mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
463 lines
17 KiB
463 lines
17 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "opencl_kernels_stitching.hpp" |
|
|
|
namespace cv { |
|
namespace detail { |
|
|
|
void ProjectorBase::setCameraParams(InputArray _K, InputArray _R, InputArray _T) |
|
{ |
|
Mat K = _K.getMat(), R = _R.getMat(), T = _T.getMat(); |
|
|
|
CV_Assert(K.size() == Size(3, 3) && K.type() == CV_32F); |
|
CV_Assert(R.size() == Size(3, 3) && R.type() == CV_32F); |
|
CV_Assert((T.size() == Size(1, 3) || T.size() == Size(3, 1)) && T.type() == CV_32F); |
|
|
|
Mat_<float> K_(K); |
|
k[0] = K_(0,0); k[1] = K_(0,1); k[2] = K_(0,2); |
|
k[3] = K_(1,0); k[4] = K_(1,1); k[5] = K_(1,2); |
|
k[6] = K_(2,0); k[7] = K_(2,1); k[8] = K_(2,2); |
|
|
|
Mat_<float> Rinv = R.t(); |
|
rinv[0] = Rinv(0,0); rinv[1] = Rinv(0,1); rinv[2] = Rinv(0,2); |
|
rinv[3] = Rinv(1,0); rinv[4] = Rinv(1,1); rinv[5] = Rinv(1,2); |
|
rinv[6] = Rinv(2,0); rinv[7] = Rinv(2,1); rinv[8] = Rinv(2,2); |
|
|
|
Mat_<float> R_Kinv = R * K.inv(); |
|
r_kinv[0] = R_Kinv(0,0); r_kinv[1] = R_Kinv(0,1); r_kinv[2] = R_Kinv(0,2); |
|
r_kinv[3] = R_Kinv(1,0); r_kinv[4] = R_Kinv(1,1); r_kinv[5] = R_Kinv(1,2); |
|
r_kinv[6] = R_Kinv(2,0); r_kinv[7] = R_Kinv(2,1); r_kinv[8] = R_Kinv(2,2); |
|
|
|
Mat_<float> K_Rinv = K * Rinv; |
|
k_rinv[0] = K_Rinv(0,0); k_rinv[1] = K_Rinv(0,1); k_rinv[2] = K_Rinv(0,2); |
|
k_rinv[3] = K_Rinv(1,0); k_rinv[4] = K_Rinv(1,1); k_rinv[5] = K_Rinv(1,2); |
|
k_rinv[6] = K_Rinv(2,0); k_rinv[7] = K_Rinv(2,1); k_rinv[8] = K_Rinv(2,2); |
|
|
|
Mat_<float> T_(T.reshape(0, 3)); |
|
t[0] = T_(0,0); t[1] = T_(1,0); t[2] = T_(2,0); |
|
} |
|
|
|
|
|
Point2f PlaneWarper::warpPoint(const Point2f &pt, InputArray K, InputArray R, InputArray T) |
|
{ |
|
projector_.setCameraParams(K, R, T); |
|
Point2f uv; |
|
projector_.mapForward(pt.x, pt.y, uv.x, uv.y); |
|
return uv; |
|
} |
|
|
|
Point2f PlaneWarper::warpPoint(const Point2f &pt, InputArray K, InputArray R) |
|
{ |
|
float tz[] = {0.f, 0.f, 0.f}; |
|
Mat_<float> T(3, 1, tz); |
|
return warpPoint(pt, K, R, T); |
|
} |
|
|
|
Rect PlaneWarper::buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap) |
|
{ |
|
return buildMaps(src_size, K, R, Mat::zeros(3, 1, CV_32FC1), xmap, ymap); |
|
} |
|
|
|
Rect PlaneWarper::buildMaps(Size src_size, InputArray K, InputArray R, InputArray T, OutputArray _xmap, OutputArray _ymap) |
|
{ |
|
projector_.setCameraParams(K, R, T); |
|
|
|
Point dst_tl, dst_br; |
|
detectResultRoi(src_size, dst_tl, dst_br); |
|
|
|
Size dsize(dst_br.x - dst_tl.x + 1, dst_br.y - dst_tl.y + 1); |
|
_xmap.create(dsize, CV_32FC1); |
|
_ymap.create(dsize, CV_32FC1); |
|
|
|
#ifdef HAVE_OPENCL |
|
if (ocl::useOpenCL()) |
|
{ |
|
ocl::Kernel k("buildWarpPlaneMaps", ocl::stitching::warpers_oclsrc); |
|
if (!k.empty()) |
|
{ |
|
int rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1; |
|
Mat k_rinv(1, 9, CV_32FC1, projector_.k_rinv), t(1, 3, CV_32FC1, projector_.t); |
|
UMat uxmap = _xmap.getUMat(), uymap = _ymap.getUMat(), |
|
uk_rinv = k_rinv.getUMat(ACCESS_READ), ut = t.getUMat(ACCESS_READ); |
|
|
|
k.args(ocl::KernelArg::WriteOnlyNoSize(uxmap), ocl::KernelArg::WriteOnly(uymap), |
|
ocl::KernelArg::PtrReadOnly(uk_rinv), ocl::KernelArg::PtrReadOnly(ut), |
|
dst_tl.x, dst_tl.y, 1/projector_.scale, rowsPerWI); |
|
|
|
size_t globalsize[2] = { (size_t)dsize.width, ((size_t)dsize.height + rowsPerWI - 1) / rowsPerWI }; |
|
if (k.run(2, globalsize, NULL, true)) |
|
{ |
|
CV_IMPL_ADD(CV_IMPL_OCL); |
|
return Rect(dst_tl, dst_br); |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
Mat xmap = _xmap.getMat(), ymap = _ymap.getMat(); |
|
|
|
float x, y; |
|
for (int v = dst_tl.y; v <= dst_br.y; ++v) |
|
{ |
|
for (int u = dst_tl.x; u <= dst_br.x; ++u) |
|
{ |
|
projector_.mapBackward(static_cast<float>(u), static_cast<float>(v), x, y); |
|
xmap.at<float>(v - dst_tl.y, u - dst_tl.x) = x; |
|
ymap.at<float>(v - dst_tl.y, u - dst_tl.x) = y; |
|
} |
|
} |
|
|
|
return Rect(dst_tl, dst_br); |
|
} |
|
|
|
|
|
Point PlaneWarper::warp(InputArray src, InputArray K, InputArray R, InputArray T, int interp_mode, int border_mode, |
|
OutputArray dst) |
|
{ |
|
UMat uxmap, uymap; |
|
Rect dst_roi = buildMaps(src.size(), K, R, T, uxmap, uymap); |
|
|
|
dst.create(dst_roi.height + 1, dst_roi.width + 1, src.type()); |
|
remap(src, dst, uxmap, uymap, interp_mode, border_mode); |
|
|
|
return dst_roi.tl(); |
|
} |
|
|
|
Point PlaneWarper::warp(InputArray src, InputArray K, InputArray R, |
|
int interp_mode, int border_mode, OutputArray dst) |
|
{ |
|
float tz[] = {0.f, 0.f, 0.f}; |
|
Mat_<float> T(3, 1, tz); |
|
return warp(src, K, R, T, interp_mode, border_mode, dst); |
|
} |
|
|
|
Rect PlaneWarper::warpRoi(Size src_size, InputArray K, InputArray R, InputArray T) |
|
{ |
|
projector_.setCameraParams(K, R, T); |
|
|
|
Point dst_tl, dst_br; |
|
detectResultRoi(src_size, dst_tl, dst_br); |
|
|
|
return Rect(dst_tl, Point(dst_br.x + 1, dst_br.y + 1)); |
|
} |
|
|
|
Rect PlaneWarper::warpRoi(Size src_size, InputArray K, InputArray R) |
|
{ |
|
float tz[] = {0.f, 0.f, 0.f}; |
|
Mat_<float> T(3, 1, tz); |
|
return warpRoi(src_size, K, R, T); |
|
} |
|
|
|
|
|
void PlaneWarper::detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br) |
|
{ |
|
float tl_uf = std::numeric_limits<float>::max(); |
|
float tl_vf = std::numeric_limits<float>::max(); |
|
float br_uf = -std::numeric_limits<float>::max(); |
|
float br_vf = -std::numeric_limits<float>::max(); |
|
|
|
float u, v; |
|
|
|
projector_.mapForward(0, 0, u, v); |
|
tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v); |
|
br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v); |
|
|
|
projector_.mapForward(0, static_cast<float>(src_size.height - 1), u, v); |
|
tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v); |
|
br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v); |
|
|
|
projector_.mapForward(static_cast<float>(src_size.width - 1), 0, u, v); |
|
tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v); |
|
br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v); |
|
|
|
projector_.mapForward(static_cast<float>(src_size.width - 1), static_cast<float>(src_size.height - 1), u, v); |
|
tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v); |
|
br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v); |
|
|
|
dst_tl.x = static_cast<int>(tl_uf); |
|
dst_tl.y = static_cast<int>(tl_vf); |
|
dst_br.x = static_cast<int>(br_uf); |
|
dst_br.y = static_cast<int>(br_vf); |
|
} |
|
|
|
|
|
Point2f AffineWarper::warpPoint(const Point2f &pt, InputArray K, InputArray H) |
|
{ |
|
Mat R, T; |
|
getRTfromHomogeneous(H, R, T); |
|
return PlaneWarper::warpPoint(pt, K, R, T); |
|
} |
|
|
|
|
|
Rect AffineWarper::buildMaps(Size src_size, InputArray K, InputArray H, OutputArray xmap, OutputArray ymap) |
|
{ |
|
Mat R, T; |
|
getRTfromHomogeneous(H, R, T); |
|
return PlaneWarper::buildMaps(src_size, K, R, T, xmap, ymap); |
|
} |
|
|
|
|
|
Point AffineWarper::warp(InputArray src, InputArray K, InputArray H, |
|
int interp_mode, int border_mode, OutputArray dst) |
|
{ |
|
Mat R, T; |
|
getRTfromHomogeneous(H, R, T); |
|
return PlaneWarper::warp(src, K, R, T, interp_mode, border_mode, dst); |
|
} |
|
|
|
|
|
Rect AffineWarper::warpRoi(Size src_size, InputArray K, InputArray H) |
|
{ |
|
Mat R, T; |
|
getRTfromHomogeneous(H, R, T); |
|
return PlaneWarper::warpRoi(src_size, K, R, T); |
|
} |
|
|
|
|
|
void AffineWarper::getRTfromHomogeneous(InputArray H_, Mat &R, Mat &T) |
|
{ |
|
Mat H = H_.getMat(); |
|
CV_Assert(H.size() == Size(3, 3) && H.type() == CV_32F); |
|
|
|
T = Mat::zeros(3, 1, CV_32F); |
|
R = H.clone(); |
|
|
|
T.at<float>(0,0) = R.at<float>(0,2); |
|
T.at<float>(1,0) = R.at<float>(1,2); |
|
R.at<float>(0,2) = 0.f; |
|
R.at<float>(1,2) = 0.f; |
|
|
|
// we want to compensate transform to fit into plane warper |
|
R = R.t(); |
|
T = (R * T) * -1; |
|
} |
|
|
|
|
|
void SphericalWarper::detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br) |
|
{ |
|
detectResultRoiByBorder(src_size, dst_tl, dst_br); |
|
|
|
float tl_uf = static_cast<float>(dst_tl.x); |
|
float tl_vf = static_cast<float>(dst_tl.y); |
|
float br_uf = static_cast<float>(dst_br.x); |
|
float br_vf = static_cast<float>(dst_br.y); |
|
|
|
float x = projector_.rinv[1]; |
|
float y = projector_.rinv[4]; |
|
float z = projector_.rinv[7]; |
|
if (y > 0.f) |
|
{ |
|
float x_ = (projector_.k[0] * x + projector_.k[1] * y) / z + projector_.k[2]; |
|
float y_ = projector_.k[4] * y / z + projector_.k[5]; |
|
if (x_ > 0.f && x_ < src_size.width && y_ > 0.f && y_ < src_size.height) |
|
{ |
|
tl_uf = std::min(tl_uf, 0.f); tl_vf = std::min(tl_vf, static_cast<float>(CV_PI * projector_.scale)); |
|
br_uf = std::max(br_uf, 0.f); br_vf = std::max(br_vf, static_cast<float>(CV_PI * projector_.scale)); |
|
} |
|
} |
|
|
|
x = projector_.rinv[1]; |
|
y = -projector_.rinv[4]; |
|
z = projector_.rinv[7]; |
|
if (y > 0.f) |
|
{ |
|
float x_ = (projector_.k[0] * x + projector_.k[1] * y) / z + projector_.k[2]; |
|
float y_ = projector_.k[4] * y / z + projector_.k[5]; |
|
if (x_ > 0.f && x_ < src_size.width && y_ > 0.f && y_ < src_size.height) |
|
{ |
|
tl_uf = std::min(tl_uf, 0.f); tl_vf = std::min(tl_vf, static_cast<float>(0)); |
|
br_uf = std::max(br_uf, 0.f); br_vf = std::max(br_vf, static_cast<float>(0)); |
|
} |
|
} |
|
|
|
dst_tl.x = static_cast<int>(tl_uf); |
|
dst_tl.y = static_cast<int>(tl_vf); |
|
dst_br.x = static_cast<int>(br_uf); |
|
dst_br.y = static_cast<int>(br_vf); |
|
} |
|
|
|
void SphericalPortraitWarper::detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br) |
|
{ |
|
detectResultRoiByBorder(src_size, dst_tl, dst_br); |
|
|
|
float tl_uf = static_cast<float>(dst_tl.x); |
|
float tl_vf = static_cast<float>(dst_tl.y); |
|
float br_uf = static_cast<float>(dst_br.x); |
|
float br_vf = static_cast<float>(dst_br.y); |
|
|
|
float x = projector_.rinv[0]; |
|
float y = projector_.rinv[3]; |
|
float z = projector_.rinv[6]; |
|
if (y > 0.f) |
|
{ |
|
float x_ = (projector_.k[0] * x + projector_.k[1] * y) / z + projector_.k[2]; |
|
float y_ = projector_.k[4] * y / z + projector_.k[5]; |
|
if (x_ > 0.f && x_ < src_size.width && y_ > 0.f && y_ < src_size.height) |
|
{ |
|
tl_uf = std::min(tl_uf, 0.f); tl_vf = std::min(tl_vf, static_cast<float>(CV_PI * projector_.scale)); |
|
br_uf = std::max(br_uf, 0.f); br_vf = std::max(br_vf, static_cast<float>(CV_PI * projector_.scale)); |
|
} |
|
} |
|
|
|
x = projector_.rinv[0]; |
|
y = -projector_.rinv[3]; |
|
z = projector_.rinv[6]; |
|
if (y > 0.f) |
|
{ |
|
float x_ = (projector_.k[0] * x + projector_.k[1] * y) / z + projector_.k[2]; |
|
float y_ = projector_.k[4] * y / z + projector_.k[5]; |
|
if (x_ > 0.f && x_ < src_size.width && y_ > 0.f && y_ < src_size.height) |
|
{ |
|
tl_uf = std::min(tl_uf, 0.f); tl_vf = std::min(tl_vf, static_cast<float>(0)); |
|
br_uf = std::max(br_uf, 0.f); br_vf = std::max(br_vf, static_cast<float>(0)); |
|
} |
|
} |
|
|
|
dst_tl.x = static_cast<int>(tl_uf); |
|
dst_tl.y = static_cast<int>(tl_vf); |
|
dst_br.x = static_cast<int>(br_uf); |
|
dst_br.y = static_cast<int>(br_vf); |
|
} |
|
|
|
/////////////////////////////////////////// SphericalWarper //////////////////////////////////////// |
|
|
|
Rect SphericalWarper::buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap) |
|
{ |
|
#ifdef HAVE_OPENCL |
|
if (ocl::useOpenCL()) |
|
{ |
|
ocl::Kernel k("buildWarpSphericalMaps", ocl::stitching::warpers_oclsrc); |
|
if (!k.empty()) |
|
{ |
|
int rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1; |
|
projector_.setCameraParams(K, R); |
|
|
|
Point dst_tl, dst_br; |
|
detectResultRoi(src_size, dst_tl, dst_br); |
|
|
|
Size dsize(dst_br.x - dst_tl.x + 1, dst_br.y - dst_tl.y + 1); |
|
xmap.create(dsize, CV_32FC1); |
|
ymap.create(dsize, CV_32FC1); |
|
|
|
Mat k_rinv(1, 9, CV_32FC1, projector_.k_rinv); |
|
UMat uxmap = xmap.getUMat(), uymap = ymap.getUMat(), uk_rinv = k_rinv.getUMat(ACCESS_READ); |
|
|
|
k.args(ocl::KernelArg::WriteOnlyNoSize(uxmap), ocl::KernelArg::WriteOnly(uymap), |
|
ocl::KernelArg::PtrReadOnly(uk_rinv), dst_tl.x, dst_tl.y, 1/projector_.scale, rowsPerWI); |
|
|
|
size_t globalsize[2] = { (size_t)dsize.width, ((size_t)dsize.height + rowsPerWI - 1) / rowsPerWI }; |
|
if (k.run(2, globalsize, NULL, true)) |
|
{ |
|
CV_IMPL_ADD(CV_IMPL_OCL); |
|
return Rect(dst_tl, dst_br); |
|
} |
|
} |
|
} |
|
#endif |
|
return RotationWarperBase<SphericalProjector>::buildMaps(src_size, K, R, xmap, ymap); |
|
} |
|
|
|
Point SphericalWarper::warp(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode, OutputArray dst) |
|
{ |
|
UMat uxmap, uymap; |
|
Rect dst_roi = buildMaps(src.size(), K, R, uxmap, uymap); |
|
|
|
dst.create(dst_roi.height + 1, dst_roi.width + 1, src.type()); |
|
remap(src, dst, uxmap, uymap, interp_mode, border_mode); |
|
|
|
return dst_roi.tl(); |
|
} |
|
|
|
/////////////////////////////////////////// CylindricalWarper //////////////////////////////////////// |
|
|
|
Rect CylindricalWarper::buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap) |
|
{ |
|
#ifdef HAVE_OPENCL |
|
if (ocl::useOpenCL()) |
|
{ |
|
ocl::Kernel k("buildWarpCylindricalMaps", ocl::stitching::warpers_oclsrc); |
|
if (!k.empty()) |
|
{ |
|
int rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1; |
|
projector_.setCameraParams(K, R); |
|
|
|
Point dst_tl, dst_br; |
|
detectResultRoi(src_size, dst_tl, dst_br); |
|
|
|
Size dsize(dst_br.x - dst_tl.x + 1, dst_br.y - dst_tl.y + 1); |
|
xmap.create(dsize, CV_32FC1); |
|
ymap.create(dsize, CV_32FC1); |
|
|
|
Mat k_rinv(1, 9, CV_32FC1, projector_.k_rinv); |
|
UMat uxmap = xmap.getUMat(), uymap = ymap.getUMat(), uk_rinv = k_rinv.getUMat(ACCESS_READ); |
|
|
|
k.args(ocl::KernelArg::WriteOnlyNoSize(uxmap), ocl::KernelArg::WriteOnly(uymap), |
|
ocl::KernelArg::PtrReadOnly(uk_rinv), dst_tl.x, dst_tl.y, 1/projector_.scale, |
|
rowsPerWI); |
|
|
|
size_t globalsize[2] = { (size_t)dsize.width, ((size_t)dsize.height + rowsPerWI - 1) / rowsPerWI }; |
|
if (k.run(2, globalsize, NULL, true)) |
|
{ |
|
CV_IMPL_ADD(CV_IMPL_OCL); |
|
return Rect(dst_tl, dst_br); |
|
} |
|
} |
|
} |
|
#endif |
|
return RotationWarperBase<CylindricalProjector>::buildMaps(src_size, K, R, xmap, ymap); |
|
} |
|
|
|
Point CylindricalWarper::warp(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode, OutputArray dst) |
|
{ |
|
UMat uxmap, uymap; |
|
Rect dst_roi = buildMaps(src.size(), K, R, uxmap, uymap); |
|
|
|
dst.create(dst_roi.height + 1, dst_roi.width + 1, src.type()); |
|
remap(src, dst, uxmap, uymap, interp_mode, border_mode); |
|
|
|
return dst_roi.tl(); |
|
} |
|
|
|
} // namespace detail |
|
} // namespace cv
|
|
|