Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

295 lines
8.9 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "opencv2/photo.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>
namespace cv
{
static void triangleWeights(float weights[])
{
for(int i = 0; i < 128; i++) {
weights[i] = i + 1.0f;
}
for(int i = 128; i < 256; i++) {
weights[i] = 256.0f - i;
}
}
static Mat linearResponse()
{
Mat response(256, 1, CV_32F);
for(int i = 1; i < 256; i++) {
response.at<float>(i) = logf((float)i);
}
response.at<float>(0) = response.at<float>(1);
return response;
}
static void modifyCheckResponse(Mat &response)
{
if(response.empty()) {
response = linearResponse();
}
CV_Assert(response.rows == 256 && (response.cols == 1 || response.cols == 3));
response.convertTo(response, CV_32F);
if(response.cols == 1) {
Mat result(256, 3, CV_32F);
for(int i = 0; i < 3; i++) {
response.copyTo(result.col(i));
}
response = result;
}
}
static void checkImages(const std::vector<Mat>& images, bool hdr, const std::vector<float>& _exp_times = std::vector<float>())
{
CV_Assert(!images.empty());
CV_Assert(!hdr || images.size() == _exp_times.size());
int width = images[0].cols;
int height = images[0].rows;
int channels = images[0].channels();
for(size_t i = 0; i < images.size(); i++) {
CV_Assert(images[i].cols == width && images[i].rows == height);
CV_Assert(images[i].channels() == channels && images[i].depth() == CV_8U);
}
}
void alignImages(InputArrayOfArrays _src, std::vector<Mat>& dst)
{
std::vector<Mat> src;
_src.getMatVector(src);
checkImages(src, false);
dst.resize(src.size());
size_t pivot = src.size() / 2;
dst[pivot] = src[pivot];
Mat gray_base;
cvtColor(src[pivot], gray_base, COLOR_RGB2GRAY);
for(size_t i = 0; i < src.size(); i++) {
if(i == pivot) {
continue;
}
Mat gray;
cvtColor(src[i], gray, COLOR_RGB2GRAY);
Point shift = getExpShift(gray_base, gray);
shiftMat(src[i], shift, dst[i]);
}
}
void makeHDR(InputArrayOfArrays _images, const std::vector<float>& _exp_times, OutputArray _dst, Mat response)
{
std::vector<Mat> images;
_images.getMatVector(images);
checkImages(images, true, _exp_times);
modifyCheckResponse(response);
_dst.create(images[0].size(), CV_MAKETYPE(CV_32F, images[0].channels()));
Mat result = _dst.getMat();
std::vector<float> exp_times(_exp_times.size());
for(size_t i = 0; i < exp_times.size(); i++) {
exp_times[i] = logf(_exp_times[i]);
}
float weights[256];
triangleWeights(weights);
int channels = images[0].channels();
float *res_ptr = result.ptr<float>();
for(size_t pos = 0; pos < result.total(); pos++, res_ptr += channels) {
std::vector<float> sum(channels, 0);
float weight_sum = 0;
for(size_t im = 0; im < images.size(); im++) {
uchar *img_ptr = images[im].ptr() + channels * pos;
float w = 0;
for(int channel = 0; channel < channels; channel++) {
w += weights[img_ptr[channel]];
}
w /= channels;
weight_sum += w;
for(int channel = 0; channel < channels; channel++) {
sum[channel] += w * (response.at<float>(img_ptr[channel], channel) - exp_times[im]);
}
}
for(int channel = 0; channel < channels; channel++) {
res_ptr[channel] = exp(sum[channel] / weight_sum);
}
}
tonemap(result, result, 0);
}
void exposureFusion(InputArrayOfArrays _images, OutputArray _dst, float wc, float ws, float we)
{
std::vector<Mat> images;
_images.getMatVector(images);
checkImages(images, false);
std::vector<Mat> weights(images.size());
Mat weight_sum = Mat::zeros(images[0].size(), CV_32FC1);
for(size_t im = 0; im < images.size(); im++) {
Mat img, gray, contrast, saturation, wellexp;
std::vector<Mat> channels(3);
images[im].convertTo(img, CV_32FC3, 1.0/255.0);
cvtColor(img, gray, COLOR_RGB2GRAY);
split(img, channels);
Laplacian(gray, contrast, CV_32F);
contrast = abs(contrast);
Mat mean = (channels[0] + channels[1] + channels[2]) / 3.0f;
saturation = Mat::zeros(channels[0].size(), CV_32FC1);
for(int i = 0; i < 3; i++) {
Mat deviation = channels[i] - mean;
pow(deviation, 2.0, deviation);
saturation += deviation;
}
sqrt(saturation, saturation);
wellexp = Mat::ones(gray.size(), CV_32FC1);
for(int i = 0; i < 3; i++) {
Mat exp = channels[i] - 0.5f;
pow(exp, 2, exp);
exp = -exp / 0.08;
wellexp = wellexp.mul(exp);
}
pow(contrast, wc, contrast);
pow(saturation, ws, saturation);
pow(wellexp, we, wellexp);
weights[im] = contrast;
weights[im] = weights[im].mul(saturation);
weights[im] = weights[im].mul(wellexp);
weight_sum += weights[im];
}
int maxlevel = static_cast<int>(logf(static_cast<float>(max(images[0].rows, images[0].cols))) / logf(2.0)) - 1;
std::vector<Mat> res_pyr(maxlevel + 1);
for(size_t im = 0; im < images.size(); im++) {
weights[im] /= weight_sum;
Mat img;
images[im].convertTo(img, CV_32FC3, 1/255.0);
std::vector<Mat> img_pyr, weight_pyr;
buildPyramid(img, img_pyr, maxlevel);
buildPyramid(weights[im], weight_pyr, maxlevel);
for(int lvl = 0; lvl < maxlevel; lvl++) {
Mat up;
pyrUp(img_pyr[lvl + 1], up, img_pyr[lvl].size());
img_pyr[lvl] -= up;
}
for(int lvl = 0; lvl <= maxlevel; lvl++) {
std::vector<Mat> channels(3);
split(img_pyr[lvl], channels);
for(int i = 0; i < 3; i++) {
channels[i] = channels[i].mul(weight_pyr[lvl]);
}
merge(channels, img_pyr[lvl]);
if(res_pyr[lvl].empty()) {
res_pyr[lvl] = img_pyr[lvl];
} else {
res_pyr[lvl] += img_pyr[lvl];
}
}
}
for(int lvl = maxlevel; lvl > 0; lvl--) {
Mat up;
pyrUp(res_pyr[lvl], up, res_pyr[lvl - 1].size());
res_pyr[lvl - 1] += up;
}
_dst.create(images[0].size(), CV_32FC3);
Mat result = _dst.getMat();
res_pyr[0].copyTo(result);
}
void estimateResponse(InputArrayOfArrays _images, const std::vector<float>& exp_times, OutputArray _dst, int samples, float lambda)
{
std::vector<Mat> images;
_images.getMatVector(images);
checkImages(images, true, exp_times);
_dst.create(256, images[0].channels(), CV_32F);
Mat response = _dst.getMat();
float w[256];
triangleWeights(w);
for(int channel = 0; channel < images[0].channels(); channel++) {
Mat A = Mat::zeros(samples * images.size() + 257, 256 + samples, CV_32F);
Mat B = Mat::zeros(A.rows, 1, CV_32F);
int eq = 0;
for(int i = 0; i < samples; i++) {
int pos = 3 * (rand() % images[0].total()) + channel;
for(size_t j = 0; j < images.size(); j++) {
int val = (images[j].ptr() + pos)[0];
A.at<float>(eq, val) = w[val];
A.at<float>(eq, 256 + i) = -w[val];
B.at<float>(eq, 0) = w[val] * log(exp_times[j]);
eq++;
}
}
A.at<float>(eq, 128) = 1;
eq++;
for(int i = 0; i < 254; i++) {
A.at<float>(eq, i) = lambda * w[i + 1];
A.at<float>(eq, i + 1) = -2 * lambda * w[i + 1];
A.at<float>(eq, i + 2) = lambda * w[i + 1];
eq++;
}
Mat solution;
solve(A, B, solution, DECOMP_SVD);
solution.rowRange(0, 256).copyTo(response.col(channel));
}
}
};