
for (x = 0; x < width; ++x) { |
|
// We need to load fresh 'packed_pixels' once every 'pixels_per_byte' |
|
// increments of x. Fortunately, pixels_per_byte is a power of 2, so |
|
// can just use a mask for that, instead of decrementing a counter. |
|
if ((x & count_mask) == 0) packed_pixels = ((*src++) >> 8) & 0xff; |
|
*dst++ = color_map[packed_pixels & bit_mask]; |
|
packed_pixels >>= bits_per_pixel; |
|
} |
|
} |
|
} else { |
|
for (y = y_start; y < y_end; ++y) { |
|
int x; |
|
for (x = 0; x < width; ++x) { |
|
*dst++ = color_map[((*src++) >> 8) & 0xff]; |
|
} |
|
} |
|
} |
|
} |
|
|
|
void VP8LInverseTransform(const VP8LTransform* const transform, |
|
int row_start, int row_end, |
|
const uint32_t* const in, uint32_t* const out) { |
|
assert(row_start < row_end); |
|
assert(row_end <= transform->ysize_); |
|
switch (transform->type_) { |
|
case SUBTRACT_GREEN: |
|
AddGreenToBlueAndRed(transform, row_start, row_end, out); |
|
break; |
|
case PREDICTOR_TRANSFORM: |
|
PredictorInverseTransform(transform, row_start, row_end, out); |
|
if (row_end != transform->ysize_) { |
|
// The last predicted row in this iteration will be the top-pred row |
|
// for the first row in next iteration. |
|
const int width = transform->xsize_; |
|
memcpy(out - width, out + (row_end - row_start - 1) * width, |
|
width * sizeof(*out)); |
|
} |
|
break; |
|
case CROSS_COLOR_TRANSFORM: |
|
ColorSpaceInverseTransform(transform, row_start, row_end, out); |
|
break; |
|
case COLOR_INDEXING_TRANSFORM: |
|
if (in == out && transform->bits_ > 0) { |
|
// Move packed pixels to the end of unpacked region, so that unpacking |
|
// can occur seamlessly. |
|
// Also, note that this is the only transform that applies on |
|
// the effective width of VP8LSubSampleSize(xsize_, bits_). All other |
|
// transforms work on effective width of xsize_. |
|
const int out_stride = (row_end - row_start) * transform->xsize_; |
|
const int in_stride = (row_end - row_start) * |
|
VP8LSubSampleSize(transform->xsize_, transform->bits_); |
|
uint32_t* const src = out + out_stride - in_stride; |
|
memmove(src, out, in_stride * sizeof(*src)); |
|
ColorIndexInverseTransform(transform, row_start, row_end, src, out); |
|
} else { |
|
ColorIndexInverseTransform(transform, row_start, row_end, in, out); |
|
} |
|
break; |
|
} |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// Color space conversion. |
|
|
|
static int is_big_endian(void) { |
|
static const union { |
|
uint16_t w; |
|
uint8_t b[2]; |
|
} tmp = { 1 }; |
|
return (tmp.b[0] != 1); |
|
} |
|
|
|
static void ConvertBGRAToRGB(const uint32_t* src, |
|
int num_pixels, uint8_t* dst) { |
|
const uint32_t* const src_end = src + num_pixels; |
|
while (src < src_end) { |
|
const uint32_t argb = *src++; |
|
*dst++ = (argb >> 16) & 0xff; |
|
*dst++ = (argb >> 8) & 0xff; |
|
*dst++ = (argb >> 0) & 0xff; |
|
} |
|
} |
|
|
|
static void ConvertBGRAToRGBA(const uint32_t* src, |
|
int num_pixels, uint8_t* dst) { |
|
const uint32_t* const src_end = src + num_pixels; |
|
while (src < src_end) { |
|
const uint32_t argb = *src++; |
|
*dst++ = (argb >> 16) & 0xff; |
|
*dst++ = (argb >> 8) & 0xff; |
|
*dst++ = (argb >> 0) & 0xff; |
|
*dst++ = (argb >> 24) & 0xff; |
|
} |
|
} |
|
|
|
static void ConvertBGRAToRGBA4444(const uint32_t* src, |
|
int num_pixels, uint8_t* dst) { |
|
const uint32_t* const src_end = src + num_pixels; |
|
while (src < src_end) { |
|
const uint32_t argb = *src++; |
|
const uint8_t rg = ((argb >> 16) & 0xf0) | ((argb >> 12) & 0xf); |
|
const uint8_t ba = ((argb >> 0) & 0xf0) | ((argb >> 28) & 0xf); |
|
#ifdef WEBP_SWAP_16BIT_CSP |
|
*dst++ = ba; |
|
*dst++ = rg; |
|
#else |
|
*dst++ = rg; |
|
*dst++ = ba; |
|
#endif |
|
} |
|
} |
|
|
|
static void ConvertBGRAToRGB565(const uint32_t* src, |
|
int num_pixels, uint8_t* dst) { |
|
const uint32_t* const src_end = src + num_pixels; |
|
while (src < src_end) { |
|
const uint32_t argb = *src++; |
|
const uint8_t rg = ((argb >> 16) & 0xf8) | ((argb >> 13) & 0x7); |
|
const uint8_t gb = ((argb >> 5) & 0xe0) | ((argb >> 3) & 0x1f); |
|
#ifdef WEBP_SWAP_16BIT_CSP |
|
*dst++ = gb; |
|
*dst++ = rg; |
|
#else |
|
*dst++ = rg; |
|
*dst++ = gb; |
|
#endif |
|
} |
|
} |
|
|
|
static void ConvertBGRAToBGR(const uint32_t* src, |
|
int num_pixels, uint8_t* dst) { |
|
const uint32_t* const src_end = src + num_pixels; |
|
while (src < src_end) { |
|
const uint32_t argb = *src++; |
|
*dst++ = (argb >> 0) & 0xff; |
|
*dst++ = (argb >> 8) & 0xff; |
|
*dst++ = (argb >> 16) & 0xff; |
|
} |
|
} |
|
|
|
static void CopyOrSwap(const uint32_t* src, int num_pixels, uint8_t* dst, |
|
int swap_on_big_endian) { |
|
if (is_big_endian() == swap_on_big_endian) { |
|
const uint32_t* const src_end = src + num_pixels; |
|
while (src < src_end) { |
|
uint32_t argb = *src++; |
|
|
|
#if !defined(WEBP_REFERENCE_IMPLEMENTATION) |
|
#if !defined(__BIG_ENDIAN__) && (defined(__i386__) || defined(__x86_64__)) |
|
__asm__ volatile("bswap %0" : "=r"(argb) : "0"(argb)); |
|
*(uint32_t*)dst = argb; |
|
#elif !defined(__BIG_ENDIAN__) && defined(_MSC_VER) |
|
argb = _byteswap_ulong(argb); |
|
*(uint32_t*)dst = argb; |
|
#else |
|
dst[0] = (argb >> 24) & 0xff; |
|
dst[1] = (argb >> 16) & 0xff; |
|
dst[2] = (argb >> 8) & 0xff; |
|
dst[3] = (argb >> 0) & 0xff; |
|
#endif |
|
#else // WEBP_REFERENCE_IMPLEMENTATION |
|
dst[0] = (argb >> 24) & 0xff; |
|
dst[1] = (argb >> 16) & 0xff; |
|
dst[2] = (argb >> 8) & 0xff; |
|
dst[3] = (argb >> 0) & 0xff; |
|
#endif |
|
dst += sizeof(argb); |
|
} |
|
} else { |
|
memcpy(dst, src, num_pixels * sizeof(*src)); |
|
} |
|
} |
|
|
|
void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels, |
|
WEBP_CSP_MODE out_colorspace, uint8_t* const rgba) { |
|
switch (out_colorspace) { |
|
case MODE_RGB: |
|
ConvertBGRAToRGB(in_data, num_pixels, rgba); |
|
break; |
|
case MODE_RGBA: |
|
ConvertBGRAToRGBA(in_data, num_pixels, rgba); |
|
break; |
|
case MODE_rgbA: |
|
ConvertBGRAToRGBA(in_data, num_pixels, rgba); |
|
WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0); |
|
break; |
|
case MODE_BGR: |
|
ConvertBGRAToBGR(in_data, num_pixels, rgba); |
|
break; |
|
case MODE_BGRA: |
|
CopyOrSwap(in_data, num_pixels, rgba, 1); |
|
break; |
|
case MODE_bgrA: |
|
CopyOrSwap(in_data, num_pixels, rgba, 1); |
|
WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0); |
|
break; |
|
case MODE_ARGB: |
|
CopyOrSwap(in_data, num_pixels, rgba, 0); |
|
break; |
|
case MODE_Argb: |
|
CopyOrSwap(in_data, num_pixels, rgba, 0); |
|
WebPApplyAlphaMultiply(rgba, 1, num_pixels, 1, 0); |
|
break; |
|
case MODE_RGBA_4444: |
|
ConvertBGRAToRGBA4444(in_data, num_pixels, rgba); |
|
break; |
|
case MODE_rgbA_4444: |
|
ConvertBGRAToRGBA4444(in_data, num_pixels, rgba); |
|
WebPApplyAlphaMultiply4444(rgba, num_pixels, 1, 0); |
|
break; |
|
case MODE_RGB_565: |
|
ConvertBGRAToRGB565(in_data, num_pixels, rgba); |
|
break; |
|
default: |
|
assert(0); // Code flow should not reach here. |
|
} |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
|
|
#if defined(__cplusplus) || defined(c_plusplus) |
|
} // extern "C" |
|
#endif
|
|
|