mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1320 lines
34 KiB
1320 lines
34 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "perf_precomp.hpp" |
|
|
|
using namespace std; |
|
using namespace testing; |
|
using namespace perf; |
|
|
|
#if defined(HAVE_XINE) || \ |
|
defined(HAVE_GSTREAMER) || \ |
|
defined(HAVE_QUICKTIME) || \ |
|
defined(HAVE_QTKIT) || \ |
|
defined(HAVE_AVFOUNDATION) || \ |
|
defined(HAVE_FFMPEG) || \ |
|
defined(WIN32) /* assume that we have ffmpeg */ |
|
|
|
# define BUILD_WITH_VIDEO_INPUT_SUPPORT 1 |
|
#else |
|
# define BUILD_WITH_VIDEO_INPUT_SUPPORT 0 |
|
#endif |
|
|
|
namespace cv |
|
{ |
|
template<> void Ptr<CvBGStatModel>::delete_obj() |
|
{ |
|
cvReleaseBGStatModel(&obj); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////// |
|
// InterpolateFrames |
|
|
|
typedef pair<string, string> pair_string; |
|
|
|
DEF_PARAM_TEST_1(ImagePair, pair_string); |
|
|
|
PERF_TEST_P(ImagePair, Video_InterpolateFrames, |
|
Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png"))) |
|
{ |
|
cv::Mat frame0 = readImage(GetParam().first, cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame0.empty()); |
|
|
|
cv::Mat frame1 = readImage(GetParam().second, cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame1.empty()); |
|
|
|
frame0.convertTo(frame0, CV_32FC1, 1.0 / 255.0); |
|
frame1.convertTo(frame1, CV_32FC1, 1.0 / 255.0); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_frame0(frame0); |
|
const cv::gpu::GpuMat d_frame1(frame1); |
|
cv::gpu::GpuMat d_fu, d_fv; |
|
cv::gpu::GpuMat d_bu, d_bv; |
|
|
|
cv::gpu::BroxOpticalFlow d_flow(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/, |
|
10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/); |
|
|
|
d_flow(d_frame0, d_frame1, d_fu, d_fv); |
|
d_flow(d_frame1, d_frame0, d_bu, d_bv); |
|
|
|
cv::gpu::GpuMat newFrame; |
|
cv::gpu::GpuMat d_buf; |
|
|
|
TEST_CYCLE() cv::gpu::interpolateFrames(d_frame0, d_frame1, d_fu, d_fv, d_bu, d_bv, 0.5f, newFrame, d_buf); |
|
|
|
GPU_SANITY_CHECK(newFrame, 1e-4); |
|
} |
|
else |
|
{ |
|
FAIL_NO_CPU(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////// |
|
// CreateOpticalFlowNeedleMap |
|
|
|
PERF_TEST_P(ImagePair, Video_CreateOpticalFlowNeedleMap, |
|
Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png"))) |
|
{ |
|
cv::Mat frame0 = readImage(GetParam().first, cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame0.empty()); |
|
|
|
cv::Mat frame1 = readImage(GetParam().second, cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame1.empty()); |
|
|
|
frame0.convertTo(frame0, CV_32FC1, 1.0 / 255.0); |
|
frame1.convertTo(frame1, CV_32FC1, 1.0 / 255.0); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_frame0(frame0); |
|
const cv::gpu::GpuMat d_frame1(frame1); |
|
cv::gpu::GpuMat u; |
|
cv::gpu::GpuMat v; |
|
|
|
cv::gpu::BroxOpticalFlow d_flow(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/, |
|
10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/); |
|
|
|
d_flow(d_frame0, d_frame1, u, v); |
|
|
|
cv::gpu::GpuMat vertex, colors; |
|
|
|
TEST_CYCLE() cv::gpu::createOpticalFlowNeedleMap(u, v, vertex, colors); |
|
|
|
GPU_SANITY_CHECK(vertex, 1e-6); |
|
GPU_SANITY_CHECK(colors); |
|
} |
|
else |
|
{ |
|
FAIL_NO_CPU(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////// |
|
// GoodFeaturesToTrack |
|
|
|
DEF_PARAM_TEST(Image_MinDistance, string, double); |
|
|
|
PERF_TEST_P(Image_MinDistance, Video_GoodFeaturesToTrack, |
|
Combine(Values<string>("gpu/perf/aloe.png"), |
|
Values(0.0, 3.0))) |
|
{ |
|
const string fileName = GET_PARAM(0); |
|
const double minDistance = GET_PARAM(1); |
|
|
|
const cv::Mat image = readImage(fileName, cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(image.empty()); |
|
|
|
const int maxCorners = 8000; |
|
const double qualityLevel = 0.01; |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
cv::gpu::GoodFeaturesToTrackDetector_GPU d_detector(maxCorners, qualityLevel, minDistance); |
|
|
|
const cv::gpu::GpuMat d_image(image); |
|
cv::gpu::GpuMat pts; |
|
|
|
TEST_CYCLE() d_detector(d_image, pts); |
|
|
|
GPU_SANITY_CHECK(pts); |
|
} |
|
else |
|
{ |
|
cv::Mat pts; |
|
|
|
TEST_CYCLE() cv::goodFeaturesToTrack(image, pts, maxCorners, qualityLevel, minDistance); |
|
|
|
CPU_SANITY_CHECK(pts); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////// |
|
// BroxOpticalFlow |
|
|
|
PERF_TEST_P(ImagePair, Video_BroxOpticalFlow, |
|
Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png"))) |
|
{ |
|
declare.time(300); |
|
|
|
cv::Mat frame0 = readImage(GetParam().first, cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame0.empty()); |
|
|
|
cv::Mat frame1 = readImage(GetParam().second, cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame1.empty()); |
|
|
|
frame0.convertTo(frame0, CV_32FC1, 1.0 / 255.0); |
|
frame1.convertTo(frame1, CV_32FC1, 1.0 / 255.0); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_frame0(frame0); |
|
const cv::gpu::GpuMat d_frame1(frame1); |
|
cv::gpu::GpuMat u; |
|
cv::gpu::GpuMat v; |
|
|
|
cv::gpu::BroxOpticalFlow d_flow(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/, |
|
10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/); |
|
|
|
TEST_CYCLE() d_flow(d_frame0, d_frame1, u, v); |
|
|
|
GPU_SANITY_CHECK(u, 1e-1); |
|
GPU_SANITY_CHECK(v, 1e-1); |
|
} |
|
else |
|
{ |
|
FAIL_NO_CPU(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////// |
|
// PyrLKOpticalFlowSparse |
|
|
|
DEF_PARAM_TEST(ImagePair_Gray_NPts_WinSz_Levels_Iters, pair_string, bool, int, int, int, int); |
|
|
|
PERF_TEST_P(ImagePair_Gray_NPts_WinSz_Levels_Iters, Video_PyrLKOpticalFlowSparse, |
|
Combine(Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png")), |
|
Bool(), |
|
Values(8000), |
|
Values(21), |
|
Values(1, 3), |
|
Values(1, 30))) |
|
{ |
|
declare.time(20.0); |
|
|
|
const pair_string imagePair = GET_PARAM(0); |
|
const bool useGray = GET_PARAM(1); |
|
const int points = GET_PARAM(2); |
|
const int winSize = GET_PARAM(3); |
|
const int levels = GET_PARAM(4); |
|
const int iters = GET_PARAM(5); |
|
|
|
const cv::Mat frame0 = readImage(imagePair.first, useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR); |
|
ASSERT_FALSE(frame0.empty()); |
|
|
|
const cv::Mat frame1 = readImage(imagePair.second, useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR); |
|
ASSERT_FALSE(frame1.empty()); |
|
|
|
cv::Mat gray_frame; |
|
if (useGray) |
|
gray_frame = frame0; |
|
else |
|
cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY); |
|
|
|
cv::Mat pts; |
|
cv::goodFeaturesToTrack(gray_frame, pts, points, 0.01, 0.0); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_pts(pts.reshape(2, 1)); |
|
|
|
cv::gpu::PyrLKOpticalFlow d_pyrLK; |
|
d_pyrLK.winSize = cv::Size(winSize, winSize); |
|
d_pyrLK.maxLevel = levels - 1; |
|
d_pyrLK.iters = iters; |
|
|
|
const cv::gpu::GpuMat d_frame0(frame0); |
|
const cv::gpu::GpuMat d_frame1(frame1); |
|
cv::gpu::GpuMat nextPts; |
|
cv::gpu::GpuMat status; |
|
|
|
TEST_CYCLE() d_pyrLK.sparse(d_frame0, d_frame1, d_pts, nextPts, status); |
|
|
|
GPU_SANITY_CHECK(nextPts); |
|
GPU_SANITY_CHECK(status); |
|
} |
|
else |
|
{ |
|
cv::Mat nextPts; |
|
cv::Mat status; |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, cv::noArray(), |
|
cv::Size(winSize, winSize), levels - 1, |
|
cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, iters, 0.01)); |
|
} |
|
|
|
CPU_SANITY_CHECK(nextPts); |
|
CPU_SANITY_CHECK(status); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////// |
|
// PyrLKOpticalFlowDense |
|
|
|
DEF_PARAM_TEST(ImagePair_WinSz_Levels_Iters, pair_string, int, int, int); |
|
|
|
PERF_TEST_P(ImagePair_WinSz_Levels_Iters, Video_PyrLKOpticalFlowDense, |
|
Combine(Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png")), |
|
Values(3, 5, 7, 9, 13, 17, 21), |
|
Values(1, 3), |
|
Values(1, 10))) |
|
{ |
|
declare.time(30); |
|
|
|
const pair_string imagePair = GET_PARAM(0); |
|
const int winSize = GET_PARAM(1); |
|
const int levels = GET_PARAM(2); |
|
const int iters = GET_PARAM(3); |
|
|
|
const cv::Mat frame0 = readImage(imagePair.first, cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame0.empty()); |
|
|
|
const cv::Mat frame1 = readImage(imagePair.second, cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame1.empty()); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_frame0(frame0); |
|
const cv::gpu::GpuMat d_frame1(frame1); |
|
cv::gpu::GpuMat u; |
|
cv::gpu::GpuMat v; |
|
|
|
cv::gpu::PyrLKOpticalFlow d_pyrLK; |
|
d_pyrLK.winSize = cv::Size(winSize, winSize); |
|
d_pyrLK.maxLevel = levels - 1; |
|
d_pyrLK.iters = iters; |
|
|
|
TEST_CYCLE() d_pyrLK.dense(d_frame0, d_frame1, u, v); |
|
|
|
GPU_SANITY_CHECK(u); |
|
GPU_SANITY_CHECK(v); |
|
} |
|
else |
|
{ |
|
FAIL_NO_CPU(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////// |
|
// FarnebackOpticalFlow |
|
|
|
PERF_TEST_P(ImagePair, Video_FarnebackOpticalFlow, |
|
Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png"))) |
|
{ |
|
declare.time(10); |
|
|
|
const cv::Mat frame0 = readImage(GetParam().first, cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame0.empty()); |
|
|
|
const cv::Mat frame1 = readImage(GetParam().second, cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame1.empty()); |
|
|
|
const int numLevels = 5; |
|
const double pyrScale = 0.5; |
|
const int winSize = 13; |
|
const int numIters = 10; |
|
const int polyN = 5; |
|
const double polySigma = 1.1; |
|
const int flags = 0; |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_frame0(frame0); |
|
const cv::gpu::GpuMat d_frame1(frame1); |
|
cv::gpu::GpuMat u; |
|
cv::gpu::GpuMat v; |
|
|
|
cv::gpu::FarnebackOpticalFlow d_farneback; |
|
d_farneback.numLevels = numLevels; |
|
d_farneback.pyrScale = pyrScale; |
|
d_farneback.winSize = winSize; |
|
d_farneback.numIters = numIters; |
|
d_farneback.polyN = polyN; |
|
d_farneback.polySigma = polySigma; |
|
d_farneback.flags = flags; |
|
|
|
TEST_CYCLE() d_farneback(d_frame0, d_frame1, u, v); |
|
|
|
GPU_SANITY_CHECK(u, 1e-4); |
|
GPU_SANITY_CHECK(v, 1e-4); |
|
} |
|
else |
|
{ |
|
cv::Mat flow; |
|
|
|
TEST_CYCLE() cv::calcOpticalFlowFarneback(frame0, frame1, flow, pyrScale, numLevels, winSize, numIters, polyN, polySigma, flags); |
|
|
|
CPU_SANITY_CHECK(flow); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////// |
|
// OpticalFlowDual_TVL1 |
|
|
|
PERF_TEST_P(ImagePair, Video_OpticalFlowDual_TVL1, |
|
Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png"))) |
|
{ |
|
declare.time(20); |
|
|
|
const cv::Mat frame0 = readImage(GetParam().first, cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame0.empty()); |
|
|
|
const cv::Mat frame1 = readImage(GetParam().second, cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame1.empty()); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_frame0(frame0); |
|
const cv::gpu::GpuMat d_frame1(frame1); |
|
cv::gpu::GpuMat u; |
|
cv::gpu::GpuMat v; |
|
|
|
cv::gpu::OpticalFlowDual_TVL1_GPU d_alg; |
|
|
|
TEST_CYCLE() d_alg(d_frame0, d_frame1, u, v); |
|
|
|
GPU_SANITY_CHECK(u, 1e-1); |
|
GPU_SANITY_CHECK(v, 1e-1); |
|
} |
|
else |
|
{ |
|
cv::Mat flow; |
|
|
|
cv::Ptr<cv::DenseOpticalFlow> alg = cv::createOptFlow_DualTVL1(); |
|
|
|
TEST_CYCLE() alg->calc(frame0, frame1, flow); |
|
|
|
CPU_SANITY_CHECK(flow); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////// |
|
// OpticalFlowBM |
|
|
|
void calcOpticalFlowBM(const cv::Mat& prev, const cv::Mat& curr, |
|
cv::Size bSize, cv::Size shiftSize, cv::Size maxRange, int usePrevious, |
|
cv::Mat& velx, cv::Mat& vely) |
|
{ |
|
cv::Size sz((curr.cols - bSize.width + shiftSize.width)/shiftSize.width, (curr.rows - bSize.height + shiftSize.height)/shiftSize.height); |
|
|
|
velx.create(sz, CV_32FC1); |
|
vely.create(sz, CV_32FC1); |
|
|
|
CvMat cvprev = prev; |
|
CvMat cvcurr = curr; |
|
|
|
CvMat cvvelx = velx; |
|
CvMat cvvely = vely; |
|
|
|
cvCalcOpticalFlowBM(&cvprev, &cvcurr, bSize, shiftSize, maxRange, usePrevious, &cvvelx, &cvvely); |
|
} |
|
|
|
PERF_TEST_P(ImagePair, Video_OpticalFlowBM, |
|
Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png"))) |
|
{ |
|
declare.time(400); |
|
|
|
const cv::Mat frame0 = readImage(GetParam().first, cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame0.empty()); |
|
|
|
const cv::Mat frame1 = readImage(GetParam().second, cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame1.empty()); |
|
|
|
const cv::Size block_size(16, 16); |
|
const cv::Size shift_size(1, 1); |
|
const cv::Size max_range(16, 16); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_frame0(frame0); |
|
const cv::gpu::GpuMat d_frame1(frame1); |
|
cv::gpu::GpuMat u, v, buf; |
|
|
|
TEST_CYCLE() cv::gpu::calcOpticalFlowBM(d_frame0, d_frame1, block_size, shift_size, max_range, false, u, v, buf); |
|
|
|
GPU_SANITY_CHECK(u); |
|
GPU_SANITY_CHECK(v); |
|
} |
|
else |
|
{ |
|
cv::Mat u, v; |
|
|
|
TEST_CYCLE() calcOpticalFlowBM(frame0, frame1, block_size, shift_size, max_range, false, u, v); |
|
|
|
CPU_SANITY_CHECK(u); |
|
CPU_SANITY_CHECK(v); |
|
} |
|
} |
|
|
|
PERF_TEST_P(ImagePair, DISABLED_Video_FastOpticalFlowBM, |
|
Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png"))) |
|
{ |
|
declare.time(400); |
|
|
|
const cv::Mat frame0 = readImage(GetParam().first, cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame0.empty()); |
|
|
|
const cv::Mat frame1 = readImage(GetParam().second, cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame1.empty()); |
|
|
|
const cv::Size block_size(16, 16); |
|
const cv::Size shift_size(1, 1); |
|
const cv::Size max_range(16, 16); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_frame0(frame0); |
|
const cv::gpu::GpuMat d_frame1(frame1); |
|
cv::gpu::GpuMat u, v; |
|
|
|
cv::gpu::FastOpticalFlowBM fastBM; |
|
|
|
TEST_CYCLE() fastBM(d_frame0, d_frame1, u, v, max_range.width, block_size.width); |
|
|
|
GPU_SANITY_CHECK(u, 2); |
|
GPU_SANITY_CHECK(v, 2); |
|
} |
|
else |
|
{ |
|
FAIL_NO_CPU(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////// |
|
// FGDStatModel |
|
|
|
#if BUILD_WITH_VIDEO_INPUT_SUPPORT |
|
|
|
DEF_PARAM_TEST_1(Video, string); |
|
|
|
PERF_TEST_P(Video, Video_FGDStatModel, |
|
Values(string("gpu/video/768x576.avi"))) |
|
{ |
|
const int numIters = 10; |
|
|
|
declare.time(60); |
|
|
|
const string inputFile = perf::TestBase::getDataPath(GetParam()); |
|
|
|
cv::VideoCapture cap(inputFile); |
|
ASSERT_TRUE(cap.isOpened()); |
|
|
|
cv::Mat frame; |
|
cap >> frame; |
|
ASSERT_FALSE(frame.empty()); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
cv::gpu::GpuMat d_frame(frame); |
|
|
|
cv::gpu::FGDStatModel d_model(4); |
|
d_model.create(d_frame); |
|
|
|
int i = 0; |
|
|
|
// collect performance data |
|
for (; i < numIters; ++i) |
|
{ |
|
cap >> frame; |
|
ASSERT_FALSE(frame.empty()); |
|
|
|
d_frame.upload(frame); |
|
|
|
startTimer(); |
|
if(!next()) |
|
break; |
|
|
|
d_model.update(d_frame); |
|
|
|
stopTimer(); |
|
} |
|
|
|
// process last frame in sequence to get data for sanity test |
|
for (; i < numIters; ++i) |
|
{ |
|
cap >> frame; |
|
ASSERT_FALSE(frame.empty()); |
|
|
|
d_frame.upload(frame); |
|
|
|
d_model.update(d_frame); |
|
} |
|
|
|
const cv::gpu::GpuMat background = d_model.background; |
|
const cv::gpu::GpuMat foreground = d_model.foreground; |
|
|
|
GPU_SANITY_CHECK(background, 1e-2, ERROR_RELATIVE); |
|
GPU_SANITY_CHECK(foreground, 1e-2, ERROR_RELATIVE); |
|
} |
|
else |
|
{ |
|
IplImage ipl_frame = frame; |
|
cv::Ptr<CvBGStatModel> model(cvCreateFGDStatModel(&ipl_frame)); |
|
|
|
int i = 0; |
|
|
|
// collect performance data |
|
for (; i < numIters; ++i) |
|
{ |
|
cap >> frame; |
|
ASSERT_FALSE(frame.empty()); |
|
|
|
ipl_frame = frame; |
|
|
|
startTimer(); |
|
if(!next()) |
|
break; |
|
|
|
cvUpdateBGStatModel(&ipl_frame, model); |
|
|
|
stopTimer(); |
|
} |
|
|
|
// process last frame in sequence to get data for sanity test |
|
for (; i < numIters; ++i) |
|
{ |
|
cap >> frame; |
|
ASSERT_FALSE(frame.empty()); |
|
|
|
ipl_frame = frame; |
|
|
|
cvUpdateBGStatModel(&ipl_frame, model); |
|
} |
|
|
|
const cv::Mat background = model->background; |
|
const cv::Mat foreground = model->foreground; |
|
|
|
CPU_SANITY_CHECK(background); |
|
CPU_SANITY_CHECK(foreground); |
|
} |
|
} |
|
|
|
#endif |
|
|
|
////////////////////////////////////////////////////// |
|
// MOG |
|
|
|
#if BUILD_WITH_VIDEO_INPUT_SUPPORT |
|
|
|
DEF_PARAM_TEST(Video_Cn_LearningRate, string, MatCn, double); |
|
|
|
PERF_TEST_P(Video_Cn_LearningRate, Video_MOG, |
|
Combine(Values("gpu/video/768x576.avi", "gpu/video/1920x1080.avi"), |
|
GPU_CHANNELS_1_3_4, |
|
Values(0.0, 0.01))) |
|
{ |
|
const int numIters = 10; |
|
|
|
const string inputFile = perf::TestBase::getDataPath(GET_PARAM(0)); |
|
const int cn = GET_PARAM(1); |
|
const float learningRate = static_cast<float>(GET_PARAM(2)); |
|
|
|
cv::VideoCapture cap(inputFile); |
|
ASSERT_TRUE(cap.isOpened()); |
|
|
|
cv::Mat frame; |
|
|
|
cap >> frame; |
|
ASSERT_FALSE(frame.empty()); |
|
|
|
if (cn != 3) |
|
{ |
|
cv::Mat temp; |
|
if (cn == 1) |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); |
|
else |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); |
|
cv::swap(temp, frame); |
|
} |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
cv::gpu::GpuMat d_frame(frame); |
|
cv::gpu::MOG_GPU d_mog; |
|
cv::gpu::GpuMat foreground; |
|
|
|
d_mog(d_frame, foreground, learningRate); |
|
|
|
int i = 0; |
|
|
|
// collect performance data |
|
for (; i < numIters; ++i) |
|
{ |
|
cap >> frame; |
|
ASSERT_FALSE(frame.empty()); |
|
|
|
if (cn != 3) |
|
{ |
|
cv::Mat temp; |
|
if (cn == 1) |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); |
|
else |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); |
|
cv::swap(temp, frame); |
|
} |
|
|
|
d_frame.upload(frame); |
|
|
|
startTimer(); |
|
if(!next()) |
|
break; |
|
|
|
d_mog(d_frame, foreground, learningRate); |
|
|
|
stopTimer(); |
|
} |
|
|
|
// process last frame in sequence to get data for sanity test |
|
for (; i < numIters; ++i) |
|
{ |
|
cap >> frame; |
|
ASSERT_FALSE(frame.empty()); |
|
|
|
if (cn != 3) |
|
{ |
|
cv::Mat temp; |
|
if (cn == 1) |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); |
|
else |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); |
|
cv::swap(temp, frame); |
|
} |
|
|
|
d_frame.upload(frame); |
|
|
|
d_mog(d_frame, foreground, learningRate); |
|
} |
|
|
|
GPU_SANITY_CHECK(foreground); |
|
} |
|
else |
|
{ |
|
cv::BackgroundSubtractorMOG mog; |
|
cv::Mat foreground; |
|
|
|
mog(frame, foreground, learningRate); |
|
|
|
int i = 0; |
|
|
|
// collect performance data |
|
for (; i < numIters; ++i) |
|
{ |
|
cap >> frame; |
|
ASSERT_FALSE(frame.empty()); |
|
|
|
if (cn != 3) |
|
{ |
|
cv::Mat temp; |
|
if (cn == 1) |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); |
|
else |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); |
|
cv::swap(temp, frame); |
|
} |
|
|
|
startTimer(); |
|
if(!next()) |
|
break; |
|
|
|
mog(frame, foreground, learningRate); |
|
|
|
stopTimer(); |
|
} |
|
|
|
// process last frame in sequence to get data for sanity test |
|
for (; i < numIters; ++i) |
|
{ |
|
cap >> frame; |
|
ASSERT_FALSE(frame.empty()); |
|
|
|
if (cn != 3) |
|
{ |
|
cv::Mat temp; |
|
if (cn == 1) |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); |
|
else |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); |
|
cv::swap(temp, frame); |
|
} |
|
|
|
mog(frame, foreground, learningRate); |
|
} |
|
|
|
CPU_SANITY_CHECK(foreground); |
|
} |
|
} |
|
|
|
#endif |
|
|
|
////////////////////////////////////////////////////// |
|
// MOG2 |
|
|
|
#if BUILD_WITH_VIDEO_INPUT_SUPPORT |
|
|
|
DEF_PARAM_TEST(Video_Cn, string, int); |
|
|
|
PERF_TEST_P(Video_Cn, DISABLED_Video_MOG2, |
|
Combine(Values("gpu/video/768x576.avi", "gpu/video/1920x1080.avi"), |
|
GPU_CHANNELS_1_3_4)) |
|
{ |
|
const int numIters = 10; |
|
|
|
const string inputFile = perf::TestBase::getDataPath(GET_PARAM(0)); |
|
const int cn = GET_PARAM(1); |
|
|
|
cv::VideoCapture cap(inputFile); |
|
ASSERT_TRUE(cap.isOpened()); |
|
|
|
cv::Mat frame; |
|
|
|
cap >> frame; |
|
ASSERT_FALSE(frame.empty()); |
|
|
|
if (cn != 3) |
|
{ |
|
cv::Mat temp; |
|
if (cn == 1) |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); |
|
else |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); |
|
cv::swap(temp, frame); |
|
} |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
cv::gpu::MOG2_GPU d_mog2; |
|
d_mog2.bShadowDetection = false; |
|
|
|
cv::gpu::GpuMat d_frame(frame); |
|
cv::gpu::GpuMat foreground; |
|
|
|
d_mog2(d_frame, foreground); |
|
|
|
int i = 0; |
|
|
|
// collect performance data |
|
for (; i < numIters; ++i) |
|
{ |
|
cap >> frame; |
|
ASSERT_FALSE(frame.empty()); |
|
|
|
if (cn != 3) |
|
{ |
|
cv::Mat temp; |
|
if (cn == 1) |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); |
|
else |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); |
|
cv::swap(temp, frame); |
|
} |
|
|
|
d_frame.upload(frame); |
|
|
|
startTimer(); |
|
if(!next()) |
|
break; |
|
|
|
d_mog2(d_frame, foreground); |
|
|
|
stopTimer(); |
|
} |
|
|
|
// process last frame in sequence to get data for sanity test |
|
for (; i < numIters; ++i) |
|
{ |
|
cap >> frame; |
|
ASSERT_FALSE(frame.empty()); |
|
|
|
if (cn != 3) |
|
{ |
|
cv::Mat temp; |
|
if (cn == 1) |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); |
|
else |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); |
|
cv::swap(temp, frame); |
|
} |
|
|
|
d_frame.upload(frame); |
|
|
|
d_mog2(d_frame, foreground); |
|
} |
|
|
|
GPU_SANITY_CHECK(foreground); |
|
} |
|
else |
|
{ |
|
cv::BackgroundSubtractorMOG2 mog2; |
|
mog2.set("detectShadows", false); |
|
|
|
cv::Mat foreground; |
|
|
|
mog2(frame, foreground); |
|
|
|
int i = 0; |
|
|
|
// collect performance data |
|
for (; i < numIters; ++i) |
|
{ |
|
cap >> frame; |
|
ASSERT_FALSE(frame.empty()); |
|
|
|
if (cn != 3) |
|
{ |
|
cv::Mat temp; |
|
if (cn == 1) |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); |
|
else |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); |
|
cv::swap(temp, frame); |
|
} |
|
|
|
startTimer(); |
|
if(!next()) |
|
break; |
|
|
|
mog2(frame, foreground); |
|
|
|
stopTimer(); |
|
} |
|
|
|
// process last frame in sequence to get data for sanity test |
|
for (; i < numIters; ++i) |
|
{ |
|
cap >> frame; |
|
ASSERT_FALSE(frame.empty()); |
|
|
|
if (cn != 3) |
|
{ |
|
cv::Mat temp; |
|
if (cn == 1) |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); |
|
else |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); |
|
cv::swap(temp, frame); |
|
} |
|
|
|
mog2(frame, foreground); |
|
} |
|
|
|
CPU_SANITY_CHECK(foreground); |
|
} |
|
} |
|
|
|
#endif |
|
|
|
////////////////////////////////////////////////////// |
|
// MOG2GetBackgroundImage |
|
|
|
#if BUILD_WITH_VIDEO_INPUT_SUPPORT |
|
|
|
PERF_TEST_P(Video_Cn, Video_MOG2GetBackgroundImage, |
|
Combine(Values("gpu/video/768x576.avi", "gpu/video/1920x1080.avi"), |
|
GPU_CHANNELS_1_3_4)) |
|
{ |
|
const string inputFile = perf::TestBase::getDataPath(GET_PARAM(0)); |
|
const int cn = GET_PARAM(1); |
|
|
|
cv::VideoCapture cap(inputFile); |
|
ASSERT_TRUE(cap.isOpened()); |
|
|
|
cv::Mat frame; |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
cv::gpu::GpuMat d_frame; |
|
cv::gpu::MOG2_GPU d_mog2; |
|
cv::gpu::GpuMat d_foreground; |
|
|
|
for (int i = 0; i < 10; ++i) |
|
{ |
|
cap >> frame; |
|
ASSERT_FALSE(frame.empty()); |
|
|
|
if (cn != 3) |
|
{ |
|
cv::Mat temp; |
|
if (cn == 1) |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); |
|
else |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); |
|
cv::swap(temp, frame); |
|
} |
|
|
|
d_frame.upload(frame); |
|
|
|
d_mog2(d_frame, d_foreground); |
|
} |
|
|
|
cv::gpu::GpuMat background; |
|
|
|
TEST_CYCLE() d_mog2.getBackgroundImage(background); |
|
|
|
GPU_SANITY_CHECK(background, 1); |
|
} |
|
else |
|
{ |
|
cv::BackgroundSubtractorMOG2 mog2; |
|
cv::Mat foreground; |
|
|
|
for (int i = 0; i < 10; ++i) |
|
{ |
|
cap >> frame; |
|
ASSERT_FALSE(frame.empty()); |
|
|
|
if (cn != 3) |
|
{ |
|
cv::Mat temp; |
|
if (cn == 1) |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); |
|
else |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); |
|
cv::swap(temp, frame); |
|
} |
|
|
|
mog2(frame, foreground); |
|
} |
|
|
|
cv::Mat background; |
|
|
|
TEST_CYCLE() mog2.getBackgroundImage(background); |
|
|
|
CPU_SANITY_CHECK(background); |
|
} |
|
} |
|
|
|
#endif |
|
|
|
////////////////////////////////////////////////////// |
|
// GMG |
|
|
|
#if BUILD_WITH_VIDEO_INPUT_SUPPORT |
|
|
|
DEF_PARAM_TEST(Video_Cn_MaxFeatures, string, MatCn, int); |
|
|
|
PERF_TEST_P(Video_Cn_MaxFeatures, Video_GMG, |
|
Combine(Values(string("gpu/video/768x576.avi")), |
|
GPU_CHANNELS_1_3_4, |
|
Values(20, 40, 60))) |
|
{ |
|
const int numIters = 150; |
|
|
|
const std::string inputFile = perf::TestBase::getDataPath(GET_PARAM(0)); |
|
const int cn = GET_PARAM(1); |
|
const int maxFeatures = GET_PARAM(2); |
|
|
|
cv::VideoCapture cap(inputFile); |
|
ASSERT_TRUE(cap.isOpened()); |
|
|
|
cv::Mat frame; |
|
cap >> frame; |
|
ASSERT_FALSE(frame.empty()); |
|
|
|
if (cn != 3) |
|
{ |
|
cv::Mat temp; |
|
if (cn == 1) |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); |
|
else |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); |
|
cv::swap(temp, frame); |
|
} |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
cv::gpu::GpuMat d_frame(frame); |
|
cv::gpu::GpuMat foreground; |
|
|
|
cv::gpu::GMG_GPU d_gmg; |
|
d_gmg.maxFeatures = maxFeatures; |
|
|
|
d_gmg(d_frame, foreground); |
|
|
|
int i = 0; |
|
|
|
// collect performance data |
|
for (; i < numIters; ++i) |
|
{ |
|
cap >> frame; |
|
if (frame.empty()) |
|
{ |
|
cap.release(); |
|
cap.open(inputFile); |
|
cap >> frame; |
|
} |
|
|
|
if (cn != 3) |
|
{ |
|
cv::Mat temp; |
|
if (cn == 1) |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); |
|
else |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); |
|
cv::swap(temp, frame); |
|
} |
|
|
|
d_frame.upload(frame); |
|
|
|
startTimer(); |
|
if(!next()) |
|
break; |
|
|
|
d_gmg(d_frame, foreground); |
|
|
|
stopTimer(); |
|
} |
|
|
|
// process last frame in sequence to get data for sanity test |
|
for (; i < numIters; ++i) |
|
{ |
|
cap >> frame; |
|
if (frame.empty()) |
|
{ |
|
cap.release(); |
|
cap.open(inputFile); |
|
cap >> frame; |
|
} |
|
|
|
if (cn != 3) |
|
{ |
|
cv::Mat temp; |
|
if (cn == 1) |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); |
|
else |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); |
|
cv::swap(temp, frame); |
|
} |
|
|
|
d_frame.upload(frame); |
|
|
|
d_gmg(d_frame, foreground); |
|
} |
|
|
|
GPU_SANITY_CHECK(foreground); |
|
} |
|
else |
|
{ |
|
cv::Mat foreground; |
|
cv::Mat zeros(frame.size(), CV_8UC1, cv::Scalar::all(0)); |
|
|
|
cv::BackgroundSubtractorGMG gmg; |
|
gmg.set("maxFeatures", maxFeatures); |
|
gmg.initialize(frame.size(), 0.0, 255.0); |
|
|
|
gmg(frame, foreground); |
|
|
|
int i = 0; |
|
|
|
// collect performance data |
|
for (; i < numIters; ++i) |
|
{ |
|
cap >> frame; |
|
if (frame.empty()) |
|
{ |
|
cap.release(); |
|
cap.open(inputFile); |
|
cap >> frame; |
|
} |
|
|
|
if (cn != 3) |
|
{ |
|
cv::Mat temp; |
|
if (cn == 1) |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); |
|
else |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); |
|
cv::swap(temp, frame); |
|
} |
|
|
|
startTimer(); |
|
if(!next()) |
|
break; |
|
|
|
gmg(frame, foreground); |
|
|
|
stopTimer(); |
|
} |
|
|
|
// process last frame in sequence to get data for sanity test |
|
for (; i < numIters; ++i) |
|
{ |
|
cap >> frame; |
|
if (frame.empty()) |
|
{ |
|
cap.release(); |
|
cap.open(inputFile); |
|
cap >> frame; |
|
} |
|
|
|
if (cn != 3) |
|
{ |
|
cv::Mat temp; |
|
if (cn == 1) |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); |
|
else |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); |
|
cv::swap(temp, frame); |
|
} |
|
|
|
gmg(frame, foreground); |
|
} |
|
|
|
CPU_SANITY_CHECK(foreground); |
|
} |
|
} |
|
|
|
#endif |
|
|
|
////////////////////////////////////////////////////// |
|
// VideoReader |
|
|
|
#if defined(HAVE_NVCUVID) && BUILD_WITH_VIDEO_INPUT_SUPPORT |
|
|
|
PERF_TEST_P(Video, DISABLED_Video_VideoReader, Values("gpu/video/768x576.avi", "gpu/video/1920x1080.avi")) |
|
{ |
|
declare.time(20); |
|
|
|
const string inputFile = perf::TestBase::getDataPath(GetParam()); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
cv::gpu::VideoReader_GPU d_reader(inputFile); |
|
ASSERT_TRUE( d_reader.isOpened() ); |
|
|
|
cv::gpu::GpuMat frame; |
|
|
|
TEST_CYCLE_N(10) d_reader.read(frame); |
|
|
|
GPU_SANITY_CHECK(frame); |
|
} |
|
else |
|
{ |
|
cv::VideoCapture reader(inputFile); |
|
ASSERT_TRUE( reader.isOpened() ); |
|
|
|
cv::Mat frame; |
|
|
|
TEST_CYCLE_N(10) reader >> frame; |
|
|
|
CPU_SANITY_CHECK(frame); |
|
} |
|
} |
|
|
|
#endif |
|
|
|
////////////////////////////////////////////////////// |
|
// VideoWriter |
|
|
|
#if defined(HAVE_NVCUVID) && defined(WIN32) |
|
|
|
PERF_TEST_P(Video, DISABLED_Video_VideoWriter, Values("gpu/video/768x576.avi", "gpu/video/1920x1080.avi")) |
|
{ |
|
declare.time(30); |
|
|
|
const string inputFile = perf::TestBase::getDataPath(GetParam()); |
|
const string outputFile = cv::tempfile(".avi"); |
|
|
|
const double FPS = 25.0; |
|
|
|
cv::VideoCapture reader(inputFile); |
|
ASSERT_TRUE( reader.isOpened() ); |
|
|
|
cv::Mat frame; |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
cv::gpu::VideoWriter_GPU d_writer; |
|
|
|
cv::gpu::GpuMat d_frame; |
|
|
|
for (int i = 0; i < 10; ++i) |
|
{ |
|
reader >> frame; |
|
ASSERT_FALSE(frame.empty()); |
|
|
|
d_frame.upload(frame); |
|
|
|
if (!d_writer.isOpened()) |
|
d_writer.open(outputFile, frame.size(), FPS); |
|
|
|
startTimer(); next(); |
|
d_writer.write(d_frame); |
|
stopTimer(); |
|
} |
|
} |
|
else |
|
{ |
|
cv::VideoWriter writer; |
|
|
|
for (int i = 0; i < 10; ++i) |
|
{ |
|
reader >> frame; |
|
ASSERT_FALSE(frame.empty()); |
|
|
|
if (!writer.isOpened()) |
|
writer.open(outputFile, CV_FOURCC('X', 'V', 'I', 'D'), FPS, frame.size()); |
|
|
|
startTimer(); next(); |
|
writer.write(frame); |
|
stopTimer(); |
|
} |
|
} |
|
|
|
SANITY_CHECK(frame); |
|
} |
|
|
|
#endif
|
|
|