mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
939 lines
45 KiB
939 lines
45 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifndef OPENCV_OBJDETECT_HPP |
|
#define OPENCV_OBJDETECT_HPP |
|
|
|
#include "opencv2/core.hpp" |
|
#include "opencv2/objdetect/aruco_detector.hpp" |
|
|
|
/** |
|
@defgroup objdetect Object Detection |
|
|
|
@{ |
|
@defgroup objdetect_cascade_classifier Cascade Classifier for Object Detection |
|
|
|
The object detector described below has been initially proposed by Paul Viola @cite Viola01 and |
|
improved by Rainer Lienhart @cite Lienhart02 . |
|
|
|
First, a classifier (namely a *cascade of boosted classifiers working with haar-like features*) is |
|
trained with a few hundred sample views of a particular object (i.e., a face or a car), called |
|
positive examples, that are scaled to the same size (say, 20x20), and negative examples - arbitrary |
|
images of the same size. |
|
|
|
After a classifier is trained, it can be applied to a region of interest (of the same size as used |
|
during the training) in an input image. The classifier outputs a "1" if the region is likely to show |
|
the object (i.e., face/car), and "0" otherwise. To search for the object in the whole image one can |
|
move the search window across the image and check every location using the classifier. The |
|
classifier is designed so that it can be easily "resized" in order to be able to find the objects of |
|
interest at different sizes, which is more efficient than resizing the image itself. So, to find an |
|
object of an unknown size in the image the scan procedure should be done several times at different |
|
scales. |
|
|
|
The word "cascade" in the classifier name means that the resultant classifier consists of several |
|
simpler classifiers (*stages*) that are applied subsequently to a region of interest until at some |
|
stage the candidate is rejected or all the stages are passed. The word "boosted" means that the |
|
classifiers at every stage of the cascade are complex themselves and they are built out of basic |
|
classifiers using one of four different boosting techniques (weighted voting). Currently Discrete |
|
Adaboost, Real Adaboost, Gentle Adaboost and Logitboost are supported. The basic classifiers are |
|
decision-tree classifiers with at least 2 leaves. Haar-like features are the input to the basic |
|
classifiers, and are calculated as described below. The current algorithm uses the following |
|
Haar-like features: |
|
|
|
![image](pics/haarfeatures.png) |
|
|
|
The feature used in a particular classifier is specified by its shape (1a, 2b etc.), position within |
|
the region of interest and the scale (this scale is not the same as the scale used at the detection |
|
stage, though these two scales are multiplied). For example, in the case of the third line feature |
|
(2c) the response is calculated as the difference between the sum of image pixels under the |
|
rectangle covering the whole feature (including the two white stripes and the black stripe in the |
|
middle) and the sum of the image pixels under the black stripe multiplied by 3 in order to |
|
compensate for the differences in the size of areas. The sums of pixel values over a rectangular |
|
regions are calculated rapidly using integral images (see below and the integral description). |
|
|
|
Check @ref tutorial_cascade_classifier "the corresponding tutorial" for more details. |
|
|
|
The following reference is for the detection part only. There is a separate application called |
|
opencv_traincascade that can train a cascade of boosted classifiers from a set of samples. |
|
|
|
@note In the new C++ interface it is also possible to use LBP (local binary pattern) features in |
|
addition to Haar-like features. .. [Viola01] Paul Viola and Michael J. Jones. Rapid Object Detection |
|
using a Boosted Cascade of Simple Features. IEEE CVPR, 2001. The paper is available online at |
|
<https://github.com/SvHey/thesis/blob/master/Literature/ObjectDetection/violaJones_CVPR2001.pdf> |
|
|
|
@defgroup objdetect_hog HOG (Histogram of Oriented Gradients) descriptor and object detector |
|
@defgroup objdetect_qrcode QRCode detection and encoding |
|
@defgroup objdetect_dnn_face DNN-based face detection and recognition |
|
Check @ref tutorial_dnn_face "the corresponding tutorial" for more details. |
|
@defgroup objdetect_common Common functions and classes |
|
@defgroup objdetect_aruco ArUco markers and boards detection for robust camera pose estimation |
|
@{ |
|
ArUco Marker Detection |
|
Square fiducial markers (also known as Augmented Reality Markers) are useful for easy, |
|
fast and robust camera pose estimation. |
|
|
|
The main functionality of ArucoDetector class is detection of markers in an image. If the markers are grouped |
|
as a board, then you can try to recover the missing markers with ArucoDetector::refineDetectedMarkers(). |
|
ArUco markers can also be used for advanced chessboard corner finding. To do this, group the markers in the |
|
CharucoBoard and find the corners of the chessboard with the CharucoDetector::detectBoard(). |
|
|
|
The implementation is based on the ArUco Library by R. Muñoz-Salinas and S. Garrido-Jurado @cite Aruco2014. |
|
|
|
Markers can also be detected based on the AprilTag 2 @cite wang2016iros fiducial detection method. |
|
|
|
@sa @cite Aruco2014 |
|
This code has been originally developed by Sergio Garrido-Jurado as a project |
|
for Google Summer of Code 2015 (GSoC 15). |
|
@} |
|
|
|
@} |
|
*/ |
|
|
|
typedef struct CvHaarClassifierCascade CvHaarClassifierCascade; |
|
|
|
namespace cv |
|
{ |
|
|
|
//! @addtogroup objdetect_common |
|
//! @{ |
|
|
|
///////////////////////////// Object Detection //////////////////////////// |
|
|
|
/** @brief This class is used for grouping object candidates detected by Cascade Classifier, HOG etc. |
|
|
|
instance of the class is to be passed to cv::partition |
|
*/ |
|
class CV_EXPORTS SimilarRects |
|
{ |
|
public: |
|
SimilarRects(double _eps) : eps(_eps) {} |
|
inline bool operator()(const Rect& r1, const Rect& r2) const |
|
{ |
|
double delta = eps * ((std::min)(r1.width, r2.width) + (std::min)(r1.height, r2.height)) * 0.5; |
|
return std::abs(r1.x - r2.x) <= delta && |
|
std::abs(r1.y - r2.y) <= delta && |
|
std::abs(r1.x + r1.width - r2.x - r2.width) <= delta && |
|
std::abs(r1.y + r1.height - r2.y - r2.height) <= delta; |
|
} |
|
double eps; |
|
}; |
|
|
|
/** @brief Groups the object candidate rectangles. |
|
|
|
@param rectList Input/output vector of rectangles. Output vector includes retained and grouped |
|
rectangles. (The Python list is not modified in place.) |
|
@param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a |
|
group of rectangles to retain it. |
|
@param eps Relative difference between sides of the rectangles to merge them into a group. |
|
|
|
The function is a wrapper for the generic function partition . It clusters all the input rectangles |
|
using the rectangle equivalence criteria that combines rectangles with similar sizes and similar |
|
locations. The similarity is defined by eps. When eps=0 , no clustering is done at all. If |
|
\f$\texttt{eps}\rightarrow +\inf\f$ , all the rectangles are put in one cluster. Then, the small |
|
clusters containing less than or equal to groupThreshold rectangles are rejected. In each other |
|
cluster, the average rectangle is computed and put into the output rectangle list. |
|
*/ |
|
CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, double eps = 0.2); |
|
/** @overload */ |
|
CV_EXPORTS_W void groupRectangles(CV_IN_OUT std::vector<Rect>& rectList, CV_OUT std::vector<int>& weights, |
|
int groupThreshold, double eps = 0.2); |
|
/** @overload */ |
|
CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, |
|
double eps, std::vector<int>* weights, std::vector<double>* levelWeights ); |
|
/** @overload */ |
|
CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, std::vector<int>& rejectLevels, |
|
std::vector<double>& levelWeights, int groupThreshold, double eps = 0.2); |
|
/** @overload */ |
|
CV_EXPORTS void groupRectangles_meanshift(std::vector<Rect>& rectList, std::vector<double>& foundWeights, |
|
std::vector<double>& foundScales, |
|
double detectThreshold = 0.0, Size winDetSize = Size(64, 128)); |
|
//! @} |
|
|
|
//! @addtogroup objdetect_cascade_classifier |
|
//! @{ |
|
|
|
template<> struct DefaultDeleter<CvHaarClassifierCascade>{ CV_EXPORTS void operator ()(CvHaarClassifierCascade* obj) const; }; |
|
|
|
enum { CASCADE_DO_CANNY_PRUNING = 1, |
|
CASCADE_SCALE_IMAGE = 2, |
|
CASCADE_FIND_BIGGEST_OBJECT = 4, |
|
CASCADE_DO_ROUGH_SEARCH = 8 |
|
}; |
|
|
|
class CV_EXPORTS_W BaseCascadeClassifier : public Algorithm |
|
{ |
|
public: |
|
virtual ~BaseCascadeClassifier(); |
|
virtual bool empty() const CV_OVERRIDE = 0; |
|
virtual bool load( const String& filename ) = 0; |
|
virtual void detectMultiScale( InputArray image, |
|
CV_OUT std::vector<Rect>& objects, |
|
double scaleFactor, |
|
int minNeighbors, int flags, |
|
Size minSize, Size maxSize ) = 0; |
|
|
|
virtual void detectMultiScale( InputArray image, |
|
CV_OUT std::vector<Rect>& objects, |
|
CV_OUT std::vector<int>& numDetections, |
|
double scaleFactor, |
|
int minNeighbors, int flags, |
|
Size minSize, Size maxSize ) = 0; |
|
|
|
virtual void detectMultiScale( InputArray image, |
|
CV_OUT std::vector<Rect>& objects, |
|
CV_OUT std::vector<int>& rejectLevels, |
|
CV_OUT std::vector<double>& levelWeights, |
|
double scaleFactor, |
|
int minNeighbors, int flags, |
|
Size minSize, Size maxSize, |
|
bool outputRejectLevels ) = 0; |
|
|
|
virtual bool isOldFormatCascade() const = 0; |
|
virtual Size getOriginalWindowSize() const = 0; |
|
virtual int getFeatureType() const = 0; |
|
virtual void* getOldCascade() = 0; |
|
|
|
class CV_EXPORTS MaskGenerator |
|
{ |
|
public: |
|
virtual ~MaskGenerator() {} |
|
virtual Mat generateMask(const Mat& src)=0; |
|
virtual void initializeMask(const Mat& /*src*/) { } |
|
}; |
|
virtual void setMaskGenerator(const Ptr<MaskGenerator>& maskGenerator) = 0; |
|
virtual Ptr<MaskGenerator> getMaskGenerator() = 0; |
|
}; |
|
|
|
/** @example samples/cpp/facedetect.cpp |
|
This program demonstrates usage of the Cascade classifier class |
|
\image html Cascade_Classifier_Tutorial_Result_Haar.jpg "Sample screenshot" width=321 height=254 |
|
*/ |
|
/** @brief Cascade classifier class for object detection. |
|
*/ |
|
class CV_EXPORTS_W CascadeClassifier |
|
{ |
|
public: |
|
CV_WRAP CascadeClassifier(); |
|
/** @brief Loads a classifier from a file. |
|
|
|
@param filename Name of the file from which the classifier is loaded. |
|
*/ |
|
CV_WRAP CascadeClassifier(const String& filename); |
|
~CascadeClassifier(); |
|
/** @brief Checks whether the classifier has been loaded. |
|
*/ |
|
CV_WRAP bool empty() const; |
|
/** @brief Loads a classifier from a file. |
|
|
|
@param filename Name of the file from which the classifier is loaded. The file may contain an old |
|
HAAR classifier trained by the haartraining application or a new cascade classifier trained by the |
|
traincascade application. |
|
*/ |
|
CV_WRAP bool load( const String& filename ); |
|
/** @brief Reads a classifier from a FileStorage node. |
|
|
|
@note The file may contain a new cascade classifier (trained by the traincascade application) only. |
|
*/ |
|
CV_WRAP bool read( const FileNode& node ); |
|
|
|
/** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list |
|
of rectangles. |
|
|
|
@param image Matrix of the type CV_8U containing an image where objects are detected. |
|
@param objects Vector of rectangles where each rectangle contains the detected object, the |
|
rectangles may be partially outside the original image. |
|
@param scaleFactor Parameter specifying how much the image size is reduced at each image scale. |
|
@param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have |
|
to retain it. |
|
@param flags Parameter with the same meaning for an old cascade as in the function |
|
cvHaarDetectObjects. It is not used for a new cascade. |
|
@param minSize Minimum possible object size. Objects smaller than that are ignored. |
|
@param maxSize Maximum possible object size. Objects larger than that are ignored. If `maxSize == minSize` model is evaluated on single scale. |
|
*/ |
|
CV_WRAP void detectMultiScale( InputArray image, |
|
CV_OUT std::vector<Rect>& objects, |
|
double scaleFactor = 1.1, |
|
int minNeighbors = 3, int flags = 0, |
|
Size minSize = Size(), |
|
Size maxSize = Size() ); |
|
|
|
/** @overload |
|
@param image Matrix of the type CV_8U containing an image where objects are detected. |
|
@param objects Vector of rectangles where each rectangle contains the detected object, the |
|
rectangles may be partially outside the original image. |
|
@param numDetections Vector of detection numbers for the corresponding objects. An object's number |
|
of detections is the number of neighboring positively classified rectangles that were joined |
|
together to form the object. |
|
@param scaleFactor Parameter specifying how much the image size is reduced at each image scale. |
|
@param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have |
|
to retain it. |
|
@param flags Parameter with the same meaning for an old cascade as in the function |
|
cvHaarDetectObjects. It is not used for a new cascade. |
|
@param minSize Minimum possible object size. Objects smaller than that are ignored. |
|
@param maxSize Maximum possible object size. Objects larger than that are ignored. If `maxSize == minSize` model is evaluated on single scale. |
|
*/ |
|
CV_WRAP_AS(detectMultiScale2) void detectMultiScale( InputArray image, |
|
CV_OUT std::vector<Rect>& objects, |
|
CV_OUT std::vector<int>& numDetections, |
|
double scaleFactor=1.1, |
|
int minNeighbors=3, int flags=0, |
|
Size minSize=Size(), |
|
Size maxSize=Size() ); |
|
|
|
/** @overload |
|
This function allows you to retrieve the final stage decision certainty of classification. |
|
For this, one needs to set `outputRejectLevels` on true and provide the `rejectLevels` and `levelWeights` parameter. |
|
For each resulting detection, `levelWeights` will then contain the certainty of classification at the final stage. |
|
This value can then be used to separate strong from weaker classifications. |
|
|
|
A code sample on how to use it efficiently can be found below: |
|
@code |
|
Mat img; |
|
vector<double> weights; |
|
vector<int> levels; |
|
vector<Rect> detections; |
|
CascadeClassifier model("/path/to/your/model.xml"); |
|
model.detectMultiScale(img, detections, levels, weights, 1.1, 3, 0, Size(), Size(), true); |
|
cerr << "Detection " << detections[0] << " with weight " << weights[0] << endl; |
|
@endcode |
|
*/ |
|
CV_WRAP_AS(detectMultiScale3) void detectMultiScale( InputArray image, |
|
CV_OUT std::vector<Rect>& objects, |
|
CV_OUT std::vector<int>& rejectLevels, |
|
CV_OUT std::vector<double>& levelWeights, |
|
double scaleFactor = 1.1, |
|
int minNeighbors = 3, int flags = 0, |
|
Size minSize = Size(), |
|
Size maxSize = Size(), |
|
bool outputRejectLevels = false ); |
|
|
|
CV_WRAP bool isOldFormatCascade() const; |
|
CV_WRAP Size getOriginalWindowSize() const; |
|
CV_WRAP int getFeatureType() const; |
|
void* getOldCascade(); |
|
|
|
CV_WRAP static bool convert(const String& oldcascade, const String& newcascade); |
|
|
|
void setMaskGenerator(const Ptr<BaseCascadeClassifier::MaskGenerator>& maskGenerator); |
|
Ptr<BaseCascadeClassifier::MaskGenerator> getMaskGenerator(); |
|
|
|
Ptr<BaseCascadeClassifier> cc; |
|
}; |
|
|
|
CV_EXPORTS Ptr<BaseCascadeClassifier::MaskGenerator> createFaceDetectionMaskGenerator(); |
|
//! @} |
|
|
|
//! @addtogroup objdetect_hog |
|
//! @{ |
|
//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector ////////////// |
|
|
|
//! struct for detection region of interest (ROI) |
|
struct DetectionROI |
|
{ |
|
//! scale(size) of the bounding box |
|
double scale; |
|
//! set of requested locations to be evaluated |
|
std::vector<cv::Point> locations; |
|
//! vector that will contain confidence values for each location |
|
std::vector<double> confidences; |
|
}; |
|
|
|
/**@brief Implementation of HOG (Histogram of Oriented Gradients) descriptor and object detector. |
|
|
|
the HOG descriptor algorithm introduced by Navneet Dalal and Bill Triggs @cite Dalal2005 . |
|
|
|
useful links: |
|
|
|
https://hal.inria.fr/inria-00548512/document/ |
|
|
|
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients |
|
|
|
https://software.intel.com/en-us/ipp-dev-reference-histogram-of-oriented-gradients-hog-descriptor |
|
|
|
http://www.learnopencv.com/histogram-of-oriented-gradients |
|
|
|
http://www.learnopencv.com/handwritten-digits-classification-an-opencv-c-python-tutorial |
|
|
|
*/ |
|
struct CV_EXPORTS_W HOGDescriptor |
|
{ |
|
public: |
|
enum HistogramNormType { L2Hys = 0 //!< Default histogramNormType |
|
}; |
|
enum { DEFAULT_NLEVELS = 64 //!< Default nlevels value. |
|
}; |
|
enum DescriptorStorageFormat { DESCR_FORMAT_COL_BY_COL, DESCR_FORMAT_ROW_BY_ROW }; |
|
|
|
/**@brief Creates the HOG descriptor and detector with default parameters. |
|
|
|
aqual to HOGDescriptor(Size(64,128), Size(16,16), Size(8,8), Size(8,8), 9 ) |
|
*/ |
|
CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8), |
|
cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1), |
|
histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true), |
|
free_coef(-1.f), nlevels(HOGDescriptor::DEFAULT_NLEVELS), signedGradient(false) |
|
{} |
|
|
|
/** @overload |
|
@param _winSize sets winSize with given value. |
|
@param _blockSize sets blockSize with given value. |
|
@param _blockStride sets blockStride with given value. |
|
@param _cellSize sets cellSize with given value. |
|
@param _nbins sets nbins with given value. |
|
@param _derivAperture sets derivAperture with given value. |
|
@param _winSigma sets winSigma with given value. |
|
@param _histogramNormType sets histogramNormType with given value. |
|
@param _L2HysThreshold sets L2HysThreshold with given value. |
|
@param _gammaCorrection sets gammaCorrection with given value. |
|
@param _nlevels sets nlevels with given value. |
|
@param _signedGradient sets signedGradient with given value. |
|
*/ |
|
CV_WRAP HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, |
|
Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1, |
|
HOGDescriptor::HistogramNormType _histogramNormType=HOGDescriptor::L2Hys, |
|
double _L2HysThreshold=0.2, bool _gammaCorrection=false, |
|
int _nlevels=HOGDescriptor::DEFAULT_NLEVELS, bool _signedGradient=false) |
|
: winSize(_winSize), blockSize(_blockSize), blockStride(_blockStride), cellSize(_cellSize), |
|
nbins(_nbins), derivAperture(_derivAperture), winSigma(_winSigma), |
|
histogramNormType(_histogramNormType), L2HysThreshold(_L2HysThreshold), |
|
gammaCorrection(_gammaCorrection), free_coef(-1.f), nlevels(_nlevels), signedGradient(_signedGradient) |
|
{} |
|
|
|
/** @overload |
|
|
|
Creates the HOG descriptor and detector and loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file. |
|
@param filename The file name containing HOGDescriptor properties and coefficients for the linear SVM classifier. |
|
*/ |
|
CV_WRAP HOGDescriptor(const String& filename) |
|
{ |
|
load(filename); |
|
} |
|
|
|
/** @overload |
|
@param d the HOGDescriptor which cloned to create a new one. |
|
*/ |
|
HOGDescriptor(const HOGDescriptor& d) |
|
{ |
|
d.copyTo(*this); |
|
} |
|
|
|
/**@brief Default destructor. |
|
*/ |
|
virtual ~HOGDescriptor() {} |
|
|
|
/**@brief Returns the number of coefficients required for the classification. |
|
*/ |
|
CV_WRAP size_t getDescriptorSize() const; |
|
|
|
/** @brief Checks if detector size equal to descriptor size. |
|
*/ |
|
CV_WRAP bool checkDetectorSize() const; |
|
|
|
/** @brief Returns winSigma value |
|
*/ |
|
CV_WRAP double getWinSigma() const; |
|
|
|
/**@example samples/cpp/peopledetect.cpp |
|
*/ |
|
/**@brief Sets coefficients for the linear SVM classifier. |
|
@param svmdetector coefficients for the linear SVM classifier. |
|
*/ |
|
CV_WRAP virtual void setSVMDetector(InputArray svmdetector); |
|
|
|
/** @brief Reads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file node. |
|
@param fn File node |
|
*/ |
|
virtual bool read(FileNode& fn); |
|
|
|
/** @brief Stores HOGDescriptor parameters and coefficients for the linear SVM classifier in a file storage. |
|
@param fs File storage |
|
@param objname Object name |
|
*/ |
|
virtual void write(FileStorage& fs, const String& objname) const; |
|
|
|
/** @brief loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file |
|
@param filename Name of the file to read. |
|
@param objname The optional name of the node to read (if empty, the first top-level node will be used). |
|
*/ |
|
CV_WRAP virtual bool load(const String& filename, const String& objname = String()); |
|
|
|
/** @brief saves HOGDescriptor parameters and coefficients for the linear SVM classifier to a file |
|
@param filename File name |
|
@param objname Object name |
|
*/ |
|
CV_WRAP virtual void save(const String& filename, const String& objname = String()) const; |
|
|
|
/** @brief clones the HOGDescriptor |
|
@param c cloned HOGDescriptor |
|
*/ |
|
virtual void copyTo(HOGDescriptor& c) const; |
|
|
|
/**@example samples/cpp/train_HOG.cpp |
|
*/ |
|
/** @brief Computes HOG descriptors of given image. |
|
@param img Matrix of the type CV_8U containing an image where HOG features will be calculated. |
|
@param descriptors Matrix of the type CV_32F |
|
@param winStride Window stride. It must be a multiple of block stride. |
|
@param padding Padding |
|
@param locations Vector of Point |
|
*/ |
|
CV_WRAP virtual void compute(InputArray img, |
|
CV_OUT std::vector<float>& descriptors, |
|
Size winStride = Size(), Size padding = Size(), |
|
const std::vector<Point>& locations = std::vector<Point>()) const; |
|
|
|
/** @brief Performs object detection without a multi-scale window. |
|
@param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. |
|
@param foundLocations Vector of point where each point contains left-top corner point of detected object boundaries. |
|
@param weights Vector that will contain confidence values for each detected object. |
|
@param hitThreshold Threshold for the distance between features and SVM classifying plane. |
|
Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). |
|
But if the free coefficient is omitted (which is allowed), you can specify it manually here. |
|
@param winStride Window stride. It must be a multiple of block stride. |
|
@param padding Padding |
|
@param searchLocations Vector of Point includes set of requested locations to be evaluated. |
|
*/ |
|
CV_WRAP virtual void detect(InputArray img, CV_OUT std::vector<Point>& foundLocations, |
|
CV_OUT std::vector<double>& weights, |
|
double hitThreshold = 0, Size winStride = Size(), |
|
Size padding = Size(), |
|
const std::vector<Point>& searchLocations = std::vector<Point>()) const; |
|
|
|
/** @brief Performs object detection without a multi-scale window. |
|
@param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. |
|
@param foundLocations Vector of point where each point contains left-top corner point of detected object boundaries. |
|
@param hitThreshold Threshold for the distance between features and SVM classifying plane. |
|
Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). |
|
But if the free coefficient is omitted (which is allowed), you can specify it manually here. |
|
@param winStride Window stride. It must be a multiple of block stride. |
|
@param padding Padding |
|
@param searchLocations Vector of Point includes locations to search. |
|
*/ |
|
virtual void detect(InputArray img, CV_OUT std::vector<Point>& foundLocations, |
|
double hitThreshold = 0, Size winStride = Size(), |
|
Size padding = Size(), |
|
const std::vector<Point>& searchLocations=std::vector<Point>()) const; |
|
|
|
/** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list |
|
of rectangles. |
|
@param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. |
|
@param foundLocations Vector of rectangles where each rectangle contains the detected object. |
|
@param foundWeights Vector that will contain confidence values for each detected object. |
|
@param hitThreshold Threshold for the distance between features and SVM classifying plane. |
|
Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). |
|
But if the free coefficient is omitted (which is allowed), you can specify it manually here. |
|
@param winStride Window stride. It must be a multiple of block stride. |
|
@param padding Padding |
|
@param scale Coefficient of the detection window increase. |
|
@param groupThreshold Coefficient to regulate the similarity threshold. When detected, some objects can be covered |
|
by many rectangles. 0 means not to perform grouping. |
|
@param useMeanshiftGrouping indicates grouping algorithm |
|
*/ |
|
CV_WRAP virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations, |
|
CV_OUT std::vector<double>& foundWeights, double hitThreshold = 0, |
|
Size winStride = Size(), Size padding = Size(), double scale = 1.05, |
|
double groupThreshold = 2.0, bool useMeanshiftGrouping = false) const; |
|
|
|
/** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list |
|
of rectangles. |
|
@param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. |
|
@param foundLocations Vector of rectangles where each rectangle contains the detected object. |
|
@param hitThreshold Threshold for the distance between features and SVM classifying plane. |
|
Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). |
|
But if the free coefficient is omitted (which is allowed), you can specify it manually here. |
|
@param winStride Window stride. It must be a multiple of block stride. |
|
@param padding Padding |
|
@param scale Coefficient of the detection window increase. |
|
@param groupThreshold Coefficient to regulate the similarity threshold. When detected, some objects can be covered |
|
by many rectangles. 0 means not to perform grouping. |
|
@param useMeanshiftGrouping indicates grouping algorithm |
|
*/ |
|
virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations, |
|
double hitThreshold = 0, Size winStride = Size(), |
|
Size padding = Size(), double scale = 1.05, |
|
double groupThreshold = 2.0, bool useMeanshiftGrouping = false) const; |
|
|
|
/** @brief Computes gradients and quantized gradient orientations. |
|
@param img Matrix contains the image to be computed |
|
@param grad Matrix of type CV_32FC2 contains computed gradients |
|
@param angleOfs Matrix of type CV_8UC2 contains quantized gradient orientations |
|
@param paddingTL Padding from top-left |
|
@param paddingBR Padding from bottom-right |
|
*/ |
|
CV_WRAP virtual void computeGradient(InputArray img, InputOutputArray grad, InputOutputArray angleOfs, |
|
Size paddingTL = Size(), Size paddingBR = Size()) const; |
|
|
|
/** @brief Returns coefficients of the classifier trained for people detection (for 64x128 windows). |
|
*/ |
|
CV_WRAP static std::vector<float> getDefaultPeopleDetector(); |
|
|
|
/**@example samples/tapi/hog.cpp |
|
*/ |
|
/** @brief Returns coefficients of the classifier trained for people detection (for 48x96 windows). |
|
*/ |
|
CV_WRAP static std::vector<float> getDaimlerPeopleDetector(); |
|
|
|
//! Detection window size. Align to block size and block stride. Default value is Size(64,128). |
|
CV_PROP Size winSize; |
|
|
|
//! Block size in pixels. Align to cell size. Default value is Size(16,16). |
|
CV_PROP Size blockSize; |
|
|
|
//! Block stride. It must be a multiple of cell size. Default value is Size(8,8). |
|
CV_PROP Size blockStride; |
|
|
|
//! Cell size. Default value is Size(8,8). |
|
CV_PROP Size cellSize; |
|
|
|
//! Number of bins used in the calculation of histogram of gradients. Default value is 9. |
|
CV_PROP int nbins; |
|
|
|
//! not documented |
|
CV_PROP int derivAperture; |
|
|
|
//! Gaussian smoothing window parameter. |
|
CV_PROP double winSigma; |
|
|
|
//! histogramNormType |
|
CV_PROP HOGDescriptor::HistogramNormType histogramNormType; |
|
|
|
//! L2-Hys normalization method shrinkage. |
|
CV_PROP double L2HysThreshold; |
|
|
|
//! Flag to specify whether the gamma correction preprocessing is required or not. |
|
CV_PROP bool gammaCorrection; |
|
|
|
//! coefficients for the linear SVM classifier. |
|
CV_PROP std::vector<float> svmDetector; |
|
|
|
//! coefficients for the linear SVM classifier used when OpenCL is enabled |
|
UMat oclSvmDetector; |
|
|
|
//! not documented |
|
float free_coef; |
|
|
|
//! Maximum number of detection window increases. Default value is 64 |
|
CV_PROP int nlevels; |
|
|
|
//! Indicates signed gradient will be used or not |
|
CV_PROP bool signedGradient; |
|
|
|
/** @brief evaluate specified ROI and return confidence value for each location |
|
@param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. |
|
@param locations Vector of Point |
|
@param foundLocations Vector of Point where each Point is detected object's top-left point. |
|
@param confidences confidences |
|
@param hitThreshold Threshold for the distance between features and SVM classifying plane. Usually |
|
it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if |
|
the free coefficient is omitted (which is allowed), you can specify it manually here |
|
@param winStride winStride |
|
@param padding padding |
|
*/ |
|
virtual void detectROI(InputArray img, const std::vector<cv::Point> &locations, |
|
CV_OUT std::vector<cv::Point>& foundLocations, CV_OUT std::vector<double>& confidences, |
|
double hitThreshold = 0, cv::Size winStride = Size(), |
|
cv::Size padding = Size()) const; |
|
|
|
/** @brief evaluate specified ROI and return confidence value for each location in multiple scales |
|
@param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. |
|
@param foundLocations Vector of rectangles where each rectangle contains the detected object. |
|
@param locations Vector of DetectionROI |
|
@param hitThreshold Threshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified |
|
in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here. |
|
@param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a group of rectangles to retain it. |
|
*/ |
|
virtual void detectMultiScaleROI(InputArray img, |
|
CV_OUT std::vector<cv::Rect>& foundLocations, |
|
std::vector<DetectionROI>& locations, |
|
double hitThreshold = 0, |
|
int groupThreshold = 0) const; |
|
|
|
/** @brief Groups the object candidate rectangles. |
|
@param rectList Input/output vector of rectangles. Output vector includes retained and grouped rectangles. (The Python list is not modified in place.) |
|
@param weights Input/output vector of weights of rectangles. Output vector includes weights of retained and grouped rectangles. (The Python list is not modified in place.) |
|
@param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a group of rectangles to retain it. |
|
@param eps Relative difference between sides of the rectangles to merge them into a group. |
|
*/ |
|
void groupRectangles(std::vector<cv::Rect>& rectList, std::vector<double>& weights, int groupThreshold, double eps) const; |
|
}; |
|
//! @} |
|
|
|
//! @addtogroup objdetect_qrcode |
|
//! @{ |
|
|
|
class CV_EXPORTS_W QRCodeEncoder { |
|
protected: |
|
QRCodeEncoder(); // use ::create() |
|
public: |
|
virtual ~QRCodeEncoder(); |
|
|
|
enum EncodeMode { |
|
MODE_AUTO = -1, |
|
MODE_NUMERIC = 1, // 0b0001 |
|
MODE_ALPHANUMERIC = 2, // 0b0010 |
|
MODE_BYTE = 4, // 0b0100 |
|
MODE_ECI = 7, // 0b0111 |
|
MODE_KANJI = 8, // 0b1000 |
|
MODE_STRUCTURED_APPEND = 3 // 0b0011 |
|
}; |
|
|
|
enum CorrectionLevel { |
|
CORRECT_LEVEL_L = 0, |
|
CORRECT_LEVEL_M = 1, |
|
CORRECT_LEVEL_Q = 2, |
|
CORRECT_LEVEL_H = 3 |
|
}; |
|
|
|
enum ECIEncodings { |
|
ECI_UTF8 = 26 |
|
}; |
|
|
|
/** @brief QR code encoder parameters. |
|
@param version The optional version of QR code (by default - maximum possible depending on |
|
the length of the string). |
|
@param correction_level The optional level of error correction (by default - the lowest). |
|
@param mode The optional encoding mode - Numeric, Alphanumeric, Byte, Kanji, ECI or Structured Append. |
|
@param structure_number The optional number of QR codes to generate in Structured Append mode. |
|
*/ |
|
struct CV_EXPORTS_W_SIMPLE Params |
|
{ |
|
CV_WRAP Params(); |
|
CV_PROP_RW int version; |
|
CV_PROP_RW CorrectionLevel correction_level; |
|
CV_PROP_RW EncodeMode mode; |
|
CV_PROP_RW int structure_number; |
|
}; |
|
|
|
/** @brief Constructor |
|
@param parameters QR code encoder parameters QRCodeEncoder::Params |
|
*/ |
|
static CV_WRAP |
|
Ptr<QRCodeEncoder> create(const QRCodeEncoder::Params& parameters = QRCodeEncoder::Params()); |
|
|
|
/** @brief Generates QR code from input string. |
|
@param encoded_info Input string to encode. |
|
@param qrcode Generated QR code. |
|
*/ |
|
CV_WRAP virtual void encode(const String& encoded_info, OutputArray qrcode) = 0; |
|
|
|
/** @brief Generates QR code from input string in Structured Append mode. The encoded message is splitting over a number of QR codes. |
|
@param encoded_info Input string to encode. |
|
@param qrcodes Vector of generated QR codes. |
|
*/ |
|
CV_WRAP virtual void encodeStructuredAppend(const String& encoded_info, OutputArrayOfArrays qrcodes) = 0; |
|
|
|
}; |
|
|
|
class CV_EXPORTS_W_SIMPLE QRCodeDetectorBase { |
|
public: |
|
CV_DEPRECATED_EXTERNAL // avoid using in C++ code, will be moved to "protected" (need to fix bindings first) |
|
QRCodeDetectorBase(); |
|
|
|
QRCodeDetectorBase(const QRCodeDetectorBase&) = default; |
|
QRCodeDetectorBase(QRCodeDetectorBase&&) = default; |
|
QRCodeDetectorBase& operator=(const QRCodeDetectorBase&) = default; |
|
QRCodeDetectorBase& operator=(QRCodeDetectorBase&&) = default; |
|
|
|
/** @brief Detects QR code in image and returns the quadrangle containing the code. |
|
@param img grayscale or color (BGR) image containing (or not) QR code. |
|
@param points Output vector of vertices of the minimum-area quadrangle containing the code. |
|
*/ |
|
CV_WRAP bool detect(InputArray img, OutputArray points) const; |
|
|
|
/** @brief Decodes QR code in image once it's found by the detect() method. |
|
|
|
Returns UTF8-encoded output string or empty string if the code cannot be decoded. |
|
@param img grayscale or color (BGR) image containing QR code. |
|
@param points Quadrangle vertices found by detect() method (or some other algorithm). |
|
@param straight_qrcode The optional output image containing rectified and binarized QR code |
|
*/ |
|
CV_WRAP std::string decode(InputArray img, InputArray points, OutputArray straight_qrcode = noArray()) const; |
|
|
|
/** @brief Both detects and decodes QR code |
|
|
|
@param img grayscale or color (BGR) image containing QR code. |
|
@param points optional output array of vertices of the found QR code quadrangle. Will be empty if not found. |
|
@param straight_qrcode The optional output image containing rectified and binarized QR code |
|
*/ |
|
CV_WRAP std::string detectAndDecode(InputArray img, OutputArray points=noArray(), |
|
OutputArray straight_qrcode = noArray()) const; |
|
|
|
|
|
/** @brief Detects QR codes in image and returns the vector of the quadrangles containing the codes. |
|
@param img grayscale or color (BGR) image containing (or not) QR codes. |
|
@param points Output vector of vector of vertices of the minimum-area quadrangle containing the codes. |
|
*/ |
|
CV_WRAP |
|
bool detectMulti(InputArray img, OutputArray points) const; |
|
|
|
/** @brief Decodes QR codes in image once it's found by the detect() method. |
|
@param img grayscale or color (BGR) image containing QR codes. |
|
@param decoded_info UTF8-encoded output vector of string or empty vector of string if the codes cannot be decoded. |
|
@param points vector of Quadrangle vertices found by detect() method (or some other algorithm). |
|
@param straight_qrcode The optional output vector of images containing rectified and binarized QR codes |
|
*/ |
|
CV_WRAP |
|
bool decodeMulti( |
|
InputArray img, InputArray points, |
|
CV_OUT std::vector<std::string>& decoded_info, |
|
OutputArrayOfArrays straight_qrcode = noArray() |
|
) const; |
|
|
|
/** @brief Both detects and decodes QR codes |
|
@param img grayscale or color (BGR) image containing QR codes. |
|
@param decoded_info UTF8-encoded output vector of string or empty vector of string if the codes cannot be decoded. |
|
@param points optional output vector of vertices of the found QR code quadrangles. Will be empty if not found. |
|
@param straight_qrcode The optional output vector of images containing rectified and binarized QR codes |
|
*/ |
|
CV_WRAP |
|
bool detectAndDecodeMulti( |
|
InputArray img, CV_OUT std::vector<std::string>& decoded_info, |
|
OutputArray points = noArray(), |
|
OutputArrayOfArrays straight_qrcode = noArray() |
|
) const; |
|
struct Impl; |
|
protected: |
|
Ptr<Impl> p; |
|
}; |
|
|
|
class CV_EXPORTS_W_SIMPLE QRCodeDetector : public QRCodeDetectorBase |
|
{ |
|
public: |
|
CV_WRAP QRCodeDetector(); |
|
|
|
/** @brief sets the epsilon used during the horizontal scan of QR code stop marker detection. |
|
@param epsX Epsilon neighborhood, which allows you to determine the horizontal pattern |
|
of the scheme 1:1:3:1:1 according to QR code standard. |
|
*/ |
|
CV_WRAP QRCodeDetector& setEpsX(double epsX); |
|
/** @brief sets the epsilon used during the vertical scan of QR code stop marker detection. |
|
@param epsY Epsilon neighborhood, which allows you to determine the vertical pattern |
|
of the scheme 1:1:3:1:1 according to QR code standard. |
|
*/ |
|
CV_WRAP QRCodeDetector& setEpsY(double epsY); |
|
|
|
/** @brief use markers to improve the position of the corners of the QR code |
|
* |
|
* alignmentMarkers using by default |
|
*/ |
|
CV_WRAP QRCodeDetector& setUseAlignmentMarkers(bool useAlignmentMarkers); |
|
|
|
/** @brief Decodes QR code on a curved surface in image once it's found by the detect() method. |
|
|
|
Returns UTF8-encoded output string or empty string if the code cannot be decoded. |
|
@param img grayscale or color (BGR) image containing QR code. |
|
@param points Quadrangle vertices found by detect() method (or some other algorithm). |
|
@param straight_qrcode The optional output image containing rectified and binarized QR code |
|
*/ |
|
CV_WRAP cv::String decodeCurved(InputArray img, InputArray points, OutputArray straight_qrcode = noArray()); |
|
|
|
/** @brief Both detects and decodes QR code on a curved surface |
|
|
|
@param img grayscale or color (BGR) image containing QR code. |
|
@param points optional output array of vertices of the found QR code quadrangle. Will be empty if not found. |
|
@param straight_qrcode The optional output image containing rectified and binarized QR code |
|
*/ |
|
CV_WRAP std::string detectAndDecodeCurved(InputArray img, OutputArray points=noArray(), |
|
OutputArray straight_qrcode = noArray()); |
|
}; |
|
|
|
class CV_EXPORTS_W_SIMPLE QRCodeDetectorAruco : public QRCodeDetectorBase { |
|
public: |
|
CV_WRAP QRCodeDetectorAruco(); |
|
|
|
struct CV_EXPORTS_W_SIMPLE Params { |
|
CV_WRAP Params(); |
|
|
|
/** @brief The minimum allowed pixel size of a QR module in the smallest image in the image pyramid, default 4.f */ |
|
CV_PROP_RW float minModuleSizeInPyramid; |
|
|
|
/** @brief The maximum allowed relative rotation for finder patterns in the same QR code, default pi/12 */ |
|
CV_PROP_RW float maxRotation; |
|
|
|
/** @brief The maximum allowed relative mismatch in module sizes for finder patterns in the same QR code, default 1.75f */ |
|
CV_PROP_RW float maxModuleSizeMismatch; |
|
|
|
/** @brief The maximum allowed module relative mismatch for timing pattern module, default 2.f |
|
* |
|
* If relative mismatch of timing pattern module more this value, penalty points will be added. |
|
* If a lot of penalty points are added, QR code will be rejected. */ |
|
CV_PROP_RW float maxTimingPatternMismatch; |
|
|
|
/** @brief The maximum allowed percentage of penalty points out of total pins in timing pattern, default 0.4f */ |
|
CV_PROP_RW float maxPenalties; |
|
|
|
/** @brief The maximum allowed relative color mismatch in the timing pattern, default 0.2f*/ |
|
CV_PROP_RW float maxColorsMismatch; |
|
|
|
/** @brief The algorithm find QR codes with almost minimum timing pattern score and minimum size, default 0.9f |
|
* |
|
* The QR code with the minimum "timing pattern score" and minimum "size" is selected as the best QR code. |
|
* If for the current QR code "timing pattern score" * scaleTimingPatternScore < "previous timing pattern score" and "size" < "previous size", then |
|
* current QR code set as the best QR code. */ |
|
CV_PROP_RW float scaleTimingPatternScore; |
|
}; |
|
|
|
/** @brief QR code detector constructor for Aruco-based algorithm. See cv::QRCodeDetectorAruco::Params */ |
|
CV_WRAP explicit QRCodeDetectorAruco(const QRCodeDetectorAruco::Params& params); |
|
|
|
/** @brief Detector parameters getter. See cv::QRCodeDetectorAruco::Params */ |
|
CV_WRAP const QRCodeDetectorAruco::Params& getDetectorParameters() const; |
|
|
|
/** @brief Detector parameters setter. See cv::QRCodeDetectorAruco::Params */ |
|
CV_WRAP QRCodeDetectorAruco& setDetectorParameters(const QRCodeDetectorAruco::Params& params); |
|
|
|
/** @brief Aruco detector parameters are used to search for the finder patterns. */ |
|
CV_WRAP aruco::DetectorParameters getArucoParameters(); |
|
|
|
/** @brief Aruco detector parameters are used to search for the finder patterns. */ |
|
CV_WRAP void setArucoParameters(const aruco::DetectorParameters& params); |
|
}; |
|
|
|
//! @} |
|
} |
|
|
|
#include "opencv2/objdetect/detection_based_tracker.hpp" |
|
#include "opencv2/objdetect/face.hpp" |
|
#include "opencv2/objdetect/charuco_detector.hpp" |
|
|
|
#endif
|
|
|