mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
280 lines
10 KiB
280 lines
10 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include <stdlib.h> |
|
|
|
using namespace cv; |
|
using namespace std; |
|
|
|
const int NSN=5;//10;//20; //number of shapes per class |
|
const float CURRENT_MAX_ACCUR=85; //90% and 91% reached in several tests, 85 is fixed as minimum boundary |
|
|
|
class CV_HaussTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_HaussTest(); |
|
~CV_HaussTest(); |
|
protected: |
|
void run(int); |
|
private: |
|
float computeShapeDistance(vector<Point> &query1, vector<Point> &query2, |
|
vector<Point> &query3, vector<Point> &testq); |
|
vector <Point> convertContourType(const Mat& currentQuery, int n=180); |
|
vector<Point2f> normalizeContour(const vector <Point>& contour); |
|
void listShapeNames( vector<string> &listHeaders); |
|
void mpegTest(); |
|
void displayMPEGResults(); |
|
}; |
|
|
|
CV_HaussTest::CV_HaussTest() |
|
{ |
|
} |
|
CV_HaussTest::~CV_HaussTest() |
|
{ |
|
} |
|
|
|
vector<Point2f> CV_HaussTest::normalizeContour(const vector<Point> &contour) |
|
{ |
|
vector<Point2f> output(contour.size()); |
|
Mat disMat(contour.size(),contour.size(),CV_32F); |
|
Point2f meanpt(0,0); |
|
float meanVal=1; |
|
|
|
for (size_t ii=0; ii<contour.size(); ii++) |
|
{ |
|
for (size_t jj=0; jj<contour.size(); jj++) |
|
{ |
|
if (ii==jj) disMat.at<float>(ii,jj)=0; |
|
else |
|
{ |
|
disMat.at<float>(ii,jj)= |
|
float(fabs(double(contour[ii].x*contour[jj].x)))+float(fabs(double(contour[ii].y*contour[jj].y))); |
|
} |
|
} |
|
meanpt.x+=contour[ii].x; |
|
meanpt.y+=contour[ii].y; |
|
} |
|
meanpt.x/=contour.size(); |
|
meanpt.y/=contour.size(); |
|
meanVal=float(cv::mean(disMat)[0]); |
|
for (size_t ii=0; ii<contour.size(); ii++) |
|
{ |
|
output[ii].x = (contour[ii].x-meanpt.x)/meanVal; |
|
output[ii].y = (contour[ii].y-meanpt.y)/meanVal; |
|
} |
|
return output; |
|
} |
|
|
|
void CV_HaussTest::listShapeNames( vector<string> &listHeaders) |
|
{ |
|
listHeaders.push_back("apple"); //ok |
|
listHeaders.push_back("children"); // ok |
|
listHeaders.push_back("device7"); // ok |
|
listHeaders.push_back("Heart"); // ok |
|
listHeaders.push_back("teddy"); // ok |
|
} |
|
|
|
|
|
vector <Point> CV_HaussTest::convertContourType(const Mat& currentQuery, int n) |
|
{ |
|
vector<vector<Point> > _contoursQuery; |
|
vector <Point> contoursQuery; |
|
findContours(currentQuery, _contoursQuery, RETR_LIST, CHAIN_APPROX_NONE); |
|
for (size_t border=0; border<_contoursQuery.size(); border++) |
|
{ |
|
for (size_t p=0; p<_contoursQuery[border].size(); p++) |
|
{ |
|
contoursQuery.push_back(_contoursQuery[border][p]); |
|
} |
|
} |
|
|
|
// In case actual number of points is less than n |
|
for (int add=contoursQuery.size()-1; add<n; add++) |
|
{ |
|
contoursQuery.push_back(contoursQuery[contoursQuery.size()-add+1]); //adding dummy values |
|
} |
|
|
|
// Uniformly sampling |
|
random_shuffle(contoursQuery.begin(), contoursQuery.end()); |
|
int nStart=n; |
|
vector<Point> cont; |
|
for (int i=0; i<nStart; i++) |
|
{ |
|
cont.push_back(contoursQuery[i]); |
|
} |
|
return cont; |
|
} |
|
|
|
float CV_HaussTest::computeShapeDistance(vector <Point>& query1, vector <Point>& query2, |
|
vector <Point>& query3, vector <Point>& testq) |
|
{ |
|
Ptr <HausdorffDistanceExtractor> haus = createHausdorffDistanceExtractor(); |
|
return std::min(haus->computeDistance(query1,testq), std::min(haus->computeDistance(query2,testq), |
|
haus->computeDistance(query3,testq))); |
|
} |
|
|
|
void CV_HaussTest::mpegTest() |
|
{ |
|
string baseTestFolder="shape/mpeg_test/"; |
|
string path = cvtest::TS::ptr()->get_data_path() + baseTestFolder; |
|
vector<string> namesHeaders; |
|
listShapeNames(namesHeaders); |
|
|
|
// distance matrix // |
|
Mat distanceMat=Mat::zeros(NSN*namesHeaders.size(), NSN*namesHeaders.size(), CV_32F); |
|
|
|
// query contours (normal v flipped, h flipped) and testing contour // |
|
vector<Point> contoursQuery1, contoursQuery2, contoursQuery3, contoursTesting; |
|
|
|
// reading query and computing its properties // |
|
int counter=0; |
|
const int loops=NSN*namesHeaders.size()*NSN*namesHeaders.size(); |
|
for (size_t n=0; n<namesHeaders.size(); n++) |
|
{ |
|
for (int i=1; i<=NSN; i++) |
|
{ |
|
// read current image // |
|
stringstream thepathandname; |
|
thepathandname<<path+namesHeaders[n]<<"-"<<i<<".png"; |
|
Mat currentQuery, flippedHQuery, flippedVQuery; |
|
currentQuery=imread(thepathandname.str(), IMREAD_GRAYSCALE); |
|
flip(currentQuery, flippedHQuery, 0); |
|
flip(currentQuery, flippedVQuery, 1); |
|
// compute border of the query and its flipped versions // |
|
vector<Point> origContour; |
|
contoursQuery1=convertContourType(currentQuery); |
|
origContour=contoursQuery1; |
|
contoursQuery2=convertContourType(flippedHQuery); |
|
contoursQuery3=convertContourType(flippedVQuery); |
|
|
|
// compare with all the rest of the images: testing // |
|
for (size_t nt=0; nt<namesHeaders.size(); nt++) |
|
{ |
|
for (int it=1; it<=NSN; it++) |
|
{ |
|
/* skip self-comparisson */ |
|
counter++; |
|
if (nt==n && it==i) |
|
{ |
|
distanceMat.at<float>(NSN*n+i-1, |
|
NSN*nt+it-1)=0; |
|
continue; |
|
} |
|
// read testing image // |
|
stringstream thetestpathandname; |
|
thetestpathandname<<path+namesHeaders[nt]<<"-"<<it<<".png"; |
|
Mat currentTest; |
|
currentTest=imread(thetestpathandname.str().c_str(), 0); |
|
|
|
// compute border of the testing // |
|
contoursTesting=convertContourType(currentTest); |
|
|
|
// compute shape distance // |
|
std::cout<<std::endl<<"Progress: "<<counter<<"/"<<loops<<": "<<100*double(counter)/loops<<"% *******"<<std::endl; |
|
std::cout<<"Computing shape distance between "<<namesHeaders[n]<<i<< |
|
" and "<<namesHeaders[nt]<<it<<": "; |
|
distanceMat.at<float>(NSN*n+i-1, NSN*nt+it-1)= |
|
computeShapeDistance(contoursQuery1, contoursQuery2, contoursQuery3, contoursTesting); |
|
std::cout<<distanceMat.at<float>(NSN*n+i-1, NSN*nt+it-1)<<std::endl; |
|
} |
|
} |
|
} |
|
} |
|
// save distance matrix // |
|
FileStorage fs(cvtest::TS::ptr()->get_data_path() + baseTestFolder + "distanceMatrixMPEGTest.yml", FileStorage::WRITE); |
|
fs << "distanceMat" << distanceMat; |
|
} |
|
|
|
const int FIRST_MANY=2*NSN; |
|
void CV_HaussTest::displayMPEGResults() |
|
{ |
|
string baseTestFolder="shape/mpeg_test/"; |
|
Mat distanceMat; |
|
FileStorage fs(cvtest::TS::ptr()->get_data_path() + baseTestFolder + "distanceMatrixMPEGTest.yml", FileStorage::READ); |
|
vector<string> namesHeaders; |
|
listShapeNames(namesHeaders); |
|
|
|
// Read generated MAT // |
|
fs["distanceMat"]>>distanceMat; |
|
|
|
int corrects=0; |
|
int divi=0; |
|
for (int row=0; row<distanceMat.rows; row++) |
|
{ |
|
if (row%NSN==0) //another group |
|
{ |
|
divi+=NSN; |
|
} |
|
for (int col=divi-NSN; col<divi; col++) |
|
{ |
|
int nsmall=0; |
|
for (int i=0; i<distanceMat.cols; i++) |
|
{ |
|
if (distanceMat.at<float>(row,col)>distanceMat.at<float>(row,i)) |
|
{ |
|
nsmall++; |
|
} |
|
} |
|
if (nsmall<=FIRST_MANY) |
|
{ |
|
corrects++; |
|
} |
|
} |
|
} |
|
float porc = 100*float(corrects)/(NSN*distanceMat.rows); |
|
std::cout<<"%="<<porc<<std::endl; |
|
if (porc >= CURRENT_MAX_ACCUR) |
|
ts->set_failed_test_info(cvtest::TS::OK); |
|
else |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
|
|
} |
|
|
|
|
|
void CV_HaussTest::run(int /* */) |
|
{ |
|
mpegTest(); |
|
displayMPEGResults(); |
|
ts->set_failed_test_info(cvtest::TS::OK); |
|
} |
|
|
|
TEST(Hauss, regression) { CV_HaussTest test; test.safe_run(); }
|
|
|