mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1498 lines
60 KiB
1498 lines
60 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. |
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// @Authors |
|
// Niko Li, newlife20080214@gmail.com |
|
// Wang Weiyan, wangweiyanster@gmail.com |
|
// Jia Haipeng, jiahaipeng95@gmail.com |
|
// Wu Xinglong, wxl370@126.com |
|
// Wang Yao, bitwangyaoyao@gmail.com |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other oclMaterials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include <stdio.h> |
|
|
|
using namespace cv; |
|
using namespace cv::ocl; |
|
|
|
#if 0 |
|
|
|
namespace cv |
|
{ |
|
namespace ocl |
|
{ |
|
///////////////////////////OpenCL kernel strings/////////////////////////// |
|
extern const char *haarobjectdetect; |
|
extern const char *haarobjectdetectbackup; |
|
extern const char *haarobjectdetect_scaled2; |
|
} |
|
} |
|
|
|
/* these settings affect the quality of detection: change with care */ |
|
#define CV_ADJUST_FEATURES 1 |
|
#define CV_ADJUST_WEIGHTS 0 |
|
|
|
typedef int sumtype; |
|
typedef double sqsumtype; |
|
|
|
typedef struct CvHidHaarFeature |
|
{ |
|
struct |
|
{ |
|
sumtype *p0, *p1, *p2, *p3; |
|
float weight; |
|
} |
|
rect[CV_HAAR_FEATURE_MAX]; |
|
} |
|
CvHidHaarFeature; |
|
|
|
|
|
typedef struct CvHidHaarTreeNode |
|
{ |
|
CvHidHaarFeature feature; |
|
float threshold; |
|
int left; |
|
int right; |
|
} |
|
CvHidHaarTreeNode; |
|
|
|
|
|
typedef struct CvHidHaarClassifier |
|
{ |
|
int count; |
|
//CvHaarFeature* orig_feature; |
|
CvHidHaarTreeNode *node; |
|
float *alpha; |
|
} |
|
CvHidHaarClassifier; |
|
|
|
|
|
typedef struct CvHidHaarStageClassifier |
|
{ |
|
int count; |
|
float threshold; |
|
CvHidHaarClassifier *classifier; |
|
int two_rects; |
|
|
|
struct CvHidHaarStageClassifier *next; |
|
struct CvHidHaarStageClassifier *child; |
|
struct CvHidHaarStageClassifier *parent; |
|
} |
|
CvHidHaarStageClassifier; |
|
|
|
|
|
struct CvHidHaarClassifierCascade |
|
{ |
|
int count; |
|
int is_stump_based; |
|
int has_tilted_features; |
|
int is_tree; |
|
double inv_window_area; |
|
CvMat sum, sqsum, tilted; |
|
CvHidHaarStageClassifier *stage_classifier; |
|
sqsumtype *pq0, *pq1, *pq2, *pq3; |
|
sumtype *p0, *p1, *p2, *p3; |
|
|
|
void **ipp_stages; |
|
}; |
|
typedef struct |
|
{ |
|
//int rows; |
|
//int ystep; |
|
int width_height; |
|
//int height; |
|
int grpnumperline_totalgrp; |
|
//int totalgrp; |
|
int imgoff; |
|
float factor; |
|
} detect_piramid_info; |
|
#ifdef WIN32 |
|
#define _ALIGNED_ON(_ALIGNMENT) __declspec(align(_ALIGNMENT)) |
|
typedef _ALIGNED_ON(128) struct GpuHidHaarFeature |
|
{ |
|
_ALIGNED_ON(32) struct |
|
{ |
|
_ALIGNED_ON(4) int p0 ; |
|
_ALIGNED_ON(4) int p1 ; |
|
_ALIGNED_ON(4) int p2 ; |
|
_ALIGNED_ON(4) int p3 ; |
|
_ALIGNED_ON(4) float weight ; |
|
} |
|
/*_ALIGNED_ON(32)*/ rect[CV_HAAR_FEATURE_MAX] ; |
|
} |
|
GpuHidHaarFeature; |
|
|
|
|
|
typedef _ALIGNED_ON(128) struct GpuHidHaarTreeNode |
|
{ |
|
_ALIGNED_ON(64) int p[CV_HAAR_FEATURE_MAX][4]; |
|
//_ALIGNED_ON(16) int p1[CV_HAAR_FEATURE_MAX] ; |
|
//_ALIGNED_ON(16) int p2[CV_HAAR_FEATURE_MAX] ; |
|
//_ALIGNED_ON(16) int p3[CV_HAAR_FEATURE_MAX] ; |
|
/*_ALIGNED_ON(16)*/ |
|
float weight[CV_HAAR_FEATURE_MAX] ; |
|
/*_ALIGNED_ON(4)*/ |
|
float threshold ; |
|
_ALIGNED_ON(8) float alpha[2] ; |
|
_ALIGNED_ON(4) int left ; |
|
_ALIGNED_ON(4) int right ; |
|
// GpuHidHaarFeature feature __attribute__((aligned (128))); |
|
} |
|
GpuHidHaarTreeNode; |
|
|
|
|
|
typedef _ALIGNED_ON(32) struct GpuHidHaarClassifier |
|
{ |
|
_ALIGNED_ON(4) int count; |
|
//CvHaarFeature* orig_feature; |
|
_ALIGNED_ON(8) GpuHidHaarTreeNode *node ; |
|
_ALIGNED_ON(8) float *alpha ; |
|
} |
|
GpuHidHaarClassifier; |
|
|
|
|
|
typedef _ALIGNED_ON(64) struct GpuHidHaarStageClassifier |
|
{ |
|
_ALIGNED_ON(4) int count ; |
|
_ALIGNED_ON(4) float threshold ; |
|
_ALIGNED_ON(4) int two_rects ; |
|
_ALIGNED_ON(8) GpuHidHaarClassifier *classifier ; |
|
_ALIGNED_ON(8) struct GpuHidHaarStageClassifier *next; |
|
_ALIGNED_ON(8) struct GpuHidHaarStageClassifier *child ; |
|
_ALIGNED_ON(8) struct GpuHidHaarStageClassifier *parent ; |
|
} |
|
GpuHidHaarStageClassifier; |
|
|
|
|
|
typedef _ALIGNED_ON(64) struct GpuHidHaarClassifierCascade |
|
{ |
|
_ALIGNED_ON(4) int count ; |
|
_ALIGNED_ON(4) int is_stump_based ; |
|
_ALIGNED_ON(4) int has_tilted_features ; |
|
_ALIGNED_ON(4) int is_tree ; |
|
_ALIGNED_ON(4) int pq0 ; |
|
_ALIGNED_ON(4) int pq1 ; |
|
_ALIGNED_ON(4) int pq2 ; |
|
_ALIGNED_ON(4) int pq3 ; |
|
_ALIGNED_ON(4) int p0 ; |
|
_ALIGNED_ON(4) int p1 ; |
|
_ALIGNED_ON(4) int p2 ; |
|
_ALIGNED_ON(4) int p3 ; |
|
_ALIGNED_ON(4) float inv_window_area ; |
|
// GpuHidHaarStageClassifier* stage_classifier __attribute__((aligned (8))); |
|
} GpuHidHaarClassifierCascade; |
|
#else |
|
#define _ALIGNED_ON(_ALIGNMENT) __attribute__((aligned(_ALIGNMENT) )) |
|
|
|
typedef struct _ALIGNED_ON(128) GpuHidHaarFeature |
|
{ |
|
struct _ALIGNED_ON(32) |
|
{ |
|
int p0 _ALIGNED_ON(4); |
|
int p1 _ALIGNED_ON(4); |
|
int p2 _ALIGNED_ON(4); |
|
int p3 _ALIGNED_ON(4); |
|
float weight _ALIGNED_ON(4); |
|
} |
|
rect[CV_HAAR_FEATURE_MAX] _ALIGNED_ON(32); |
|
} |
|
GpuHidHaarFeature; |
|
|
|
|
|
typedef struct _ALIGNED_ON(128) GpuHidHaarTreeNode |
|
{ |
|
int p[CV_HAAR_FEATURE_MAX][4] _ALIGNED_ON(64); |
|
float weight[CV_HAAR_FEATURE_MAX];// _ALIGNED_ON(16); |
|
float threshold;// _ALIGNED_ON(4); |
|
float alpha[2] _ALIGNED_ON(8); |
|
int left _ALIGNED_ON(4); |
|
int right _ALIGNED_ON(4); |
|
} |
|
GpuHidHaarTreeNode; |
|
|
|
typedef struct _ALIGNED_ON(32) GpuHidHaarClassifier |
|
{ |
|
int count _ALIGNED_ON(4); |
|
GpuHidHaarTreeNode *node _ALIGNED_ON(8); |
|
float *alpha _ALIGNED_ON(8); |
|
} |
|
GpuHidHaarClassifier; |
|
|
|
|
|
typedef struct _ALIGNED_ON(64) GpuHidHaarStageClassifier |
|
{ |
|
int count _ALIGNED_ON(4); |
|
float threshold _ALIGNED_ON(4); |
|
int two_rects _ALIGNED_ON(4); |
|
GpuHidHaarClassifier *classifier _ALIGNED_ON(8); |
|
struct GpuHidHaarStageClassifier *next _ALIGNED_ON(8); |
|
struct GpuHidHaarStageClassifier *child _ALIGNED_ON(8); |
|
struct GpuHidHaarStageClassifier *parent _ALIGNED_ON(8); |
|
} |
|
GpuHidHaarStageClassifier; |
|
|
|
|
|
typedef struct _ALIGNED_ON(64) GpuHidHaarClassifierCascade |
|
{ |
|
int count _ALIGNED_ON(4); |
|
int is_stump_based _ALIGNED_ON(4); |
|
int has_tilted_features _ALIGNED_ON(4); |
|
int is_tree _ALIGNED_ON(4); |
|
int pq0 _ALIGNED_ON(4); |
|
int pq1 _ALIGNED_ON(4); |
|
int pq2 _ALIGNED_ON(4); |
|
int pq3 _ALIGNED_ON(4); |
|
int p0 _ALIGNED_ON(4); |
|
int p1 _ALIGNED_ON(4); |
|
int p2 _ALIGNED_ON(4); |
|
int p3 _ALIGNED_ON(4); |
|
float inv_window_area _ALIGNED_ON(4); |
|
// GpuHidHaarStageClassifier* stage_classifier __attribute__((aligned (8))); |
|
} GpuHidHaarClassifierCascade; |
|
#endif |
|
|
|
const int icv_object_win_border = 1; |
|
const float icv_stage_threshold_bias = 0.0001f; |
|
double globaltime = 0; |
|
|
|
|
|
// static CvHaarClassifierCascade * gpuCreateHaarClassifierCascade( int stage_count ) |
|
// { |
|
// CvHaarClassifierCascade *cascade = 0; |
|
|
|
// int block_size = sizeof(*cascade) + stage_count * sizeof(*cascade->stage_classifier); |
|
|
|
// if( stage_count <= 0 ) |
|
// CV_Error( CV_StsOutOfRange, "Number of stages should be positive" ); |
|
|
|
// cascade = (CvHaarClassifierCascade *)cvAlloc( block_size ); |
|
// memset( cascade, 0, block_size ); |
|
|
|
// cascade->stage_classifier = (CvHaarStageClassifier *)(cascade + 1); |
|
// cascade->flags = CV_HAAR_MAGIC_VAL; |
|
// cascade->count = stage_count; |
|
|
|
// return cascade; |
|
// } |
|
|
|
//static int globalcounter = 0; |
|
|
|
// static void gpuReleaseHidHaarClassifierCascade( GpuHidHaarClassifierCascade **_cascade ) |
|
// { |
|
// if( _cascade && *_cascade ) |
|
// { |
|
// cvFree( _cascade ); |
|
// } |
|
// } |
|
|
|
/* create more efficient internal representation of haar classifier cascade */ |
|
static GpuHidHaarClassifierCascade * gpuCreateHidHaarClassifierCascade( CvHaarClassifierCascade *cascade, int *size, int *totalclassifier) |
|
{ |
|
GpuHidHaarClassifierCascade *out = 0; |
|
|
|
int i, j, k, l; |
|
int datasize; |
|
int total_classifiers = 0; |
|
int total_nodes = 0; |
|
char errorstr[100]; |
|
|
|
GpuHidHaarStageClassifier *stage_classifier_ptr; |
|
GpuHidHaarClassifier *haar_classifier_ptr; |
|
GpuHidHaarTreeNode *haar_node_ptr; |
|
|
|
CvSize orig_window_size; |
|
int has_tilted_features = 0; |
|
|
|
if( !CV_IS_HAAR_CLASSIFIER(cascade) ) |
|
CV_Error( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" ); |
|
|
|
if( cascade->hid_cascade ) |
|
CV_Error( CV_StsError, "hid_cascade has been already created" ); |
|
|
|
if( !cascade->stage_classifier ) |
|
CV_Error( CV_StsNullPtr, "" ); |
|
|
|
if( cascade->count <= 0 ) |
|
CV_Error( CV_StsOutOfRange, "Negative number of cascade stages" ); |
|
|
|
orig_window_size = cascade->orig_window_size; |
|
|
|
/* check input structure correctness and calculate total memory size needed for |
|
internal representation of the classifier cascade */ |
|
for( i = 0; i < cascade->count; i++ ) |
|
{ |
|
CvHaarStageClassifier *stage_classifier = cascade->stage_classifier + i; |
|
|
|
if( !stage_classifier->classifier || |
|
stage_classifier->count <= 0 ) |
|
{ |
|
sprintf( errorstr, "header of the stage classifier #%d is invalid " |
|
"(has null pointers or non-positive classfier count)", i ); |
|
CV_Error( CV_StsError, errorstr ); |
|
} |
|
|
|
total_classifiers += stage_classifier->count; |
|
|
|
for( j = 0; j < stage_classifier->count; j++ ) |
|
{ |
|
CvHaarClassifier *classifier = stage_classifier->classifier + j; |
|
|
|
total_nodes += classifier->count; |
|
for( l = 0; l < classifier->count; l++ ) |
|
{ |
|
for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ ) |
|
{ |
|
if( classifier->haar_feature[l].rect[k].r.width ) |
|
{ |
|
CvRect r = classifier->haar_feature[l].rect[k].r; |
|
int tilted = classifier->haar_feature[l].tilted; |
|
has_tilted_features |= tilted != 0; |
|
if( r.width < 0 || r.height < 0 || r.y < 0 || |
|
r.x + r.width > orig_window_size.width |
|
|| |
|
(!tilted && |
|
(r.x < 0 || r.y + r.height > orig_window_size.height)) |
|
|| |
|
(tilted && (r.x - r.height < 0 || |
|
r.y + r.width + r.height > orig_window_size.height))) |
|
{ |
|
sprintf( errorstr, "rectangle #%d of the classifier #%d of " |
|
"the stage classifier #%d is not inside " |
|
"the reference (original) cascade window", k, j, i ); |
|
CV_Error( CV_StsNullPtr, errorstr ); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
// this is an upper boundary for the whole hidden cascade size |
|
datasize = sizeof(GpuHidHaarClassifierCascade) + |
|
sizeof(GpuHidHaarStageClassifier) * cascade->count + |
|
sizeof(GpuHidHaarClassifier) * total_classifiers + |
|
sizeof(GpuHidHaarTreeNode) * total_nodes; |
|
|
|
*totalclassifier = total_classifiers; |
|
*size = datasize; |
|
out = (GpuHidHaarClassifierCascade *)cvAlloc( datasize ); |
|
memset( out, 0, sizeof(*out) ); |
|
|
|
/* init header */ |
|
out->count = cascade->count; |
|
stage_classifier_ptr = (GpuHidHaarStageClassifier *)(out + 1); |
|
haar_classifier_ptr = (GpuHidHaarClassifier *)(stage_classifier_ptr + cascade->count); |
|
haar_node_ptr = (GpuHidHaarTreeNode *)(haar_classifier_ptr + total_classifiers); |
|
|
|
out->is_stump_based = 1; |
|
out->has_tilted_features = has_tilted_features; |
|
out->is_tree = 0; |
|
|
|
/* initialize internal representation */ |
|
for( i = 0; i < cascade->count; i++ ) |
|
{ |
|
CvHaarStageClassifier *stage_classifier = cascade->stage_classifier + i; |
|
GpuHidHaarStageClassifier *hid_stage_classifier = stage_classifier_ptr + i; |
|
|
|
hid_stage_classifier->count = stage_classifier->count; |
|
hid_stage_classifier->threshold = stage_classifier->threshold - icv_stage_threshold_bias; |
|
hid_stage_classifier->classifier = haar_classifier_ptr; |
|
hid_stage_classifier->two_rects = 1; |
|
haar_classifier_ptr += stage_classifier->count; |
|
|
|
/* |
|
hid_stage_classifier->parent = (stage_classifier->parent == -1) |
|
? NULL : stage_classifier_ptr + stage_classifier->parent; |
|
hid_stage_classifier->next = (stage_classifier->next == -1) |
|
? NULL : stage_classifier_ptr + stage_classifier->next; |
|
hid_stage_classifier->child = (stage_classifier->child == -1) |
|
? NULL : stage_classifier_ptr + stage_classifier->child; |
|
|
|
out->is_tree |= hid_stage_classifier->next != NULL; |
|
*/ |
|
|
|
for( j = 0; j < stage_classifier->count; j++ ) |
|
{ |
|
CvHaarClassifier *classifier = stage_classifier->classifier + j; |
|
GpuHidHaarClassifier *hid_classifier = hid_stage_classifier->classifier + j; |
|
int node_count = classifier->count; |
|
|
|
// float* alpha_ptr = (float*)(haar_node_ptr + node_count); |
|
float *alpha_ptr = &haar_node_ptr->alpha[0]; |
|
|
|
hid_classifier->count = node_count; |
|
hid_classifier->node = haar_node_ptr; |
|
hid_classifier->alpha = alpha_ptr; |
|
|
|
for( l = 0; l < node_count; l++ ) |
|
{ |
|
GpuHidHaarTreeNode *node = hid_classifier->node + l; |
|
CvHaarFeature *feature = classifier->haar_feature + l; |
|
|
|
memset( node, -1, sizeof(*node) ); |
|
node->threshold = classifier->threshold[l]; |
|
node->left = classifier->left[l]; |
|
node->right = classifier->right[l]; |
|
|
|
if( fabs(feature->rect[2].weight) < DBL_EPSILON || |
|
feature->rect[2].r.width == 0 || |
|
feature->rect[2].r.height == 0 ) |
|
{ |
|
node->p[2][0] = 0; |
|
node->p[2][1] = 0; |
|
node->p[2][2] = 0; |
|
node->p[2][3] = 0; |
|
node->weight[2] = 0; |
|
} |
|
// memset( &(node->feature.rect[2]), 0, sizeof(node->feature.rect[2]) ); |
|
else |
|
hid_stage_classifier->two_rects = 0; |
|
} |
|
|
|
memcpy( alpha_ptr, classifier->alpha, (node_count + 1)*sizeof(alpha_ptr[0])); |
|
haar_node_ptr = haar_node_ptr + 1; |
|
// (GpuHidHaarTreeNode*)cvAlignPtr(alpha_ptr+node_count+1, sizeof(void*)); |
|
// (GpuHidHaarTreeNode*)(alpha_ptr+node_count+1); |
|
|
|
out->is_stump_based &= node_count == 1; |
|
} |
|
} |
|
|
|
cascade->hid_cascade = (CvHidHaarClassifierCascade *)out; |
|
assert( (char *)haar_node_ptr - (char *)out <= datasize ); |
|
|
|
return out; |
|
} |
|
|
|
|
|
#define sum_elem_ptr(sum,row,col) \ |
|
((sumtype*)CV_MAT_ELEM_PTR_FAST((sum),(row),(col),sizeof(sumtype))) |
|
|
|
#define sqsum_elem_ptr(sqsum,row,col) \ |
|
((sqsumtype*)CV_MAT_ELEM_PTR_FAST((sqsum),(row),(col),sizeof(sqsumtype))) |
|
|
|
#define calc_sum(rect,offset) \ |
|
((rect).p0[offset] - (rect).p1[offset] - (rect).p2[offset] + (rect).p3[offset]) |
|
|
|
|
|
static void gpuSetImagesForHaarClassifierCascade( CvHaarClassifierCascade *_cascade, |
|
/* const CvArr* _sum, |
|
const CvArr* _sqsum, |
|
const CvArr* _tilted_sum,*/ |
|
double scale, |
|
int step) |
|
{ |
|
// CvMat sum_stub, *sum = (CvMat*)_sum; |
|
// CvMat sqsum_stub, *sqsum = (CvMat*)_sqsum; |
|
// CvMat tilted_stub, *tilted = (CvMat*)_tilted_sum; |
|
GpuHidHaarClassifierCascade *cascade; |
|
int coi0 = 0, coi1 = 0; |
|
int i; |
|
int datasize; |
|
int total; |
|
CvRect equRect; |
|
double weight_scale; |
|
GpuHidHaarStageClassifier *stage_classifier; |
|
|
|
if( !CV_IS_HAAR_CLASSIFIER(_cascade) ) |
|
CV_Error( !_cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" ); |
|
|
|
if( scale <= 0 ) |
|
CV_Error( CV_StsOutOfRange, "Scale must be positive" ); |
|
|
|
// sum = cvGetMat( sum, &sum_stub, &coi0 ); |
|
// sqsum = cvGetMat( sqsum, &sqsum_stub, &coi1 ); |
|
|
|
if( coi0 || coi1 ) |
|
CV_Error( CV_BadCOI, "COI is not supported" ); |
|
|
|
// if( !CV_ARE_SIZES_EQ( sum, sqsum )) |
|
// CV_Error( CV_StsUnmatchedSizes, "All integral images must have the same size" ); |
|
|
|
// if( CV_MAT_TYPE(sqsum->type) != CV_64FC1 || |
|
// CV_MAT_TYPE(sum->type) != CV_32SC1 ) |
|
// CV_Error( CV_StsUnsupportedFormat, |
|
// "Only (32s, 64f, 32s) combination of (sum,sqsum,tilted_sum) formats is allowed" ); |
|
|
|
if( !_cascade->hid_cascade ) |
|
gpuCreateHidHaarClassifierCascade(_cascade, &datasize, &total); |
|
|
|
cascade = (GpuHidHaarClassifierCascade *) _cascade->hid_cascade; |
|
stage_classifier = (GpuHidHaarStageClassifier *) (cascade + 1); |
|
|
|
if( cascade->has_tilted_features ) |
|
{ |
|
// tilted = cvGetMat( tilted, &tilted_stub, &coi1 ); |
|
|
|
// if( CV_MAT_TYPE(tilted->type) != CV_32SC1 ) |
|
// CV_Error( CV_StsUnsupportedFormat, |
|
// "Only (32s, 64f, 32s) combination of (sum,sqsum,tilted_sum) formats is allowed" ); |
|
|
|
// if( sum->step != tilted->step ) |
|
// CV_Error( CV_StsUnmatchedSizes, |
|
// "Sum and tilted_sum must have the same stride (step, widthStep)" ); |
|
|
|
// if( !CV_ARE_SIZES_EQ( sum, tilted )) |
|
// CV_Error( CV_StsUnmatchedSizes, "All integral images must have the same size" ); |
|
// cascade->tilted = *tilted; |
|
} |
|
|
|
_cascade->scale = scale; |
|
_cascade->real_window_size.width = cvRound( _cascade->orig_window_size.width * scale ); |
|
_cascade->real_window_size.height = cvRound( _cascade->orig_window_size.height * scale ); |
|
|
|
//cascade->sum = *sum; |
|
//cascade->sqsum = *sqsum; |
|
|
|
equRect.x = equRect.y = cvRound(scale); |
|
equRect.width = cvRound((_cascade->orig_window_size.width - 2) * scale); |
|
equRect.height = cvRound((_cascade->orig_window_size.height - 2) * scale); |
|
weight_scale = 1. / (equRect.width * equRect.height); |
|
cascade->inv_window_area = weight_scale; |
|
|
|
// cascade->pq0 = equRect.y * step + equRect.x; |
|
// cascade->pq1 = equRect.y * step + equRect.x + equRect.width ; |
|
// cascade->pq2 = (equRect.y + equRect.height)*step + equRect.x; |
|
// cascade->pq3 = (equRect.y + equRect.height)*step + equRect.x + equRect.width ; |
|
|
|
cascade->pq0 = equRect.x; |
|
cascade->pq1 = equRect.y; |
|
cascade->pq2 = equRect.x + equRect.width; |
|
cascade->pq3 = equRect.y + equRect.height; |
|
|
|
cascade->p0 = equRect.x; |
|
cascade->p1 = equRect.y; |
|
cascade->p2 = equRect.x + equRect.width; |
|
cascade->p3 = equRect.y + equRect.height; |
|
|
|
|
|
/* init pointers in haar features according to real window size and |
|
given image pointers */ |
|
for( i = 0; i < _cascade->count; i++ ) |
|
{ |
|
int j, k, l; |
|
for( j = 0; j < stage_classifier[i].count; j++ ) |
|
{ |
|
for( l = 0; l < stage_classifier[i].classifier[j].count; l++ ) |
|
{ |
|
CvHaarFeature *feature = |
|
&_cascade->stage_classifier[i].classifier[j].haar_feature[l]; |
|
/* GpuHidHaarClassifier* classifier = |
|
cascade->stage_classifier[i].classifier + j; */ |
|
//GpuHidHaarFeature* hidfeature = |
|
// &cascade->stage_classifier[i].classifier[j].node[l].feature; |
|
GpuHidHaarTreeNode *hidnode = &stage_classifier[i].classifier[j].node[l]; |
|
double sum0 = 0, area0 = 0; |
|
CvRect r[3]; |
|
|
|
int base_w = -1, base_h = -1; |
|
int new_base_w = 0, new_base_h = 0; |
|
int kx, ky; |
|
int flagx = 0, flagy = 0; |
|
int x0 = 0, y0 = 0; |
|
int nr; |
|
|
|
/* align blocks */ |
|
for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ ) |
|
{ |
|
//if( !hidfeature->rect[k].p0 ) |
|
// break; |
|
if(!hidnode->p[k][0]) |
|
break; |
|
r[k] = feature->rect[k].r; |
|
base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].width - 1) ); |
|
base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].x - r[0].x - 1) ); |
|
base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].height - 1) ); |
|
base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].y - r[0].y - 1) ); |
|
} |
|
|
|
nr = k; |
|
base_w += 1; |
|
base_h += 1; |
|
if(base_w == 0) |
|
base_w = 1; |
|
kx = r[0].width / base_w; |
|
if(base_h == 0) |
|
base_h = 1; |
|
ky = r[0].height / base_h; |
|
|
|
if( kx <= 0 ) |
|
{ |
|
flagx = 1; |
|
new_base_w = cvRound( r[0].width * scale ) / kx; |
|
x0 = cvRound( r[0].x * scale ); |
|
} |
|
|
|
if( ky <= 0 ) |
|
{ |
|
flagy = 1; |
|
new_base_h = cvRound( r[0].height * scale ) / ky; |
|
y0 = cvRound( r[0].y * scale ); |
|
} |
|
|
|
for( k = 0; k < nr; k++ ) |
|
{ |
|
CvRect tr; |
|
double correction_ratio; |
|
|
|
if( flagx ) |
|
{ |
|
tr.x = (r[k].x - r[0].x) * new_base_w / base_w + x0; |
|
tr.width = r[k].width * new_base_w / base_w; |
|
} |
|
else |
|
{ |
|
tr.x = cvRound( r[k].x * scale ); |
|
tr.width = cvRound( r[k].width * scale ); |
|
} |
|
|
|
if( flagy ) |
|
{ |
|
tr.y = (r[k].y - r[0].y) * new_base_h / base_h + y0; |
|
tr.height = r[k].height * new_base_h / base_h; |
|
} |
|
else |
|
{ |
|
tr.y = cvRound( r[k].y * scale ); |
|
tr.height = cvRound( r[k].height * scale ); |
|
} |
|
|
|
#if CV_ADJUST_WEIGHTS |
|
{ |
|
// RAINER START |
|
const float orig_feature_size = (float)(feature->rect[k].r.width) * feature->rect[k].r.height; |
|
const float orig_norm_size = (float)(_cascade->orig_window_size.width) * (_cascade->orig_window_size.height); |
|
const float feature_size = float(tr.width * tr.height); |
|
//const float normSize = float(equRect.width*equRect.height); |
|
float target_ratio = orig_feature_size / orig_norm_size; |
|
//float isRatio = featureSize / normSize; |
|
//correctionRatio = targetRatio / isRatio / normSize; |
|
correction_ratio = target_ratio / feature_size; |
|
// RAINER END |
|
} |
|
#else |
|
correction_ratio = weight_scale * (!feature->tilted ? 1 : 0.5); |
|
#endif |
|
|
|
if( !feature->tilted ) |
|
{ |
|
/* hidfeature->rect[k].p0 = tr.y * sum->cols + tr.x; |
|
hidfeature->rect[k].p1 = tr.y * sum->cols + tr.x + tr.width; |
|
hidfeature->rect[k].p2 = (tr.y + tr.height) * sum->cols + tr.x; |
|
hidfeature->rect[k].p3 = (tr.y + tr.height) * sum->cols + tr.x + tr.width; |
|
*/ |
|
/*hidnode->p0[k] = tr.y * step + tr.x; |
|
hidnode->p1[k] = tr.y * step + tr.x + tr.width; |
|
hidnode->p2[k] = (tr.y + tr.height) * step + tr.x; |
|
hidnode->p3[k] = (tr.y + tr.height) * step + tr.x + tr.width;*/ |
|
hidnode->p[k][0] = tr.x; |
|
hidnode->p[k][1] = tr.y; |
|
hidnode->p[k][2] = tr.x + tr.width; |
|
hidnode->p[k][3] = tr.y + tr.height; |
|
} |
|
else |
|
{ |
|
/* hidfeature->rect[k].p2 = (tr.y + tr.width) * tilted->cols + tr.x + tr.width; |
|
hidfeature->rect[k].p3 = (tr.y + tr.width + tr.height) * tilted->cols + tr.x + tr.width - tr.height; |
|
hidfeature->rect[k].p0 = tr.y * tilted->cols + tr.x; |
|
hidfeature->rect[k].p1 = (tr.y + tr.height) * tilted->cols + tr.x - tr.height; |
|
*/ |
|
|
|
hidnode->p[k][2] = (tr.y + tr.width) * step + tr.x + tr.width; |
|
hidnode->p[k][3] = (tr.y + tr.width + tr.height) * step + tr.x + tr.width - tr.height; |
|
hidnode->p[k][0] = tr.y * step + tr.x; |
|
hidnode->p[k][1] = (tr.y + tr.height) * step + tr.x - tr.height; |
|
} |
|
|
|
//hidfeature->rect[k].weight = (float)(feature->rect[k].weight * correction_ratio); |
|
hidnode->weight[k] = (float)(feature->rect[k].weight * correction_ratio); |
|
if( k == 0 ) |
|
area0 = tr.width * tr.height; |
|
else |
|
//sum0 += hidfeature->rect[k].weight * tr.width * tr.height; |
|
sum0 += hidnode->weight[k] * tr.width * tr.height; |
|
} |
|
|
|
// hidfeature->rect[0].weight = (float)(-sum0/area0); |
|
hidnode->weight[0] = (float)(-sum0 / area0); |
|
} /* l */ |
|
} /* j */ |
|
} |
|
} |
|
|
|
static void gpuSetHaarClassifierCascade( CvHaarClassifierCascade *_cascade |
|
/*double scale=0.0,*/ |
|
/*int step*/) |
|
{ |
|
GpuHidHaarClassifierCascade *cascade; |
|
int i; |
|
int datasize; |
|
int total; |
|
CvRect equRect; |
|
double weight_scale; |
|
GpuHidHaarStageClassifier *stage_classifier; |
|
|
|
if( !CV_IS_HAAR_CLASSIFIER(_cascade) ) |
|
CV_Error( !_cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" ); |
|
|
|
if( !_cascade->hid_cascade ) |
|
gpuCreateHidHaarClassifierCascade(_cascade, &datasize, &total); |
|
|
|
cascade = (GpuHidHaarClassifierCascade *) _cascade->hid_cascade; |
|
stage_classifier = (GpuHidHaarStageClassifier *) cascade + 1; |
|
|
|
_cascade->scale = 1.0; |
|
_cascade->real_window_size.width = _cascade->orig_window_size.width ; |
|
_cascade->real_window_size.height = _cascade->orig_window_size.height; |
|
|
|
equRect.x = equRect.y = 1; |
|
equRect.width = _cascade->orig_window_size.width - 2; |
|
equRect.height = _cascade->orig_window_size.height - 2; |
|
weight_scale = 1; |
|
cascade->inv_window_area = weight_scale; |
|
|
|
cascade->p0 = equRect.x; |
|
cascade->p1 = equRect.y; |
|
cascade->p2 = equRect.height; |
|
cascade->p3 = equRect.width ; |
|
for( i = 0; i < _cascade->count; i++ ) |
|
{ |
|
int j, k, l; |
|
for( j = 0; j < stage_classifier[i].count; j++ ) |
|
{ |
|
for( l = 0; l < stage_classifier[i].classifier[j].count; l++ ) |
|
{ |
|
CvHaarFeature *feature = |
|
&_cascade->stage_classifier[i].classifier[j].haar_feature[l]; |
|
GpuHidHaarTreeNode *hidnode = &stage_classifier[i].classifier[j].node[l]; |
|
CvRect r[3]; |
|
|
|
|
|
int nr; |
|
|
|
/* align blocks */ |
|
for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ ) |
|
{ |
|
if(!hidnode->p[k][0]) |
|
break; |
|
r[k] = feature->rect[k].r; |
|
// base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].width-1) ); |
|
// base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].x - r[0].x-1) ); |
|
// base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].height-1) ); |
|
// base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].y - r[0].y-1) ); |
|
} |
|
|
|
nr = k; |
|
for( k = 0; k < nr; k++ ) |
|
{ |
|
CvRect tr; |
|
double correction_ratio; |
|
tr.x = r[k].x; |
|
tr.width = r[k].width; |
|
tr.y = r[k].y ; |
|
tr.height = r[k].height; |
|
correction_ratio = weight_scale * (!feature->tilted ? 1 : 0.5); |
|
hidnode->p[k][0] = tr.x; |
|
hidnode->p[k][1] = tr.y; |
|
hidnode->p[k][2] = tr.width; |
|
hidnode->p[k][3] = tr.height; |
|
hidnode->weight[k] = (float)(feature->rect[k].weight * correction_ratio); |
|
} |
|
//hidnode->weight[0]=(float)(-sum0/area0); |
|
} /* l */ |
|
} /* j */ |
|
} |
|
} |
|
CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemStorage *storage, double scaleFactor, |
|
int minNeighbors, int flags, CvSize minSize, CvSize maxSize) |
|
{ |
|
CvHaarClassifierCascade *cascade = oldCascade; |
|
|
|
//double alltime = (double)cvGetTickCount(); |
|
//double t = (double)cvGetTickCount(); |
|
const double GROUP_EPS = 0.2; |
|
oclMat gtemp, gsum1, gtilted1, gsqsum1, gnormImg, gsumcanny; |
|
CvSeq *result_seq = 0; |
|
cv::Ptr<CvMemStorage> temp_storage; |
|
|
|
cv::ConcurrentRectVector allCandidates; |
|
std::vector<cv::Rect> rectList; |
|
std::vector<int> rweights; |
|
double factor; |
|
int datasize=0; |
|
int totalclassifier=0; |
|
|
|
//void *out; |
|
GpuHidHaarClassifierCascade *gcascade; |
|
GpuHidHaarStageClassifier *stage; |
|
GpuHidHaarClassifier *classifier; |
|
GpuHidHaarTreeNode *node; |
|
|
|
int *candidate; |
|
cl_int status; |
|
|
|
// bool doCannyPruning = (flags & CV_HAAR_DO_CANNY_PRUNING) != 0; |
|
bool findBiggestObject = (flags & CV_HAAR_FIND_BIGGEST_OBJECT) != 0; |
|
// bool roughSearch = (flags & CV_HAAR_DO_ROUGH_SEARCH) != 0; |
|
|
|
//double t = 0; |
|
if( maxSize.height == 0 || maxSize.width == 0 ) |
|
{ |
|
maxSize.height = gimg.rows; |
|
maxSize.width = gimg.cols; |
|
} |
|
|
|
if( !CV_IS_HAAR_CLASSIFIER(cascade) ) |
|
CV_Error( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier cascade" ); |
|
|
|
if( !storage ) |
|
CV_Error( CV_StsNullPtr, "Null storage pointer" ); |
|
|
|
if( CV_MAT_DEPTH(gimg.type()) != CV_8U ) |
|
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit images are supported" ); |
|
|
|
if( scaleFactor <= 1 ) |
|
CV_Error( CV_StsOutOfRange, "scale factor must be > 1" ); |
|
|
|
if( findBiggestObject ) |
|
flags &= ~CV_HAAR_SCALE_IMAGE; |
|
|
|
//gtemp = oclMat( gimg.rows, gimg.cols, CV_8UC1); |
|
//gsum1 = oclMat( gimg.rows + 1, gimg.cols + 1, CV_32SC1 ); |
|
//gsqsum1 = oclMat( gimg.rows + 1, gimg.cols + 1, CV_32FC1 ); |
|
|
|
if( !cascade->hid_cascade ) |
|
/*out = (void *)*/gpuCreateHidHaarClassifierCascade(cascade, &datasize, &totalclassifier); |
|
if( cascade->hid_cascade->has_tilted_features ) |
|
gtilted1 = oclMat( gimg.rows + 1, gimg.cols + 1, CV_32SC1 ); |
|
|
|
result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), storage ); |
|
|
|
if( CV_MAT_CN(gimg.type()) > 1 ) |
|
{ |
|
cvtColor( gimg, gtemp, COLOR_BGR2GRAY ); |
|
gimg = gtemp; |
|
} |
|
|
|
if( findBiggestObject ) |
|
flags &= ~(CV_HAAR_SCALE_IMAGE | CV_HAAR_DO_CANNY_PRUNING); |
|
//t = (double)cvGetTickCount() - t; |
|
//printf( "before if time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) ); |
|
|
|
if( gimg.cols < minSize.width || gimg.rows < minSize.height ) |
|
CV_Error(CV_StsError, "Image too small"); |
|
|
|
if( (flags & CV_HAAR_SCALE_IMAGE) ) |
|
{ |
|
CvSize winSize0 = cascade->orig_window_size; |
|
//float scalefactor = 1.1f; |
|
//float factor = 1.f; |
|
int totalheight = 0; |
|
int indexy = 0; |
|
CvSize sz; |
|
//t = (double)cvGetTickCount(); |
|
std::vector<CvSize> sizev; |
|
std::vector<float> scalev; |
|
for(factor = 1.f;; factor *= scaleFactor) |
|
{ |
|
CvSize winSize( cvRound(winSize0.width * factor), cvRound(winSize0.height * factor) ); |
|
sz.width = cvRound( gimg.cols / factor ) + 1; |
|
sz.height = cvRound( gimg.rows / factor ) + 1; |
|
CvSize sz1( sz.width - winSize0.width - 1, sz.height - winSize0.height - 1 ); |
|
|
|
if( sz1.width <= 0 || sz1.height <= 0 ) |
|
break; |
|
if( winSize.width > maxSize.width || winSize.height > maxSize.height ) |
|
break; |
|
if( winSize.width < minSize.width || winSize.height < minSize.height ) |
|
continue; |
|
|
|
totalheight += sz.height; |
|
sizev.push_back(sz); |
|
scalev.push_back(factor); |
|
} |
|
//int flag = 0; |
|
|
|
oclMat gimg1(gimg.rows, gimg.cols, CV_8UC1); |
|
oclMat gsum(totalheight + 4, gimg.cols + 1, CV_32SC1); |
|
oclMat gsqsum(totalheight + 4, gimg.cols + 1, CV_32FC1); |
|
|
|
//cl_mem cascadebuffer; |
|
cl_mem stagebuffer; |
|
//cl_mem classifierbuffer; |
|
cl_mem nodebuffer; |
|
cl_mem candidatebuffer; |
|
cl_mem scaleinfobuffer; |
|
//cl_kernel kernel; |
|
//kernel = openCLGetKernelFromSource(gimg.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascade"); |
|
cv::Rect roi, roi2; |
|
cv::Mat imgroi, imgroisq; |
|
cv::ocl::oclMat resizeroi, gimgroi, gimgroisq; |
|
int grp_per_CU = 12; |
|
|
|
size_t blocksize = 8; |
|
size_t localThreads[3] = { blocksize, blocksize , 1 }; |
|
size_t globalThreads[3] = { grp_per_CU *((gsum.clCxt)->computeUnits()) *localThreads[0], |
|
localThreads[1], 1 |
|
}; |
|
int outputsz = 256 * globalThreads[0] / localThreads[0]; |
|
int loopcount = sizev.size(); |
|
detect_piramid_info *scaleinfo = (detect_piramid_info *)malloc(sizeof(detect_piramid_info) * loopcount); |
|
|
|
//t = (double)cvGetTickCount() - t; |
|
// printf( "pre time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) ); |
|
//int *it =scaleinfo; |
|
// t = (double)cvGetTickCount(); |
|
|
|
for( int i = 0; i < loopcount; i++ ) |
|
{ |
|
sz = sizev[i]; |
|
factor = scalev[i]; |
|
roi = Rect(0, indexy, sz.width, sz.height); |
|
roi2 = Rect(0, 0, sz.width - 1, sz.height - 1); |
|
resizeroi = gimg1(roi2); |
|
gimgroi = gsum(roi); |
|
gimgroisq = gsqsum(roi); |
|
//scaleinfo[i].rows = gimgroi.rows; |
|
int width = gimgroi.cols - 1 - cascade->orig_window_size.width; |
|
int height = gimgroi.rows - 1 - cascade->orig_window_size.height; |
|
scaleinfo[i].width_height = (width << 16) | height; |
|
|
|
|
|
int grpnumperline = (width + localThreads[0] - 1) / localThreads[0]; |
|
int totalgrp = ((height + localThreads[1] - 1) / localThreads[1]) * grpnumperline; |
|
//outputsz +=width*height; |
|
|
|
scaleinfo[i].grpnumperline_totalgrp = (grpnumperline << 16) | totalgrp; |
|
scaleinfo[i].imgoff = gimgroi.offset >> 2; |
|
scaleinfo[i].factor = factor; |
|
//printf("rows = %d,ystep = %d,width = %d,height = %d,grpnumperline = %d,totalgrp = %d,imgoff = %d,factor = %f\n", |
|
// scaleinfo[i].rows,scaleinfo[i].ystep,scaleinfo[i].width,scaleinfo[i].height,scaleinfo[i].grpnumperline, |
|
// scaleinfo[i].totalgrp,scaleinfo[i].imgoff,scaleinfo[i].factor); |
|
cv::ocl::resize(gimg, resizeroi, Size(sz.width - 1, sz.height - 1), 0, 0, INTER_LINEAR); |
|
//cv::imwrite("D:\\1.jpg",gimg1); |
|
cv::ocl::integral(resizeroi, gimgroi, gimgroisq); |
|
//cv::ocl::oclMat chk(sz.height,sz.width,CV_32SC1),chksq(sz.height,sz.width,CV_32FC1); |
|
//cv::ocl::integral(gimg1, chk, chksq); |
|
//double r = cv::norm(chk,gimgroi,NORM_INF); |
|
//if(r > std::numeric_limits<double>::epsilon()) |
|
//{ |
|
// printf("failed"); |
|
//} |
|
indexy += sz.height; |
|
} |
|
//int ystep = factor > 2 ? 1 : 2; |
|
// t = (double)cvGetTickCount() - t; |
|
//printf( "resize integral time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) ); |
|
//t = (double)cvGetTickCount(); |
|
gcascade = (GpuHidHaarClassifierCascade *)cascade->hid_cascade; |
|
stage = (GpuHidHaarStageClassifier *)(gcascade + 1); |
|
classifier = (GpuHidHaarClassifier *)(stage + gcascade->count); |
|
node = (GpuHidHaarTreeNode *)(classifier->node); |
|
|
|
//int m,n; |
|
//m = (gsum.cols - 1 - cascade->orig_window_size.width + ystep - 1)/ystep; |
|
//n = (gsum.rows - 1 - cascade->orig_window_size.height + ystep - 1)/ystep; |
|
//int counter = m*n; |
|
|
|
int nodenum = (datasize - sizeof(GpuHidHaarClassifierCascade) - |
|
sizeof(GpuHidHaarStageClassifier) * gcascade->count - sizeof(GpuHidHaarClassifier) * totalclassifier) / sizeof(GpuHidHaarTreeNode); |
|
//if(flag == 0){ |
|
candidate = (int *)malloc(4 * sizeof(int) * outputsz); |
|
//memset((char*)candidate,0,4*sizeof(int)*outputsz); |
|
gpuSetImagesForHaarClassifierCascade( cascade,/* &sum1, &sqsum1, _tilted,*/ 1., gsum.step / 4 ); |
|
|
|
//cascadebuffer = clCreateBuffer(gsum.clCxt->clContext,CL_MEM_READ_ONLY,sizeof(GpuHidHaarClassifierCascade),NULL,&status); |
|
//openCLVerifyCall(status); |
|
//openCLSafeCall(clEnqueueWriteBuffer(gsum.clCxt->clCmdQueue,cascadebuffer,1,0,sizeof(GpuHidHaarClassifierCascade),gcascade,0,NULL,NULL)); |
|
|
|
stagebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(GpuHidHaarStageClassifier) * gcascade->count); |
|
//openCLVerifyCall(status); |
|
openCLSafeCall(clEnqueueWriteBuffer((cl_command_queue)gsum.clCxt->oclCommandQueue(), stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL)); |
|
|
|
//classifierbuffer = clCreateBuffer(gsum.clCxt->clContext,CL_MEM_READ_ONLY,sizeof(GpuHidHaarClassifier)*totalclassifier,NULL,&status); |
|
//status = clEnqueueWriteBuffer(gsum.clCxt->clCmdQueue,classifierbuffer,1,0,sizeof(GpuHidHaarClassifier)*totalclassifier,classifier,0,NULL,NULL); |
|
|
|
nodebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, nodenum * sizeof(GpuHidHaarTreeNode)); |
|
//openCLVerifyCall(status); |
|
openCLSafeCall(clEnqueueWriteBuffer((cl_command_queue)gsum.clCxt->oclCommandQueue(), nodebuffer, 1, 0, |
|
nodenum * sizeof(GpuHidHaarTreeNode), |
|
node, 0, NULL, NULL)); |
|
candidatebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_WRITE_ONLY, 4 * sizeof(int) * outputsz); |
|
//openCLVerifyCall(status); |
|
scaleinfobuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(detect_piramid_info) * loopcount); |
|
//openCLVerifyCall(status); |
|
openCLSafeCall(clEnqueueWriteBuffer((cl_command_queue)gsum.clCxt->oclCommandQueue(), scaleinfobuffer, 1, 0, sizeof(detect_piramid_info)*loopcount, scaleinfo, 0, NULL, NULL)); |
|
//flag = 1; |
|
//} |
|
|
|
//t = (double)cvGetTickCount() - t; |
|
//printf( "update time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) ); |
|
|
|
//size_t globalThreads[3] = { counter+blocksize*blocksize-counter%(blocksize*blocksize),1,1}; |
|
//t = (double)cvGetTickCount(); |
|
int startstage = 0; |
|
int endstage = gcascade->count; |
|
int startnode = 0; |
|
int pixelstep = gsum.step / 4; |
|
int splitstage = 3; |
|
int splitnode = stage[0].count + stage[1].count + stage[2].count; |
|
cl_int4 p, pq; |
|
p.s[0] = gcascade->p0; |
|
p.s[1] = gcascade->p1; |
|
p.s[2] = gcascade->p2; |
|
p.s[3] = gcascade->p3; |
|
pq.s[0] = gcascade->pq0; |
|
pq.s[1] = gcascade->pq1; |
|
pq.s[2] = gcascade->pq2; |
|
pq.s[3] = gcascade->pq3; |
|
float correction = gcascade->inv_window_area; |
|
|
|
//int grpnumperline = ((m + localThreads[0] - 1) / localThreads[0]); |
|
//int totalgrp = ((n + localThreads[1] - 1) / localThreads[1])*grpnumperline; |
|
// openCLVerifyKernel(gsum.clCxt, kernel, &blocksize, globalThreads, localThreads); |
|
//openCLSafeCall(clSetKernelArg(kernel,argcount++,sizeof(cl_mem),(void*)&cascadebuffer)); |
|
|
|
std::vector<std::pair<size_t, const void *> > args; |
|
args.push_back ( std::make_pair(sizeof(cl_mem) , (void *)&stagebuffer )); |
|
args.push_back ( std::make_pair(sizeof(cl_mem) , (void *)&scaleinfobuffer )); |
|
args.push_back ( std::make_pair(sizeof(cl_mem) , (void *)&nodebuffer )); |
|
args.push_back ( std::make_pair(sizeof(cl_mem) , (void *)&gsum.data )); |
|
args.push_back ( std::make_pair(sizeof(cl_mem) , (void *)&gsqsum.data )); |
|
args.push_back ( std::make_pair(sizeof(cl_mem) , (void *)&candidatebuffer )); |
|
args.push_back ( std::make_pair(sizeof(cl_int) , (void *)&pixelstep )); |
|
args.push_back ( std::make_pair(sizeof(cl_int) , (void *)&loopcount )); |
|
args.push_back ( std::make_pair(sizeof(cl_int) , (void *)&startstage )); |
|
args.push_back ( std::make_pair(sizeof(cl_int) , (void *)&splitstage )); |
|
args.push_back ( std::make_pair(sizeof(cl_int) , (void *)&endstage )); |
|
args.push_back ( std::make_pair(sizeof(cl_int) , (void *)&startnode )); |
|
args.push_back ( std::make_pair(sizeof(cl_int) , (void *)&splitnode )); |
|
args.push_back ( std::make_pair(sizeof(cl_int4) , (void *)&p )); |
|
args.push_back ( std::make_pair(sizeof(cl_int4) , (void *)&pq )); |
|
args.push_back ( std::make_pair(sizeof(cl_float) , (void *)&correction )); |
|
|
|
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascade", globalThreads, localThreads, args, -1, -1); |
|
//t = (double)cvGetTickCount() - t; |
|
//printf( "detection time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) ); |
|
//t = (double)cvGetTickCount(); |
|
//openCLSafeCall(clEnqueueReadBuffer(gsum.clCxt->impl->clCmdQueue, candidatebuffer, 1, 0, 4 * sizeof(int)*outputsz, candidate, 0, NULL, NULL)); |
|
openCLReadBuffer( gsum.clCxt, candidatebuffer, candidate, 4 * sizeof(int)*outputsz ); |
|
|
|
for(int i = 0; i < outputsz; i++) |
|
if(candidate[4 * i + 2] != 0) |
|
allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1], candidate[4 * i + 2], candidate[4 * i + 3])); |
|
// t = (double)cvGetTickCount() - t; |
|
//printf( "post time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) ); |
|
//t = (double)cvGetTickCount(); |
|
free(scaleinfo); |
|
free(candidate); |
|
//openCLSafeCall(clReleaseMemObject(cascadebuffer)); |
|
openCLSafeCall(clReleaseMemObject(stagebuffer)); |
|
openCLSafeCall(clReleaseMemObject(scaleinfobuffer)); |
|
openCLSafeCall(clReleaseMemObject(nodebuffer)); |
|
openCLSafeCall(clReleaseMemObject(candidatebuffer)); |
|
// openCLSafeCall(clReleaseKernel(kernel)); |
|
//t = (double)cvGetTickCount() - t; |
|
//printf( "release time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) ); |
|
} |
|
else |
|
{ |
|
CvSize winsize0 = cascade->orig_window_size; |
|
int n_factors = 0; |
|
oclMat gsum; |
|
oclMat gsqsum; |
|
cv::ocl::integral(gimg, gsum, gsqsum); |
|
CvSize sz; |
|
std::vector<CvSize> sizev; |
|
std::vector<float> scalev; |
|
gpuSetHaarClassifierCascade(cascade); |
|
gcascade = (GpuHidHaarClassifierCascade *)cascade->hid_cascade; |
|
stage = (GpuHidHaarStageClassifier *)(gcascade + 1); |
|
classifier = (GpuHidHaarClassifier *)(stage + gcascade->count); |
|
node = (GpuHidHaarTreeNode *)(classifier->node); |
|
cl_mem stagebuffer; |
|
//cl_mem classifierbuffer; |
|
cl_mem nodebuffer; |
|
cl_mem candidatebuffer; |
|
cl_mem scaleinfobuffer; |
|
cl_mem pbuffer; |
|
cl_mem correctionbuffer; |
|
for( n_factors = 0, factor = 1; |
|
cvRound(factor * winsize0.width) < gimg.cols - 10 && |
|
cvRound(factor * winsize0.height) < gimg.rows - 10; |
|
n_factors++, factor *= scaleFactor ) |
|
{ |
|
CvSize winSize( cvRound( winsize0.width * factor ), cvRound( winsize0.height * factor ) ); |
|
if( winSize.width < minSize.width || winSize.height < minSize.height ) |
|
{ |
|
continue; |
|
} |
|
sizev.push_back(winSize); |
|
scalev.push_back(factor); |
|
} |
|
int loopcount = scalev.size(); |
|
if(loopcount == 0) |
|
{ |
|
loopcount = 1; |
|
n_factors = 1; |
|
sizev.push_back(minSize); |
|
scalev.push_back( std::min(cvRound(minSize.width / winsize0.width), cvRound(minSize.height / winsize0.height)) ); |
|
|
|
} |
|
detect_piramid_info *scaleinfo = (detect_piramid_info *)malloc(sizeof(detect_piramid_info) * loopcount); |
|
cl_int4 *p = (cl_int4 *)malloc(sizeof(cl_int4) * loopcount); |
|
float *correction = (float *)malloc(sizeof(float) * loopcount); |
|
int grp_per_CU = 12; |
|
size_t blocksize = 8; |
|
size_t localThreads[3] = { blocksize, blocksize , 1 }; |
|
size_t globalThreads[3] = { grp_per_CU *gsum.clCxt->computeUnits() *localThreads[0], |
|
localThreads[1], 1 |
|
}; |
|
int outputsz = 256 * globalThreads[0] / localThreads[0]; |
|
int nodenum = (datasize - sizeof(GpuHidHaarClassifierCascade) - |
|
sizeof(GpuHidHaarStageClassifier) * gcascade->count - sizeof(GpuHidHaarClassifier) * totalclassifier) / sizeof(GpuHidHaarTreeNode); |
|
nodebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, |
|
nodenum * sizeof(GpuHidHaarTreeNode)); |
|
//openCLVerifyCall(status); |
|
openCLSafeCall(clEnqueueWriteBuffer((cl_command_queue)gsum.clCxt->oclCommandQueue(), nodebuffer, 1, 0, |
|
nodenum * sizeof(GpuHidHaarTreeNode), |
|
node, 0, NULL, NULL)); |
|
cl_mem newnodebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_WRITE, |
|
loopcount * nodenum * sizeof(GpuHidHaarTreeNode)); |
|
int startstage = 0; |
|
int endstage = gcascade->count; |
|
//cl_kernel kernel; |
|
//kernel = openCLGetKernelFromSource(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2"); |
|
//cl_kernel kernel2 = openCLGetKernelFromSource(gimg.clCxt, &haarobjectdetect_scaled2, "gpuscaleclassifier"); |
|
for(int i = 0; i < loopcount; i++) |
|
{ |
|
sz = sizev[i]; |
|
factor = scalev[i]; |
|
int ystep = cvRound(std::max(2., factor)); |
|
int equRect_x = (int)(factor * gcascade->p0 + 0.5); |
|
int equRect_y = (int)(factor * gcascade->p1 + 0.5); |
|
int equRect_w = (int)(factor * gcascade->p3 + 0.5); |
|
int equRect_h = (int)(factor * gcascade->p2 + 0.5); |
|
p[i].s[0] = equRect_x; |
|
p[i].s[1] = equRect_y; |
|
p[i].s[2] = equRect_x + equRect_w; |
|
p[i].s[3] = equRect_y + equRect_h; |
|
correction[i] = 1. / (equRect_w * equRect_h); |
|
int width = (gsum.cols - 1 - sz.width + ystep - 1) / ystep; |
|
int height = (gsum.rows - 1 - sz.height + ystep - 1) / ystep; |
|
int grpnumperline = (width + localThreads[0] - 1) / localThreads[0]; |
|
int totalgrp = ((height + localThreads[1] - 1) / localThreads[1]) * grpnumperline; |
|
//outputsz +=width*height; |
|
scaleinfo[i].width_height = (width << 16) | height; |
|
scaleinfo[i].grpnumperline_totalgrp = (grpnumperline << 16) | totalgrp; |
|
scaleinfo[i].imgoff = 0; |
|
scaleinfo[i].factor = factor; |
|
int startnodenum = nodenum * i; |
|
float factor2 = (float)factor; |
|
|
|
std::vector<std::pair<size_t, const void *> > args1; |
|
args1.push_back ( std::make_pair(sizeof(cl_mem) , (void *)&nodebuffer )); |
|
args1.push_back ( std::make_pair(sizeof(cl_mem) , (void *)&newnodebuffer )); |
|
args1.push_back ( std::make_pair(sizeof(cl_float) , (void *)&factor2 )); |
|
args1.push_back ( std::make_pair(sizeof(cl_float) , (void *)&correction[i] )); |
|
args1.push_back ( std::make_pair(sizeof(cl_int) , (void *)&startnodenum )); |
|
|
|
size_t globalThreads2[3] = {nodenum, 1, 1}; |
|
|
|
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuscaleclassifier", globalThreads2, NULL/*localThreads2*/, args1, -1, -1); |
|
|
|
//clEnqueueNDRangeKernel(gsum.clCxt->impl->clCmdQueue, kernel2, 1, NULL, globalThreads2, 0, 0, NULL, NULL); |
|
//clFinish(gsum.clCxt->impl->clCmdQueue); |
|
} |
|
//clReleaseKernel(kernel2); |
|
int step = gsum.step / 4; |
|
int startnode = 0; |
|
int splitstage = 3; |
|
int splitnode = stage[0].count + stage[1].count + stage[2].count; |
|
stagebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(GpuHidHaarStageClassifier) * gcascade->count); |
|
//openCLVerifyCall(status); |
|
openCLSafeCall(clEnqueueWriteBuffer((cl_command_queue)gsum.clCxt->oclCommandQueue(), stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL)); |
|
candidatebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_WRITE_ONLY | CL_MEM_ALLOC_HOST_PTR, 4 * sizeof(int) * outputsz); |
|
//openCLVerifyCall(status); |
|
scaleinfobuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(detect_piramid_info) * loopcount); |
|
//openCLVerifyCall(status); |
|
openCLSafeCall(clEnqueueWriteBuffer((cl_command_queue)gsum.clCxt->oclCommandQueue(), scaleinfobuffer, 1, 0, sizeof(detect_piramid_info)*loopcount, scaleinfo, 0, NULL, NULL)); |
|
pbuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(cl_int4) * loopcount); |
|
openCLSafeCall(clEnqueueWriteBuffer((cl_command_queue)gsum.clCxt->oclCommandQueue(), pbuffer, 1, 0, sizeof(cl_int4)*loopcount, p, 0, NULL, NULL)); |
|
correctionbuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(cl_float) * loopcount); |
|
openCLSafeCall(clEnqueueWriteBuffer((cl_command_queue)gsum.clCxt->oclCommandQueue(), correctionbuffer, 1, 0, sizeof(cl_float)*loopcount, correction, 0, NULL, NULL)); |
|
//int argcount = 0; |
|
|
|
std::vector<std::pair<size_t, const void *> > args; |
|
args.push_back ( std::make_pair(sizeof(cl_mem) , (void *)&stagebuffer )); |
|
args.push_back ( std::make_pair(sizeof(cl_mem) , (void *)&scaleinfobuffer )); |
|
args.push_back ( std::make_pair(sizeof(cl_mem) , (void *)&newnodebuffer )); |
|
args.push_back ( std::make_pair(sizeof(cl_mem) , (void *)&gsum.data )); |
|
args.push_back ( std::make_pair(sizeof(cl_mem) , (void *)&gsqsum.data )); |
|
args.push_back ( std::make_pair(sizeof(cl_mem) , (void *)&candidatebuffer )); |
|
args.push_back ( std::make_pair(sizeof(cl_int) , (void *)&step )); |
|
args.push_back ( std::make_pair(sizeof(cl_int) , (void *)&loopcount )); |
|
args.push_back ( std::make_pair(sizeof(cl_int) , (void *)&startstage )); |
|
args.push_back ( std::make_pair(sizeof(cl_int) , (void *)&splitstage )); |
|
args.push_back ( std::make_pair(sizeof(cl_int) , (void *)&endstage )); |
|
args.push_back ( std::make_pair(sizeof(cl_int) , (void *)&startnode )); |
|
args.push_back ( std::make_pair(sizeof(cl_int) , (void *)&splitnode )); |
|
args.push_back ( std::make_pair(sizeof(cl_mem) , (void *)&pbuffer )); |
|
args.push_back ( std::make_pair(sizeof(cl_mem) , (void *)&correctionbuffer )); |
|
args.push_back ( std::make_pair(sizeof(cl_int) , (void *)&nodenum )); |
|
|
|
|
|
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2", globalThreads, localThreads, args, -1, -1); |
|
|
|
//openCLSafeCall(clEnqueueReadBuffer(gsum.clCxt->clCmdQueue,candidatebuffer,1,0,4*sizeof(int)*outputsz,candidate,0,NULL,NULL)); |
|
candidate = (int *)clEnqueueMapBuffer((cl_command_queue)gsum.clCxt->oclCommandQueue(), candidatebuffer, 1, CL_MAP_READ, 0, 4 * sizeof(int), 0, 0, 0, &status); |
|
|
|
for(int i = 0; i < outputsz; i++) |
|
{ |
|
if(candidate[4 * i + 2] != 0) |
|
allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1], candidate[4 * i + 2], candidate[4 * i + 3])); |
|
} |
|
|
|
free(scaleinfo); |
|
free(p); |
|
free(correction); |
|
clEnqueueUnmapMemObject((cl_command_queue)gsum.clCxt->oclCommandQueue(), candidatebuffer, candidate, 0, 0, 0); |
|
openCLSafeCall(clReleaseMemObject(stagebuffer)); |
|
openCLSafeCall(clReleaseMemObject(scaleinfobuffer)); |
|
openCLSafeCall(clReleaseMemObject(nodebuffer)); |
|
openCLSafeCall(clReleaseMemObject(newnodebuffer)); |
|
openCLSafeCall(clReleaseMemObject(candidatebuffer)); |
|
openCLSafeCall(clReleaseMemObject(pbuffer)); |
|
openCLSafeCall(clReleaseMemObject(correctionbuffer)); |
|
} |
|
//t = (double)cvGetTickCount() ; |
|
cvFree(&cascade->hid_cascade); |
|
// printf("%d\n",globalcounter); |
|
rectList.resize(allCandidates.size()); |
|
if(!allCandidates.empty()) |
|
std::copy(allCandidates.begin(), allCandidates.end(), rectList.begin()); |
|
|
|
//cout << "count = " << rectList.size()<< endl; |
|
|
|
if( minNeighbors != 0 || findBiggestObject ) |
|
groupRectangles(rectList, rweights, std::max(minNeighbors, 1), GROUP_EPS); |
|
else |
|
rweights.resize(rectList.size(), 0); |
|
|
|
|
|
if( findBiggestObject && rectList.size() ) |
|
{ |
|
CvAvgComp result_comp = {CvRect(), 0}; |
|
|
|
for( size_t i = 0; i < rectList.size(); i++ ) |
|
{ |
|
cv::Rect r = rectList[i]; |
|
if( r.area() > cv::Rect(result_comp.rect).area() ) |
|
{ |
|
result_comp.rect = r; |
|
result_comp.neighbors = rweights[i]; |
|
} |
|
} |
|
cvSeqPush( result_seq, &result_comp ); |
|
} |
|
else |
|
{ |
|
for( size_t i = 0; i < rectList.size(); i++ ) |
|
{ |
|
CvAvgComp c; |
|
c.rect = rectList[i]; |
|
c.neighbors = rweights[i]; |
|
cvSeqPush( result_seq, &c ); |
|
} |
|
} |
|
//t = (double)cvGetTickCount() - t; |
|
//printf( "get face time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) ); |
|
//alltime = (double)cvGetTickCount() - alltime; |
|
//printf( "all time = %g ms\n", alltime/((double)cvGetTickFrequency()*1000.) ); |
|
return result_seq; |
|
} |
|
|
|
|
|
#ifndef _MAX_PATH |
|
#define _MAX_PATH 1024 |
|
#endif |
|
|
|
|
|
/****************************************************************************************\ |
|
* Persistence functions * |
|
\****************************************************************************************/ |
|
|
|
/* field names */ |
|
|
|
#define ICV_HAAR_SIZE_NAME "size" |
|
#define ICV_HAAR_STAGES_NAME "stages" |
|
#define ICV_HAAR_TREES_NAME "trees" |
|
#define ICV_HAAR_FEATURE_NAME "feature" |
|
#define ICV_HAAR_RECTS_NAME "rects" |
|
#define ICV_HAAR_TILTED_NAME "tilted" |
|
#define ICV_HAAR_THRESHOLD_NAME "threshold" |
|
#define ICV_HAAR_LEFT_NODE_NAME "left_node" |
|
#define ICV_HAAR_LEFT_VAL_NAME "left_val" |
|
#define ICV_HAAR_RIGHT_NODE_NAME "right_node" |
|
#define ICV_HAAR_RIGHT_VAL_NAME "right_val" |
|
#define ICV_HAAR_STAGE_THRESHOLD_NAME "stage_threshold" |
|
#define ICV_HAAR_PARENT_NAME "parent" |
|
#define ICV_HAAR_NEXT_NAME "next" |
|
|
|
static int gpuRunHaarClassifierCascade( /*const CvHaarClassifierCascade *_cascade, CvPoint pt, int start_stage */) |
|
{ |
|
return 1; |
|
} |
|
|
|
namespace cv |
|
{ |
|
namespace ocl |
|
{ |
|
|
|
struct gpuHaarDetectObjects_ScaleImage_Invoker |
|
{ |
|
gpuHaarDetectObjects_ScaleImage_Invoker( const CvHaarClassifierCascade *_cascade, |
|
int _stripSize, double _factor, |
|
const Mat &_sum1, const Mat &_sqsum1, Mat *_norm1, |
|
Mat *_mask1, Rect _equRect, ConcurrentRectVector &_vec ) |
|
{ |
|
cascade = _cascade; |
|
stripSize = _stripSize; |
|
factor = _factor; |
|
sum1 = _sum1; |
|
sqsum1 = _sqsum1; |
|
norm1 = _norm1; |
|
mask1 = _mask1; |
|
equRect = _equRect; |
|
vec = &_vec; |
|
} |
|
|
|
void operator()( const BlockedRange &range ) const |
|
{ |
|
Size winSize0 = cascade->orig_window_size; |
|
Size winSize(cvRound(winSize0.width * factor), cvRound(winSize0.height * factor)); |
|
int y1 = range.begin() * stripSize, y2 = std::min(range.end() * stripSize, sum1.rows - 1 - winSize0.height); |
|
Size ssz(sum1.cols - 1 - winSize0.width, y2 - y1); |
|
int x, y, ystep = factor > 2 ? 1 : 2; |
|
|
|
for( y = y1; y < y2; y += ystep ) |
|
for( x = 0; x < ssz.width; x += ystep ) |
|
{ |
|
if( gpuRunHaarClassifierCascade( /*cascade, cvPoint(x, y), 0*/ ) > 0 ) |
|
vec->push_back(Rect(cvRound(x * factor), cvRound(y * factor), |
|
winSize.width, winSize.height)); |
|
} |
|
} |
|
|
|
const CvHaarClassifierCascade *cascade; |
|
int stripSize; |
|
double factor; |
|
Mat sum1, sqsum1, *norm1, *mask1; |
|
Rect equRect; |
|
ConcurrentRectVector *vec; |
|
}; |
|
|
|
|
|
struct gpuHaarDetectObjects_ScaleCascade_Invoker |
|
{ |
|
gpuHaarDetectObjects_ScaleCascade_Invoker( const CvHaarClassifierCascade *_cascade, |
|
Size _winsize, const Range &_xrange, double _ystep, |
|
size_t _sumstep, const int **_p, const int **_pq, |
|
ConcurrentRectVector &_vec ) |
|
{ |
|
cascade = _cascade; |
|
winsize = _winsize; |
|
xrange = _xrange; |
|
ystep = _ystep; |
|
sumstep = _sumstep; |
|
p = _p; |
|
pq = _pq; |
|
vec = &_vec; |
|
} |
|
|
|
void operator()( const BlockedRange &range ) const |
|
{ |
|
int iy, startY = range.begin(), endY = range.end(); |
|
const int *p0 = p[0], *p1 = p[1], *p2 = p[2], *p3 = p[3]; |
|
const int *pq0 = pq[0], *pq1 = pq[1], *pq2 = pq[2], *pq3 = pq[3]; |
|
bool doCannyPruning = p0 != 0; |
|
int sstep = (int)(sumstep / sizeof(p0[0])); |
|
|
|
for( iy = startY; iy < endY; iy++ ) |
|
{ |
|
int ix, y = cvRound(iy * ystep), ixstep = 1; |
|
for( ix = xrange.start; ix < xrange.end; ix += ixstep ) |
|
{ |
|
int x = cvRound(ix * ystep); // it should really be ystep, not ixstep |
|
|
|
if( doCannyPruning ) |
|
{ |
|
int offset = y * sstep + x; |
|
int s = p0[offset] - p1[offset] - p2[offset] + p3[offset]; |
|
int sq = pq0[offset] - pq1[offset] - pq2[offset] + pq3[offset]; |
|
if( s < 100 || sq < 20 ) |
|
{ |
|
ixstep = 2; |
|
continue; |
|
} |
|
} |
|
|
|
int result = gpuRunHaarClassifierCascade(/* cascade, cvPoint(x, y), 0 */); |
|
if( result > 0 ) |
|
vec->push_back(Rect(x, y, winsize.width, winsize.height)); |
|
ixstep = result != 0 ? 1 : 2; |
|
} |
|
} |
|
} |
|
|
|
const CvHaarClassifierCascade *cascade; |
|
double ystep; |
|
size_t sumstep; |
|
Size winsize; |
|
Range xrange; |
|
const int **p; |
|
const int **pq; |
|
ConcurrentRectVector *vec; |
|
}; |
|
|
|
} |
|
} |
|
#endif
|
|
|