Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1646 lines
56 KiB
1646 lines
56 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include <map> |
|
|
|
namespace cv { |
|
namespace detail { |
|
|
|
void PairwiseSeamFinder::find(const std::vector<Mat> &src, const std::vector<Point> &corners, |
|
std::vector<Mat> &masks) |
|
{ |
|
LOGLN("Finding seams..."); |
|
if (src.size() == 0) |
|
return; |
|
|
|
#if ENABLE_LOG |
|
int64 t = getTickCount(); |
|
#endif |
|
|
|
images_ = src; |
|
sizes_.resize(src.size()); |
|
for (size_t i = 0; i < src.size(); ++i) |
|
sizes_[i] = src[i].size(); |
|
corners_ = corners; |
|
masks_ = masks; |
|
run(); |
|
|
|
LOGLN("Finding seams, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec"); |
|
} |
|
|
|
|
|
void PairwiseSeamFinder::run() |
|
{ |
|
for (size_t i = 0; i < sizes_.size() - 1; ++i) |
|
{ |
|
for (size_t j = i + 1; j < sizes_.size(); ++j) |
|
{ |
|
Rect roi; |
|
if (overlapRoi(corners_[i], corners_[j], sizes_[i], sizes_[j], roi)) |
|
findInPair(i, j, roi); |
|
} |
|
} |
|
} |
|
|
|
|
|
void VoronoiSeamFinder::find(const std::vector<Size> &sizes, const std::vector<Point> &corners, |
|
std::vector<Mat> &masks) |
|
{ |
|
LOGLN("Finding seams..."); |
|
if (sizes.size() == 0) |
|
return; |
|
|
|
#if ENABLE_LOG |
|
int64 t = getTickCount(); |
|
#endif |
|
|
|
sizes_ = sizes; |
|
corners_ = corners; |
|
masks_ = masks; |
|
run(); |
|
|
|
LOGLN("Finding seams, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec"); |
|
} |
|
|
|
|
|
void VoronoiSeamFinder::findInPair(size_t first, size_t second, Rect roi) |
|
{ |
|
const int gap = 10; |
|
Mat submask1(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U); |
|
Mat submask2(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U); |
|
|
|
Size img1 = sizes_[first], img2 = sizes_[second]; |
|
Mat mask1 = masks_[first], mask2 = masks_[second]; |
|
Point tl1 = corners_[first], tl2 = corners_[second]; |
|
|
|
// Cut submasks with some gap |
|
for (int y = -gap; y < roi.height + gap; ++y) |
|
{ |
|
for (int x = -gap; x < roi.width + gap; ++x) |
|
{ |
|
int y1 = roi.y - tl1.y + y; |
|
int x1 = roi.x - tl1.x + x; |
|
if (y1 >= 0 && x1 >= 0 && y1 < img1.height && x1 < img1.width) |
|
submask1.at<uchar>(y + gap, x + gap) = mask1.at<uchar>(y1, x1); |
|
else |
|
submask1.at<uchar>(y + gap, x + gap) = 0; |
|
|
|
int y2 = roi.y - tl2.y + y; |
|
int x2 = roi.x - tl2.x + x; |
|
if (y2 >= 0 && x2 >= 0 && y2 < img2.height && x2 < img2.width) |
|
submask2.at<uchar>(y + gap, x + gap) = mask2.at<uchar>(y2, x2); |
|
else |
|
submask2.at<uchar>(y + gap, x + gap) = 0; |
|
} |
|
} |
|
|
|
Mat collision = (submask1 != 0) & (submask2 != 0); |
|
Mat unique1 = submask1.clone(); unique1.setTo(0, collision); |
|
Mat unique2 = submask2.clone(); unique2.setTo(0, collision); |
|
|
|
Mat dist1, dist2; |
|
distanceTransform(unique1 == 0, dist1, DIST_L1, 3); |
|
distanceTransform(unique2 == 0, dist2, DIST_L1, 3); |
|
|
|
Mat seam = dist1 < dist2; |
|
|
|
for (int y = 0; y < roi.height; ++y) |
|
{ |
|
for (int x = 0; x < roi.width; ++x) |
|
{ |
|
if (seam.at<uchar>(y + gap, x + gap)) |
|
mask2.at<uchar>(roi.y - tl2.y + y, roi.x - tl2.x + x) = 0; |
|
else |
|
mask1.at<uchar>(roi.y - tl1.y + y, roi.x - tl1.x + x) = 0; |
|
} |
|
} |
|
} |
|
|
|
|
|
DpSeamFinder::DpSeamFinder(CostFunction costFunc) : costFunc_(costFunc) {} |
|
|
|
|
|
void DpSeamFinder::find(const std::vector<Mat> &src, const std::vector<Point> &corners, std::vector<Mat> &masks) |
|
{ |
|
LOGLN("Finding seams..."); |
|
#if ENABLE_LOG |
|
int64 t = getTickCount(); |
|
#endif |
|
|
|
if (src.size() == 0) |
|
return; |
|
|
|
std::vector<std::pair<size_t, size_t> > pairs; |
|
|
|
for (size_t i = 0; i+1 < src.size(); ++i) |
|
for (size_t j = i+1; j < src.size(); ++j) |
|
pairs.push_back(std::make_pair(i, j)); |
|
|
|
sort(pairs.begin(), pairs.end(), ImagePairLess(src, corners)); |
|
std::reverse(pairs.begin(), pairs.end()); |
|
|
|
for (size_t i = 0; i < pairs.size(); ++i) |
|
{ |
|
size_t i0 = pairs[i].first, i1 = pairs[i].second; |
|
process(src[i0], src[i1], corners[i0], corners[i1], masks[i0], masks[i1]); |
|
} |
|
|
|
LOGLN("Finding seams, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec"); |
|
} |
|
|
|
|
|
void DpSeamFinder::process( |
|
const Mat &image1, const Mat &image2, Point tl1, Point tl2, |
|
Mat &mask1, Mat &mask2) |
|
{ |
|
CV_Assert(image1.size() == mask1.size()); |
|
CV_Assert(image2.size() == mask2.size()); |
|
|
|
Point intersectTl(std::max(tl1.x, tl2.x), std::max(tl1.y, tl2.y)); |
|
|
|
Point intersectBr(std::min(tl1.x + image1.cols, tl2.x + image2.cols), |
|
std::min(tl1.y + image1.rows, tl2.y + image2.rows)); |
|
|
|
if (intersectTl.x >= intersectBr.x || intersectTl.y >= intersectBr.y) |
|
return; // there are no conflicts |
|
|
|
unionTl_ = Point(std::min(tl1.x, tl2.x), std::min(tl1.y, tl2.y)); |
|
|
|
unionBr_ = Point(std::max(tl1.x + image1.cols, tl2.x + image2.cols), |
|
std::max(tl1.y + image1.rows, tl2.y + image2.rows)); |
|
|
|
unionSize_ = Size(unionBr_.x - unionTl_.x, unionBr_.y - unionTl_.y); |
|
|
|
mask1_ = Mat::zeros(unionSize_, CV_8U); |
|
mask2_ = Mat::zeros(unionSize_, CV_8U); |
|
|
|
Mat tmp = mask1_(Rect(tl1.x - unionTl_.x, tl1.y - unionTl_.y, mask1.cols, mask1.rows)); |
|
mask1.copyTo(tmp); |
|
|
|
tmp = mask2_(Rect(tl2.x - unionTl_.x, tl2.y - unionTl_.y, mask2.cols, mask2.rows)); |
|
mask2.copyTo(tmp); |
|
|
|
// find both images contour masks |
|
|
|
contour1mask_ = Mat::zeros(unionSize_, CV_8U); |
|
contour2mask_ = Mat::zeros(unionSize_, CV_8U); |
|
|
|
for (int y = 0; y < unionSize_.height; ++y) |
|
{ |
|
for (int x = 0; x < unionSize_.width; ++x) |
|
{ |
|
if (mask1_(y, x) && |
|
((x == 0 || !mask1_(y, x-1)) || (x == unionSize_.width-1 || !mask1_(y, x+1)) || |
|
(y == 0 || !mask1_(y-1, x)) || (y == unionSize_.height-1 || !mask1_(y+1, x)))) |
|
{ |
|
contour1mask_(y, x) = 255; |
|
} |
|
|
|
if (mask2_(y, x) && |
|
((x == 0 || !mask2_(y, x-1)) || (x == unionSize_.width-1 || !mask2_(y, x+1)) || |
|
(y == 0 || !mask2_(y-1, x)) || (y == unionSize_.height-1 || !mask2_(y+1, x)))) |
|
{ |
|
contour2mask_(y, x) = 255; |
|
} |
|
} |
|
} |
|
|
|
findComponents(); |
|
|
|
findEdges(); |
|
|
|
resolveConflicts(image1, image2, tl1, tl2, mask1, mask2); |
|
} |
|
|
|
|
|
void DpSeamFinder::findComponents() |
|
{ |
|
// label all connected components and get information about them |
|
|
|
ncomps_ = 0; |
|
labels_.create(unionSize_); |
|
states_.clear(); |
|
tls_.clear(); |
|
brs_.clear(); |
|
contours_.clear(); |
|
|
|
for (int y = 0; y < unionSize_.height; ++y) |
|
{ |
|
for (int x = 0; x < unionSize_.width; ++x) |
|
{ |
|
if (mask1_(y, x) && mask2_(y, x)) |
|
labels_(y, x) = std::numeric_limits<int>::max(); |
|
else if (mask1_(y, x)) |
|
labels_(y, x) = std::numeric_limits<int>::max()-1; |
|
else if (mask2_(y, x)) |
|
labels_(y, x) = std::numeric_limits<int>::max()-2; |
|
else |
|
labels_(y, x) = 0; |
|
} |
|
} |
|
|
|
for (int y = 0; y < unionSize_.height; ++y) |
|
{ |
|
for (int x = 0; x < unionSize_.width; ++x) |
|
{ |
|
if (labels_(y, x) >= std::numeric_limits<int>::max()-2) |
|
{ |
|
if (labels_(y, x) == std::numeric_limits<int>::max()) |
|
states_.push_back(INTERS); |
|
else if (labels_(y, x) == std::numeric_limits<int>::max()-1) |
|
states_.push_back(FIRST); |
|
else if (labels_(y, x) == std::numeric_limits<int>::max()-2) |
|
states_.push_back(SECOND); |
|
|
|
floodFill(labels_, Point(x, y), ++ncomps_); |
|
tls_.push_back(Point(x, y)); |
|
brs_.push_back(Point(x+1, y+1)); |
|
contours_.push_back(std::vector<Point>()); |
|
} |
|
|
|
if (labels_(y, x)) |
|
{ |
|
int l = labels_(y, x); |
|
int ci = l-1; |
|
|
|
tls_[ci].x = std::min(tls_[ci].x, x); |
|
tls_[ci].y = std::min(tls_[ci].y, y); |
|
brs_[ci].x = std::max(brs_[ci].x, x+1); |
|
brs_[ci].y = std::max(brs_[ci].y, y+1); |
|
|
|
if ((x == 0 || labels_(y, x-1) != l) || (x == unionSize_.width-1 || labels_(y, x+1) != l) || |
|
(y == 0 || labels_(y-1, x) != l) || (y == unionSize_.height-1 || labels_(y+1, x) != l)) |
|
{ |
|
contours_[ci].push_back(Point(x, y)); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
void DpSeamFinder::findEdges() |
|
{ |
|
// find edges between components |
|
|
|
std::map<std::pair<int, int>, int> wedges; // weighted edges |
|
|
|
for (int ci = 0; ci < ncomps_-1; ++ci) |
|
{ |
|
for (int cj = ci+1; cj < ncomps_; ++cj) |
|
{ |
|
wedges[std::make_pair(ci, cj)] = 0; |
|
wedges[std::make_pair(cj, ci)] = 0; |
|
} |
|
} |
|
|
|
for (int ci = 0; ci < ncomps_; ++ci) |
|
{ |
|
for (size_t i = 0; i < contours_[ci].size(); ++i) |
|
{ |
|
int x = contours_[ci][i].x; |
|
int y = contours_[ci][i].y; |
|
int l = ci + 1; |
|
|
|
if (x > 0 && labels_(y, x-1) && labels_(y, x-1) != l) |
|
{ |
|
wedges[std::make_pair(ci, labels_(y, x-1)-1)]++; |
|
wedges[std::make_pair(labels_(y, x-1)-1, ci)]++; |
|
} |
|
|
|
if (y > 0 && labels_(y-1, x) && labels_(y-1, x) != l) |
|
{ |
|
wedges[std::make_pair(ci, labels_(y-1, x)-1)]++; |
|
wedges[std::make_pair(labels_(y-1, x)-1, ci)]++; |
|
} |
|
|
|
if (x < unionSize_.width-1 && labels_(y, x+1) && labels_(y, x+1) != l) |
|
{ |
|
wedges[std::make_pair(ci, labels_(y, x+1)-1)]++; |
|
wedges[std::make_pair(labels_(y, x+1)-1, ci)]++; |
|
} |
|
|
|
if (y < unionSize_.height-1 && labels_(y+1, x) && labels_(y+1, x) != l) |
|
{ |
|
wedges[std::make_pair(ci, labels_(y+1, x)-1)]++; |
|
wedges[std::make_pair(labels_(y+1, x)-1, ci)]++; |
|
} |
|
} |
|
} |
|
|
|
edges_.clear(); |
|
|
|
for (int ci = 0; ci < ncomps_-1; ++ci) |
|
{ |
|
for (int cj = ci+1; cj < ncomps_; ++cj) |
|
{ |
|
std::map<std::pair<int, int>, int>::iterator itr = wedges.find(std::make_pair(ci, cj)); |
|
if (itr != wedges.end() && itr->second > 0) |
|
edges_.insert(itr->first); |
|
|
|
itr = wedges.find(std::make_pair(cj, ci)); |
|
if (itr != wedges.end() && itr->second > 0) |
|
edges_.insert(itr->first); |
|
} |
|
} |
|
} |
|
|
|
|
|
void DpSeamFinder::resolveConflicts( |
|
const Mat &image1, const Mat &image2, Point tl1, Point tl2, Mat &mask1, Mat &mask2) |
|
{ |
|
if (costFunc_ == COLOR_GRAD) |
|
computeGradients(image1, image2); |
|
|
|
// resolve conflicts between components |
|
|
|
bool hasConflict = true; |
|
while (hasConflict) |
|
{ |
|
int c1 = 0, c2 = 0; |
|
hasConflict = false; |
|
|
|
for (std::set<std::pair<int, int> >::iterator itr = edges_.begin(); itr != edges_.end(); ++itr) |
|
{ |
|
c1 = itr->first; |
|
c2 = itr->second; |
|
|
|
if ((states_[c1] & INTERS) && (states_[c1] & (~INTERS)) != states_[c2]) |
|
{ |
|
hasConflict = true; |
|
break; |
|
} |
|
} |
|
|
|
if (hasConflict) |
|
{ |
|
int l1 = c1+1, l2 = c2+1; |
|
|
|
if (hasOnlyOneNeighbor(c1)) |
|
{ |
|
// if the first components has only one adjacent component |
|
|
|
for (int y = tls_[c1].y; y < brs_[c1].y; ++y) |
|
for (int x = tls_[c1].x; x < brs_[c1].x; ++x) |
|
if (labels_(y, x) == l1) |
|
labels_(y, x) = l2; |
|
|
|
states_[c1] = states_[c2] == FIRST ? SECOND : FIRST; |
|
} |
|
else |
|
{ |
|
// if the first component has more than one adjacent component |
|
|
|
Point p1, p2; |
|
if (getSeamTips(c1, c2, p1, p2)) |
|
{ |
|
std::vector<Point> seam; |
|
bool isHorizontalSeam; |
|
|
|
if (estimateSeam(image1, image2, tl1, tl2, c1, p1, p2, seam, isHorizontalSeam)) |
|
updateLabelsUsingSeam(c1, c2, seam, isHorizontalSeam); |
|
} |
|
|
|
states_[c1] = states_[c2] == FIRST ? INTERS_SECOND : INTERS_FIRST; |
|
} |
|
|
|
const int c[] = {c1, c2}; |
|
const int l[] = {l1, l2}; |
|
|
|
for (int i = 0; i < 2; ++i) |
|
{ |
|
// update information about the (i+1)-th component |
|
|
|
int x0 = tls_[c[i]].x, x1 = brs_[c[i]].x; |
|
int y0 = tls_[c[i]].y, y1 = brs_[c[i]].y; |
|
|
|
tls_[c[i]] = Point(std::numeric_limits<int>::max(), std::numeric_limits<int>::max()); |
|
brs_[c[i]] = Point(std::numeric_limits<int>::min(), std::numeric_limits<int>::min()); |
|
contours_[c[i]].clear(); |
|
|
|
for (int y = y0; y < y1; ++y) |
|
{ |
|
for (int x = x0; x < x1; ++x) |
|
{ |
|
if (labels_(y, x) == l[i]) |
|
{ |
|
tls_[c[i]].x = std::min(tls_[c[i]].x, x); |
|
tls_[c[i]].y = std::min(tls_[c[i]].y, y); |
|
brs_[c[i]].x = std::max(brs_[c[i]].x, x+1); |
|
brs_[c[i]].y = std::max(brs_[c[i]].y, y+1); |
|
|
|
if ((x == 0 || labels_(y, x-1) != l[i]) || (x == unionSize_.width-1 || labels_(y, x+1) != l[i]) || |
|
(y == 0 || labels_(y-1, x) != l[i]) || (y == unionSize_.height-1 || labels_(y+1, x) != l[i])) |
|
{ |
|
contours_[c[i]].push_back(Point(x, y)); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
// remove edges |
|
|
|
edges_.erase(std::make_pair(c1, c2)); |
|
edges_.erase(std::make_pair(c2, c1)); |
|
} |
|
} |
|
|
|
// update masks |
|
|
|
int dx1 = unionTl_.x - tl1.x, dy1 = unionTl_.y - tl1.y; |
|
int dx2 = unionTl_.x - tl2.x, dy2 = unionTl_.y - tl2.y; |
|
|
|
for (int y = 0; y < mask2.rows; ++y) |
|
{ |
|
for (int x = 0; x < mask2.cols; ++x) |
|
{ |
|
int l = labels_(y - dy2, x - dx2); |
|
if (l > 0 && (states_[l-1] & FIRST) && mask1.at<uchar>(y - dy2 + dy1, x - dx2 + dx1)) |
|
mask2.at<uchar>(y, x) = 0; |
|
} |
|
} |
|
|
|
for (int y = 0; y < mask1.rows; ++y) |
|
{ |
|
for (int x = 0; x < mask1.cols; ++x) |
|
{ |
|
int l = labels_(y - dy1, x - dx1); |
|
if (l > 0 && (states_[l-1] & SECOND) && mask2.at<uchar>(y - dy1 + dy2, x - dx1 + dx2)) |
|
mask1.at<uchar>(y, x) = 0; |
|
} |
|
} |
|
} |
|
|
|
|
|
void DpSeamFinder::computeGradients(const Mat &image1, const Mat &image2) |
|
{ |
|
CV_Assert(image1.channels() == 3 || image1.channels() == 4); |
|
CV_Assert(image2.channels() == 3 || image2.channels() == 4); |
|
CV_Assert(costFunction() == COLOR_GRAD); |
|
|
|
Mat gray; |
|
|
|
if (image1.channels() == 3) |
|
cvtColor(image1, gray, COLOR_BGR2GRAY); |
|
else if (image1.channels() == 4) |
|
cvtColor(image1, gray, COLOR_BGRA2GRAY); |
|
|
|
Sobel(gray, gradx1_, CV_32F, 1, 0); |
|
Sobel(gray, grady1_, CV_32F, 0, 1); |
|
|
|
if (image2.channels() == 3) |
|
cvtColor(image2, gray, COLOR_BGR2GRAY); |
|
else if (image2.channels() == 4) |
|
cvtColor(image2, gray, COLOR_BGRA2GRAY); |
|
|
|
Sobel(gray, gradx2_, CV_32F, 1, 0); |
|
Sobel(gray, grady2_, CV_32F, 0, 1); |
|
} |
|
|
|
|
|
bool DpSeamFinder::hasOnlyOneNeighbor(int comp) |
|
{ |
|
std::set<std::pair<int, int> >::iterator begin, end; |
|
begin = lower_bound(edges_.begin(), edges_.end(), std::make_pair(comp, std::numeric_limits<int>::min())); |
|
end = upper_bound(edges_.begin(), edges_.end(), std::make_pair(comp, std::numeric_limits<int>::max())); |
|
return ++begin == end; |
|
} |
|
|
|
|
|
bool DpSeamFinder::closeToContour(int y, int x, const Mat_<uchar> &contourMask) |
|
{ |
|
const int rad = 2; |
|
|
|
for (int dy = -rad; dy <= rad; ++dy) |
|
{ |
|
if (y + dy >= 0 && y + dy < unionSize_.height) |
|
{ |
|
for (int dx = -rad; dx <= rad; ++dx) |
|
{ |
|
if (x + dx >= 0 && x + dx < unionSize_.width && |
|
contourMask(y + dy, x + dx)) |
|
{ |
|
return true; |
|
} |
|
} |
|
} |
|
} |
|
|
|
return false; |
|
} |
|
|
|
|
|
bool DpSeamFinder::getSeamTips(int comp1, int comp2, Point &p1, Point &p2) |
|
{ |
|
CV_Assert(states_[comp1] & INTERS); |
|
|
|
// find special points |
|
|
|
std::vector<Point> specialPoints; |
|
int l2 = comp2+1; |
|
|
|
for (size_t i = 0; i < contours_[comp1].size(); ++i) |
|
{ |
|
int x = contours_[comp1][i].x; |
|
int y = contours_[comp1][i].y; |
|
|
|
if (closeToContour(y, x, contour1mask_) && |
|
closeToContour(y, x, contour2mask_) && |
|
((x > 0 && labels_(y, x-1) == l2) || |
|
(y > 0 && labels_(y-1, x) == l2) || |
|
(x < unionSize_.width-1 && labels_(y, x+1) == l2) || |
|
(y < unionSize_.height-1 && labels_(y+1, x) == l2))) |
|
{ |
|
specialPoints.push_back(Point(x, y)); |
|
} |
|
} |
|
|
|
if (specialPoints.size() < 2) |
|
return false; |
|
|
|
// find clusters |
|
|
|
std::vector<int> labels; |
|
cv::partition(specialPoints, labels, ClosePoints(10)); |
|
|
|
int nlabels = *std::max_element(labels.begin(), labels.end()) + 1; |
|
if (nlabels < 2) |
|
return false; |
|
|
|
std::vector<Point> sum(nlabels); |
|
std::vector<std::vector<Point> > points(nlabels); |
|
|
|
for (size_t i = 0; i < specialPoints.size(); ++i) |
|
{ |
|
sum[labels[i]] += specialPoints[i]; |
|
points[labels[i]].push_back(specialPoints[i]); |
|
} |
|
|
|
// select two most distant clusters |
|
|
|
int idx[2] = {-1,-1}; |
|
double maxDist = -std::numeric_limits<double>::max(); |
|
|
|
for (int i = 0; i < nlabels-1; ++i) |
|
{ |
|
for (int j = i+1; j < nlabels; ++j) |
|
{ |
|
double size1 = static_cast<double>(points[i].size()), size2 = static_cast<double>(points[j].size()); |
|
double cx1 = cvRound(sum[i].x / size1), cy1 = cvRound(sum[i].y / size1); |
|
double cx2 = cvRound(sum[j].x / size2), cy2 = cvRound(sum[j].y / size1); |
|
|
|
double dist = (cx1 - cx2) * (cx1 - cx2) + (cy1 - cy2) * (cy1 - cy2); |
|
if (dist > maxDist) |
|
{ |
|
maxDist = dist; |
|
idx[0] = i; |
|
idx[1] = j; |
|
} |
|
} |
|
} |
|
|
|
// select two points closest to the clusters' centers |
|
|
|
Point p[2]; |
|
|
|
for (int i = 0; i < 2; ++i) |
|
{ |
|
double size = static_cast<double>(points[idx[i]].size()); |
|
double cx = cvRound(sum[idx[i]].x / size); |
|
double cy = cvRound(sum[idx[i]].y / size); |
|
|
|
size_t closest = points[idx[i]].size(); |
|
double minDist = std::numeric_limits<double>::max(); |
|
|
|
for (size_t j = 0; j < points[idx[i]].size(); ++j) |
|
{ |
|
double dist = (points[idx[i]][j].x - cx) * (points[idx[i]][j].x - cx) + |
|
(points[idx[i]][j].y - cy) * (points[idx[i]][j].y - cy); |
|
if (dist < minDist) |
|
{ |
|
minDist = dist; |
|
closest = j; |
|
} |
|
} |
|
|
|
p[i] = points[idx[i]][closest]; |
|
} |
|
|
|
p1 = p[0]; |
|
p2 = p[1]; |
|
return true; |
|
} |
|
|
|
|
|
namespace |
|
{ |
|
|
|
template <typename T> |
|
float diffL2Square3(const Mat &image1, int y1, int x1, const Mat &image2, int y2, int x2) |
|
{ |
|
const T *r1 = image1.ptr<T>(y1); |
|
const T *r2 = image2.ptr<T>(y2); |
|
return static_cast<float>(sqr(r1[3*x1] - r2[3*x2]) + sqr(r1[3*x1+1] - r2[3*x2+1]) + |
|
sqr(r1[3*x1+2] - r2[3*x2+2])); |
|
} |
|
|
|
|
|
template <typename T> |
|
float diffL2Square4(const Mat &image1, int y1, int x1, const Mat &image2, int y2, int x2) |
|
{ |
|
const T *r1 = image1.ptr<T>(y1); |
|
const T *r2 = image2.ptr<T>(y2); |
|
return static_cast<float>(sqr(r1[4*x1] - r2[4*x2]) + sqr(r1[4*x1+1] - r2[4*x2+1]) + |
|
sqr(r1[4*x1+2] - r2[4*x2+2])); |
|
} |
|
|
|
} // namespace |
|
|
|
|
|
void DpSeamFinder::computeCosts( |
|
const Mat &image1, const Mat &image2, Point tl1, Point tl2, |
|
int comp, Mat_<float> &costV, Mat_<float> &costH) |
|
{ |
|
CV_Assert(states_[comp] & INTERS); |
|
|
|
// compute costs |
|
|
|
float (*diff)(const Mat&, int, int, const Mat&, int, int) = 0; |
|
if (image1.type() == CV_32FC3 && image2.type() == CV_32FC3) |
|
diff = diffL2Square3<float>; |
|
else if (image1.type() == CV_8UC3 && image2.type() == CV_8UC3) |
|
diff = diffL2Square3<uchar>; |
|
else if (image1.type() == CV_32FC4 && image2.type() == CV_32FC4) |
|
diff = diffL2Square4<float>; |
|
else if (image1.type() == CV_8UC4 && image2.type() == CV_8UC4) |
|
diff = diffL2Square4<uchar>; |
|
else |
|
CV_Error(Error::StsBadArg, "both images must have CV_32FC3(4) or CV_8UC3(4) type"); |
|
|
|
int l = comp+1; |
|
Rect roi(tls_[comp], brs_[comp]); |
|
|
|
int dx1 = unionTl_.x - tl1.x, dy1 = unionTl_.y - tl1.y; |
|
int dx2 = unionTl_.x - tl2.x, dy2 = unionTl_.y - tl2.y; |
|
|
|
const float badRegionCost = normL2(Point3f(255.f, 255.f, 255.f), |
|
Point3f(0.f, 0.f, 0.f)); |
|
|
|
costV.create(roi.height, roi.width+1); |
|
|
|
for (int y = roi.y; y < roi.br().y; ++y) |
|
{ |
|
for (int x = roi.x; x < roi.br().x+1; ++x) |
|
{ |
|
if (labels_(y, x) == l && x > 0 && labels_(y, x-1) == l) |
|
{ |
|
float costColor = (diff(image1, y + dy1, x + dx1 - 1, image2, y + dy2, x + dx2) + |
|
diff(image1, y + dy1, x + dx1, image2, y + dy2, x + dx2 - 1)) / 2; |
|
if (costFunc_ == COLOR) |
|
costV(y - roi.y, x - roi.x) = costColor; |
|
else if (costFunc_ == COLOR_GRAD) |
|
{ |
|
float costGrad = std::abs(gradx1_(y + dy1, x + dx1)) + std::abs(gradx1_(y + dy1, x + dx1 - 1)) + |
|
std::abs(gradx2_(y + dy2, x + dx2)) + std::abs(gradx2_(y + dy2, x + dx2 - 1)) + 1.f; |
|
costV(y - roi.y, x - roi.x) = costColor / costGrad; |
|
} |
|
} |
|
else |
|
costV(y - roi.y, x - roi.x) = badRegionCost; |
|
} |
|
} |
|
|
|
costH.create(roi.height+1, roi.width); |
|
|
|
for (int y = roi.y; y < roi.br().y+1; ++y) |
|
{ |
|
for (int x = roi.x; x < roi.br().x; ++x) |
|
{ |
|
if (labels_(y, x) == l && y > 0 && labels_(y-1, x) == l) |
|
{ |
|
float costColor = (diff(image1, y + dy1 - 1, x + dx1, image2, y + dy2, x + dx2) + |
|
diff(image1, y + dy1, x + dx1, image2, y + dy2 - 1, x + dx2)) / 2; |
|
if (costFunc_ == COLOR) |
|
costH(y - roi.y, x - roi.x) = costColor; |
|
else if (costFunc_ == COLOR_GRAD) |
|
{ |
|
float costGrad = std::abs(grady1_(y + dy1, x + dx1)) + std::abs(grady1_(y + dy1 - 1, x + dx1)) + |
|
std::abs(grady2_(y + dy2, x + dx2)) + std::abs(grady2_(y + dy2 - 1, x + dx2)) + 1.f; |
|
costH(y - roi.y, x - roi.x) = costColor / costGrad; |
|
} |
|
} |
|
else |
|
costH(y - roi.y, x - roi.x) = badRegionCost; |
|
} |
|
} |
|
} |
|
|
|
|
|
bool DpSeamFinder::estimateSeam( |
|
const Mat &image1, const Mat &image2, Point tl1, Point tl2, int comp, |
|
Point p1, Point p2, std::vector<Point> &seam, bool &isHorizontal) |
|
{ |
|
CV_Assert(states_[comp] & INTERS); |
|
|
|
Mat_<float> costV, costH; |
|
computeCosts(image1, image2, tl1, tl2, comp, costV, costH); |
|
|
|
Rect roi(tls_[comp], brs_[comp]); |
|
Point src = p1 - roi.tl(); |
|
Point dst = p2 - roi.tl(); |
|
int l = comp+1; |
|
|
|
// estimate seam direction |
|
|
|
bool swapped = false; |
|
isHorizontal = std::abs(dst.x - src.x) > std::abs(dst.y - src.y); |
|
|
|
if (isHorizontal) |
|
{ |
|
if (src.x > dst.x) |
|
{ |
|
std::swap(src, dst); |
|
swapped = true; |
|
} |
|
} |
|
else if (src.y > dst.y) |
|
{ |
|
swapped = true; |
|
std::swap(src, dst); |
|
} |
|
|
|
// find optimal control |
|
|
|
Mat_<uchar> control = Mat::zeros(roi.size(), CV_8U); |
|
Mat_<uchar> reachable = Mat::zeros(roi.size(), CV_8U); |
|
Mat_<float> cost = Mat::zeros(roi.size(), CV_32F); |
|
|
|
reachable(src) = 1; |
|
cost(src) = 0.f; |
|
|
|
int nsteps; |
|
std::pair<float, int> steps[3]; |
|
|
|
if (isHorizontal) |
|
{ |
|
for (int x = src.x+1; x <= dst.x; ++x) |
|
{ |
|
for (int y = 0; y < roi.height; ++y) |
|
{ |
|
// seam follows along upper side of pixels |
|
|
|
nsteps = 0; |
|
|
|
if (labels_(y + roi.y, x + roi.x) == l) |
|
{ |
|
if (reachable(y, x-1)) |
|
steps[nsteps++] = std::make_pair(cost(y, x-1) + costH(y, x-1), 1); |
|
if (y > 0 && reachable(y-1, x-1)) |
|
steps[nsteps++] = std::make_pair(cost(y-1, x-1) + costH(y-1, x-1) + costV(y-1, x), 2); |
|
if (y < roi.height-1 && reachable(y+1, x-1)) |
|
steps[nsteps++] = std::make_pair(cost(y+1, x-1) + costH(y+1, x-1) + costV(y, x), 3); |
|
} |
|
|
|
if (nsteps) |
|
{ |
|
std::pair<float, int> opt = *min_element(steps, steps + nsteps); |
|
cost(y, x) = opt.first; |
|
control(y, x) = (uchar)opt.second; |
|
reachable(y, x) = 255; |
|
} |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
for (int y = src.y+1; y <= dst.y; ++y) |
|
{ |
|
for (int x = 0; x < roi.width; ++x) |
|
{ |
|
// seam follows along left side of pixels |
|
|
|
nsteps = 0; |
|
|
|
if (labels_(y + roi.y, x + roi.x) == l) |
|
{ |
|
if (reachable(y-1, x)) |
|
steps[nsteps++] = std::make_pair(cost(y-1, x) + costV(y-1, x), 1); |
|
if (x > 0 && reachable(y-1, x-1)) |
|
steps[nsteps++] = std::make_pair(cost(y-1, x-1) + costV(y-1, x-1) + costH(y, x-1), 2); |
|
if (x < roi.width-1 && reachable(y-1, x+1)) |
|
steps[nsteps++] = std::make_pair(cost(y-1, x+1) + costV(y-1, x+1) + costH(y, x), 3); |
|
} |
|
|
|
if (nsteps) |
|
{ |
|
std::pair<float, int> opt = *min_element(steps, steps + nsteps); |
|
cost(y, x) = opt.first; |
|
control(y, x) = (uchar)opt.second; |
|
reachable(y, x) = 255; |
|
} |
|
} |
|
} |
|
} |
|
|
|
if (!reachable(dst)) |
|
return false; |
|
|
|
// restore seam |
|
|
|
Point p = dst; |
|
seam.clear(); |
|
seam.push_back(p + roi.tl()); |
|
|
|
if (isHorizontal) |
|
{ |
|
for (; p.x != src.x; seam.push_back(p + roi.tl())) |
|
{ |
|
if (control(p) == 2) p.y--; |
|
else if (control(p) == 3) p.y++; |
|
p.x--; |
|
} |
|
} |
|
else |
|
{ |
|
for (; p.y != src.y; seam.push_back(p + roi.tl())) |
|
{ |
|
if (control(p) == 2) p.x--; |
|
else if (control(p) == 3) p.x++; |
|
p.y--; |
|
} |
|
} |
|
|
|
if (!swapped) |
|
std::reverse(seam.begin(), seam.end()); |
|
|
|
CV_Assert(seam.front() == p1); |
|
CV_Assert(seam.back() == p2); |
|
return true; |
|
} |
|
|
|
|
|
void DpSeamFinder::updateLabelsUsingSeam( |
|
int comp1, int comp2, const std::vector<Point> &seam, bool isHorizontalSeam) |
|
{ |
|
Mat_<int> mask = Mat::zeros(brs_[comp1].y - tls_[comp1].y, |
|
brs_[comp1].x - tls_[comp1].x, CV_32S); |
|
|
|
for (size_t i = 0; i < contours_[comp1].size(); ++i) |
|
mask(contours_[comp1][i] - tls_[comp1]) = 255; |
|
|
|
for (size_t i = 0; i < seam.size(); ++i) |
|
mask(seam[i] - tls_[comp1]) = 255; |
|
|
|
// find connected components after seam carving |
|
|
|
int l1 = comp1+1, l2 = comp2+1; |
|
|
|
int ncomps = 0; |
|
|
|
for (int y = 0; y < mask.rows; ++y) |
|
for (int x = 0; x < mask.cols; ++x) |
|
if (!mask(y, x) && labels_(y + tls_[comp1].y, x + tls_[comp1].x) == l1) |
|
floodFill(mask, Point(x, y), ++ncomps); |
|
|
|
for (size_t i = 0; i < contours_[comp1].size(); ++i) |
|
{ |
|
int x = contours_[comp1][i].x - tls_[comp1].x; |
|
int y = contours_[comp1][i].y - tls_[comp1].y; |
|
|
|
bool ok = false; |
|
static const int dx[] = {-1, +1, 0, 0, -1, +1, -1, +1}; |
|
static const int dy[] = {0, 0, -1, +1, -1, -1, +1, +1}; |
|
|
|
for (int j = 0; j < 8; ++j) |
|
{ |
|
int c = x + dx[j]; |
|
int r = y + dy[j]; |
|
|
|
if (c >= 0 && c < mask.cols && r >= 0 && r < mask.rows && |
|
mask(r, c) && mask(r, c) != 255) |
|
{ |
|
ok = true; |
|
mask(y, x) = mask(r, c); |
|
} |
|
} |
|
|
|
if (!ok) |
|
mask(y, x) = 0; |
|
} |
|
|
|
if (isHorizontalSeam) |
|
{ |
|
for (size_t i = 0; i < seam.size(); ++i) |
|
{ |
|
int x = seam[i].x - tls_[comp1].x; |
|
int y = seam[i].y - tls_[comp1].y; |
|
|
|
if (y < mask.rows-1 && mask(y+1, x) && mask(y+1, x) != 255) |
|
mask(y, x) = mask(y+1, x); |
|
else |
|
mask(y, x) = 0; |
|
} |
|
} |
|
else |
|
{ |
|
for (size_t i = 0; i < seam.size(); ++i) |
|
{ |
|
int x = seam[i].x - tls_[comp1].x; |
|
int y = seam[i].y - tls_[comp1].y; |
|
|
|
if (x < mask.cols-1 && mask(y, x+1) && mask(y, x+1) != 255) |
|
mask(y, x) = mask(y, x+1); |
|
else |
|
mask(y, x) = 0; |
|
} |
|
} |
|
|
|
// find new components connected with the second component and |
|
// with other components except the ones we are working with |
|
|
|
std::map<int, int> connect2; |
|
std::map<int, int> connectOther; |
|
|
|
for (int i = 1; i <= ncomps; ++i) |
|
{ |
|
connect2.insert(std::make_pair(i, 0)); |
|
connectOther.insert(std::make_pair(i, 0)); |
|
} |
|
|
|
for (size_t i = 0; i < contours_[comp1].size(); ++i) |
|
{ |
|
int x = contours_[comp1][i].x; |
|
int y = contours_[comp1][i].y; |
|
|
|
if ((x > 0 && labels_(y, x-1) == l2) || |
|
(y > 0 && labels_(y-1, x) == l2) || |
|
(x < unionSize_.width-1 && labels_(y, x+1) == l2) || |
|
(y < unionSize_.height-1 && labels_(y+1, x) == l2)) |
|
{ |
|
connect2[mask(y - tls_[comp1].y, x - tls_[comp1].x)]++; |
|
} |
|
|
|
if ((x > 0 && labels_(y, x-1) != l1 && labels_(y, x-1) != l2) || |
|
(y > 0 && labels_(y-1, x) != l1 && labels_(y-1, x) != l2) || |
|
(x < unionSize_.width-1 && labels_(y, x+1) != l1 && labels_(y, x+1) != l2) || |
|
(y < unionSize_.height-1 && labels_(y+1, x) != l1 && labels_(y+1, x) != l2)) |
|
{ |
|
connectOther[mask(y - tls_[comp1].y, x - tls_[comp1].x)]++; |
|
} |
|
} |
|
|
|
std::vector<int> isAdjComp(ncomps + 1, 0); |
|
|
|
for (std::map<int, int>::iterator itr = connect2.begin(); itr != connect2.end(); ++itr) |
|
{ |
|
double len = static_cast<double>(contours_[comp1].size()); |
|
isAdjComp[itr->first] = itr->second / len > 0.05 && connectOther.find(itr->first)->second / len < 0.1; |
|
} |
|
|
|
// update labels |
|
|
|
for (int y = 0; y < mask.rows; ++y) |
|
for (int x = 0; x < mask.cols; ++x) |
|
if (mask(y, x) && isAdjComp[mask(y, x)]) |
|
labels_(y + tls_[comp1].y, x + tls_[comp1].x) = l2; |
|
} |
|
|
|
|
|
class GraphCutSeamFinder::Impl : public PairwiseSeamFinder |
|
{ |
|
public: |
|
Impl(int cost_type, float terminal_cost, float bad_region_penalty) |
|
: cost_type_(cost_type), terminal_cost_(terminal_cost), bad_region_penalty_(bad_region_penalty) {} |
|
|
|
~Impl() {} |
|
|
|
void find(const std::vector<Mat> &src, const std::vector<Point> &corners, std::vector<Mat> &masks); |
|
void findInPair(size_t first, size_t second, Rect roi); |
|
|
|
private: |
|
void setGraphWeightsColor(const Mat &img1, const Mat &img2, |
|
const Mat &mask1, const Mat &mask2, GCGraph<float> &graph); |
|
void setGraphWeightsColorGrad(const Mat &img1, const Mat &img2, const Mat &dx1, const Mat &dx2, |
|
const Mat &dy1, const Mat &dy2, const Mat &mask1, const Mat &mask2, |
|
GCGraph<float> &graph); |
|
|
|
std::vector<Mat> dx_, dy_; |
|
int cost_type_; |
|
float terminal_cost_; |
|
float bad_region_penalty_; |
|
}; |
|
|
|
|
|
void GraphCutSeamFinder::Impl::find(const std::vector<Mat> &src, const std::vector<Point> &corners, |
|
std::vector<Mat> &masks) |
|
{ |
|
// Compute gradients |
|
dx_.resize(src.size()); |
|
dy_.resize(src.size()); |
|
Mat dx, dy; |
|
for (size_t i = 0; i < src.size(); ++i) |
|
{ |
|
CV_Assert(src[i].channels() == 3); |
|
Sobel(src[i], dx, CV_32F, 1, 0); |
|
Sobel(src[i], dy, CV_32F, 0, 1); |
|
dx_[i].create(src[i].size(), CV_32F); |
|
dy_[i].create(src[i].size(), CV_32F); |
|
for (int y = 0; y < src[i].rows; ++y) |
|
{ |
|
const Point3f* dx_row = dx.ptr<Point3f>(y); |
|
const Point3f* dy_row = dy.ptr<Point3f>(y); |
|
float* dx_row_ = dx_[i].ptr<float>(y); |
|
float* dy_row_ = dy_[i].ptr<float>(y); |
|
for (int x = 0; x < src[i].cols; ++x) |
|
{ |
|
dx_row_[x] = normL2(dx_row[x]); |
|
dy_row_[x] = normL2(dy_row[x]); |
|
} |
|
} |
|
} |
|
PairwiseSeamFinder::find(src, corners, masks); |
|
} |
|
|
|
|
|
void GraphCutSeamFinder::Impl::setGraphWeightsColor(const Mat &img1, const Mat &img2, |
|
const Mat &mask1, const Mat &mask2, GCGraph<float> &graph) |
|
{ |
|
const Size img_size = img1.size(); |
|
|
|
// Set terminal weights |
|
for (int y = 0; y < img_size.height; ++y) |
|
{ |
|
for (int x = 0; x < img_size.width; ++x) |
|
{ |
|
int v = graph.addVtx(); |
|
graph.addTermWeights(v, mask1.at<uchar>(y, x) ? terminal_cost_ : 0.f, |
|
mask2.at<uchar>(y, x) ? terminal_cost_ : 0.f); |
|
} |
|
} |
|
|
|
// Set regular edge weights |
|
const float weight_eps = 1.f; |
|
for (int y = 0; y < img_size.height; ++y) |
|
{ |
|
for (int x = 0; x < img_size.width; ++x) |
|
{ |
|
int v = y * img_size.width + x; |
|
if (x < img_size.width - 1) |
|
{ |
|
float weight = normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) + |
|
normL2(img1.at<Point3f>(y, x + 1), img2.at<Point3f>(y, x + 1)) + |
|
weight_eps; |
|
if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y, x + 1) || |
|
!mask2.at<uchar>(y, x) || !mask2.at<uchar>(y, x + 1)) |
|
weight += bad_region_penalty_; |
|
graph.addEdges(v, v + 1, weight, weight); |
|
} |
|
if (y < img_size.height - 1) |
|
{ |
|
float weight = normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) + |
|
normL2(img1.at<Point3f>(y + 1, x), img2.at<Point3f>(y + 1, x)) + |
|
weight_eps; |
|
if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y + 1, x) || |
|
!mask2.at<uchar>(y, x) || !mask2.at<uchar>(y + 1, x)) |
|
weight += bad_region_penalty_; |
|
graph.addEdges(v, v + img_size.width, weight, weight); |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
void GraphCutSeamFinder::Impl::setGraphWeightsColorGrad( |
|
const Mat &img1, const Mat &img2, const Mat &dx1, const Mat &dx2, |
|
const Mat &dy1, const Mat &dy2, const Mat &mask1, const Mat &mask2, |
|
GCGraph<float> &graph) |
|
{ |
|
const Size img_size = img1.size(); |
|
|
|
// Set terminal weights |
|
for (int y = 0; y < img_size.height; ++y) |
|
{ |
|
for (int x = 0; x < img_size.width; ++x) |
|
{ |
|
int v = graph.addVtx(); |
|
graph.addTermWeights(v, mask1.at<uchar>(y, x) ? terminal_cost_ : 0.f, |
|
mask2.at<uchar>(y, x) ? terminal_cost_ : 0.f); |
|
} |
|
} |
|
|
|
// Set regular edge weights |
|
const float weight_eps = 1.f; |
|
for (int y = 0; y < img_size.height; ++y) |
|
{ |
|
for (int x = 0; x < img_size.width; ++x) |
|
{ |
|
int v = y * img_size.width + x; |
|
if (x < img_size.width - 1) |
|
{ |
|
float grad = dx1.at<float>(y, x) + dx1.at<float>(y, x + 1) + |
|
dx2.at<float>(y, x) + dx2.at<float>(y, x + 1) + weight_eps; |
|
float weight = (normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) + |
|
normL2(img1.at<Point3f>(y, x + 1), img2.at<Point3f>(y, x + 1))) / grad + |
|
weight_eps; |
|
if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y, x + 1) || |
|
!mask2.at<uchar>(y, x) || !mask2.at<uchar>(y, x + 1)) |
|
weight += bad_region_penalty_; |
|
graph.addEdges(v, v + 1, weight, weight); |
|
} |
|
if (y < img_size.height - 1) |
|
{ |
|
float grad = dy1.at<float>(y, x) + dy1.at<float>(y + 1, x) + |
|
dy2.at<float>(y, x) + dy2.at<float>(y + 1, x) + weight_eps; |
|
float weight = (normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) + |
|
normL2(img1.at<Point3f>(y + 1, x), img2.at<Point3f>(y + 1, x))) / grad + |
|
weight_eps; |
|
if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y + 1, x) || |
|
!mask2.at<uchar>(y, x) || !mask2.at<uchar>(y + 1, x)) |
|
weight += bad_region_penalty_; |
|
graph.addEdges(v, v + img_size.width, weight, weight); |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
void GraphCutSeamFinder::Impl::findInPair(size_t first, size_t second, Rect roi) |
|
{ |
|
Mat img1 = images_[first], img2 = images_[second]; |
|
Mat dx1 = dx_[first], dx2 = dx_[second]; |
|
Mat dy1 = dy_[first], dy2 = dy_[second]; |
|
Mat mask1 = masks_[first], mask2 = masks_[second]; |
|
Point tl1 = corners_[first], tl2 = corners_[second]; |
|
|
|
const int gap = 10; |
|
Mat subimg1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32FC3); |
|
Mat subimg2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32FC3); |
|
Mat submask1(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U); |
|
Mat submask2(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U); |
|
Mat subdx1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F); |
|
Mat subdy1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F); |
|
Mat subdx2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F); |
|
Mat subdy2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F); |
|
|
|
// Cut subimages and submasks with some gap |
|
for (int y = -gap; y < roi.height + gap; ++y) |
|
{ |
|
for (int x = -gap; x < roi.width + gap; ++x) |
|
{ |
|
int y1 = roi.y - tl1.y + y; |
|
int x1 = roi.x - tl1.x + x; |
|
if (y1 >= 0 && x1 >= 0 && y1 < img1.rows && x1 < img1.cols) |
|
{ |
|
subimg1.at<Point3f>(y + gap, x + gap) = img1.at<Point3f>(y1, x1); |
|
submask1.at<uchar>(y + gap, x + gap) = mask1.at<uchar>(y1, x1); |
|
subdx1.at<float>(y + gap, x + gap) = dx1.at<float>(y1, x1); |
|
subdy1.at<float>(y + gap, x + gap) = dy1.at<float>(y1, x1); |
|
} |
|
else |
|
{ |
|
subimg1.at<Point3f>(y + gap, x + gap) = Point3f(0, 0, 0); |
|
submask1.at<uchar>(y + gap, x + gap) = 0; |
|
subdx1.at<float>(y + gap, x + gap) = 0.f; |
|
subdy1.at<float>(y + gap, x + gap) = 0.f; |
|
} |
|
|
|
int y2 = roi.y - tl2.y + y; |
|
int x2 = roi.x - tl2.x + x; |
|
if (y2 >= 0 && x2 >= 0 && y2 < img2.rows && x2 < img2.cols) |
|
{ |
|
subimg2.at<Point3f>(y + gap, x + gap) = img2.at<Point3f>(y2, x2); |
|
submask2.at<uchar>(y + gap, x + gap) = mask2.at<uchar>(y2, x2); |
|
subdx2.at<float>(y + gap, x + gap) = dx2.at<float>(y2, x2); |
|
subdy2.at<float>(y + gap, x + gap) = dy2.at<float>(y2, x2); |
|
} |
|
else |
|
{ |
|
subimg2.at<Point3f>(y + gap, x + gap) = Point3f(0, 0, 0); |
|
submask2.at<uchar>(y + gap, x + gap) = 0; |
|
subdx2.at<float>(y + gap, x + gap) = 0.f; |
|
subdy2.at<float>(y + gap, x + gap) = 0.f; |
|
} |
|
} |
|
} |
|
|
|
const int vertex_count = (roi.height + 2 * gap) * (roi.width + 2 * gap); |
|
const int edge_count = (roi.height - 1 + 2 * gap) * (roi.width + 2 * gap) + |
|
(roi.width - 1 + 2 * gap) * (roi.height + 2 * gap); |
|
GCGraph<float> graph(vertex_count, edge_count); |
|
|
|
switch (cost_type_) |
|
{ |
|
case GraphCutSeamFinder::COST_COLOR: |
|
setGraphWeightsColor(subimg1, subimg2, submask1, submask2, graph); |
|
break; |
|
case GraphCutSeamFinder::COST_COLOR_GRAD: |
|
setGraphWeightsColorGrad(subimg1, subimg2, subdx1, subdx2, subdy1, subdy2, |
|
submask1, submask2, graph); |
|
break; |
|
default: |
|
CV_Error(Error::StsBadArg, "unsupported pixel similarity measure"); |
|
} |
|
|
|
graph.maxFlow(); |
|
|
|
for (int y = 0; y < roi.height; ++y) |
|
{ |
|
for (int x = 0; x < roi.width; ++x) |
|
{ |
|
if (graph.inSourceSegment((y + gap) * (roi.width + 2 * gap) + x + gap)) |
|
{ |
|
if (mask1.at<uchar>(roi.y - tl1.y + y, roi.x - tl1.x + x)) |
|
mask2.at<uchar>(roi.y - tl2.y + y, roi.x - tl2.x + x) = 0; |
|
} |
|
else |
|
{ |
|
if (mask2.at<uchar>(roi.y - tl2.y + y, roi.x - tl2.x + x)) |
|
mask1.at<uchar>(roi.y - tl1.y + y, roi.x - tl1.x + x) = 0; |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
GraphCutSeamFinder::GraphCutSeamFinder(int cost_type, float terminal_cost, float bad_region_penalty) |
|
: impl_(new Impl(cost_type, terminal_cost, bad_region_penalty)) {} |
|
|
|
GraphCutSeamFinder::~GraphCutSeamFinder() {} |
|
|
|
|
|
void GraphCutSeamFinder::find(const std::vector<Mat> &src, const std::vector<Point> &corners, |
|
std::vector<Mat> &masks) |
|
{ |
|
impl_->find(src, corners, masks); |
|
} |
|
|
|
|
|
#ifdef HAVE_OPENCV_CUDA |
|
void GraphCutSeamFinderGpu::find(const std::vector<Mat> &src, const std::vector<Point> &corners, |
|
std::vector<Mat> &masks) |
|
{ |
|
// Compute gradients |
|
dx_.resize(src.size()); |
|
dy_.resize(src.size()); |
|
Mat dx, dy; |
|
for (size_t i = 0; i < src.size(); ++i) |
|
{ |
|
CV_Assert(src[i].channels() == 3); |
|
Sobel(src[i], dx, CV_32F, 1, 0); |
|
Sobel(src[i], dy, CV_32F, 0, 1); |
|
dx_[i].create(src[i].size(), CV_32F); |
|
dy_[i].create(src[i].size(), CV_32F); |
|
for (int y = 0; y < src[i].rows; ++y) |
|
{ |
|
const Point3f* dx_row = dx.ptr<Point3f>(y); |
|
const Point3f* dy_row = dy.ptr<Point3f>(y); |
|
float* dx_row_ = dx_[i].ptr<float>(y); |
|
float* dy_row_ = dy_[i].ptr<float>(y); |
|
for (int x = 0; x < src[i].cols; ++x) |
|
{ |
|
dx_row_[x] = normL2(dx_row[x]); |
|
dy_row_[x] = normL2(dy_row[x]); |
|
} |
|
} |
|
} |
|
PairwiseSeamFinder::find(src, corners, masks); |
|
} |
|
|
|
|
|
void GraphCutSeamFinderGpu::findInPair(size_t first, size_t second, Rect roi) |
|
{ |
|
Mat img1 = images_[first], img2 = images_[second]; |
|
Mat dx1 = dx_[first], dx2 = dx_[second]; |
|
Mat dy1 = dy_[first], dy2 = dy_[second]; |
|
Mat mask1 = masks_[first], mask2 = masks_[second]; |
|
Point tl1 = corners_[first], tl2 = corners_[second]; |
|
|
|
const int gap = 10; |
|
Mat subimg1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32FC3); |
|
Mat subimg2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32FC3); |
|
Mat submask1(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U); |
|
Mat submask2(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U); |
|
Mat subdx1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F); |
|
Mat subdy1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F); |
|
Mat subdx2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F); |
|
Mat subdy2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F); |
|
|
|
// Cut subimages and submasks with some gap |
|
for (int y = -gap; y < roi.height + gap; ++y) |
|
{ |
|
for (int x = -gap; x < roi.width + gap; ++x) |
|
{ |
|
int y1 = roi.y - tl1.y + y; |
|
int x1 = roi.x - tl1.x + x; |
|
if (y1 >= 0 && x1 >= 0 && y1 < img1.rows && x1 < img1.cols) |
|
{ |
|
subimg1.at<Point3f>(y + gap, x + gap) = img1.at<Point3f>(y1, x1); |
|
submask1.at<uchar>(y + gap, x + gap) = mask1.at<uchar>(y1, x1); |
|
subdx1.at<float>(y + gap, x + gap) = dx1.at<float>(y1, x1); |
|
subdy1.at<float>(y + gap, x + gap) = dy1.at<float>(y1, x1); |
|
} |
|
else |
|
{ |
|
subimg1.at<Point3f>(y + gap, x + gap) = Point3f(0, 0, 0); |
|
submask1.at<uchar>(y + gap, x + gap) = 0; |
|
subdx1.at<float>(y + gap, x + gap) = 0.f; |
|
subdy1.at<float>(y + gap, x + gap) = 0.f; |
|
} |
|
|
|
int y2 = roi.y - tl2.y + y; |
|
int x2 = roi.x - tl2.x + x; |
|
if (y2 >= 0 && x2 >= 0 && y2 < img2.rows && x2 < img2.cols) |
|
{ |
|
subimg2.at<Point3f>(y + gap, x + gap) = img2.at<Point3f>(y2, x2); |
|
submask2.at<uchar>(y + gap, x + gap) = mask2.at<uchar>(y2, x2); |
|
subdx2.at<float>(y + gap, x + gap) = dx2.at<float>(y2, x2); |
|
subdy2.at<float>(y + gap, x + gap) = dy2.at<float>(y2, x2); |
|
} |
|
else |
|
{ |
|
subimg2.at<Point3f>(y + gap, x + gap) = Point3f(0, 0, 0); |
|
submask2.at<uchar>(y + gap, x + gap) = 0; |
|
subdx2.at<float>(y + gap, x + gap) = 0.f; |
|
subdy2.at<float>(y + gap, x + gap) = 0.f; |
|
} |
|
} |
|
} |
|
|
|
Mat terminals, leftT, rightT, top, bottom; |
|
|
|
switch (cost_type_) |
|
{ |
|
case GraphCutSeamFinder::COST_COLOR: |
|
setGraphWeightsColor(subimg1, subimg2, submask1, submask2, |
|
terminals, leftT, rightT, top, bottom); |
|
break; |
|
case GraphCutSeamFinder::COST_COLOR_GRAD: |
|
setGraphWeightsColorGrad(subimg1, subimg2, subdx1, subdx2, subdy1, subdy2, |
|
submask1, submask2, terminals, leftT, rightT, top, bottom); |
|
break; |
|
default: |
|
CV_Error(Error::StsBadArg, "unsupported pixel similarity measure"); |
|
} |
|
|
|
cuda::GpuMat terminals_d(terminals); |
|
cuda::GpuMat leftT_d(leftT); |
|
cuda::GpuMat rightT_d(rightT); |
|
cuda::GpuMat top_d(top); |
|
cuda::GpuMat bottom_d(bottom); |
|
cuda::GpuMat labels_d, buf_d; |
|
|
|
cuda::graphcut(terminals_d, leftT_d, rightT_d, top_d, bottom_d, labels_d, buf_d); |
|
|
|
Mat_<uchar> labels = (Mat)labels_d; |
|
for (int y = 0; y < roi.height; ++y) |
|
{ |
|
for (int x = 0; x < roi.width; ++x) |
|
{ |
|
if (labels(y + gap, x + gap)) |
|
{ |
|
if (mask1.at<uchar>(roi.y - tl1.y + y, roi.x - tl1.x + x)) |
|
mask2.at<uchar>(roi.y - tl2.y + y, roi.x - tl2.x + x) = 0; |
|
} |
|
else |
|
{ |
|
if (mask2.at<uchar>(roi.y - tl2.y + y, roi.x - tl2.x + x)) |
|
mask1.at<uchar>(roi.y - tl1.y + y, roi.x - tl1.x + x) = 0; |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
void GraphCutSeamFinderGpu::setGraphWeightsColor(const Mat &img1, const Mat &img2, const Mat &mask1, const Mat &mask2, |
|
Mat &terminals, Mat &leftT, Mat &rightT, Mat &top, Mat &bottom) |
|
{ |
|
const Size img_size = img1.size(); |
|
|
|
terminals.create(img_size, CV_32S); |
|
leftT.create(Size(img_size.height, img_size.width), CV_32S); |
|
rightT.create(Size(img_size.height, img_size.width), CV_32S); |
|
top.create(img_size, CV_32S); |
|
bottom.create(img_size, CV_32S); |
|
|
|
Mat_<int> terminals_(terminals); |
|
Mat_<int> leftT_(leftT); |
|
Mat_<int> rightT_(rightT); |
|
Mat_<int> top_(top); |
|
Mat_<int> bottom_(bottom); |
|
|
|
// Set terminal weights |
|
for (int y = 0; y < img_size.height; ++y) |
|
{ |
|
for (int x = 0; x < img_size.width; ++x) |
|
{ |
|
float source = mask1.at<uchar>(y, x) ? terminal_cost_ : 0.f; |
|
float sink = mask2.at<uchar>(y, x) ? terminal_cost_ : 0.f; |
|
terminals_(y, x) = saturate_cast<int>((source - sink) * 255.f); |
|
} |
|
} |
|
|
|
// Set regular edge weights |
|
const float weight_eps = 1.f; |
|
for (int y = 0; y < img_size.height; ++y) |
|
{ |
|
for (int x = 0; x < img_size.width; ++x) |
|
{ |
|
if (x > 0) |
|
{ |
|
float weight = normL2(img1.at<Point3f>(y, x - 1), img2.at<Point3f>(y, x - 1)) + |
|
normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) + |
|
weight_eps; |
|
if (!mask1.at<uchar>(y, x - 1) || !mask1.at<uchar>(y, x) || |
|
!mask2.at<uchar>(y, x - 1) || !mask2.at<uchar>(y, x)) |
|
weight += bad_region_penalty_; |
|
leftT_(x, y) = saturate_cast<int>(weight * 255.f); |
|
} |
|
else |
|
leftT_(x, y) = 0; |
|
|
|
if (x < img_size.width - 1) |
|
{ |
|
float weight = normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) + |
|
normL2(img1.at<Point3f>(y, x + 1), img2.at<Point3f>(y, x + 1)) + |
|
weight_eps; |
|
if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y, x + 1) || |
|
!mask2.at<uchar>(y, x) || !mask2.at<uchar>(y, x + 1)) |
|
weight += bad_region_penalty_; |
|
rightT_(x, y) = saturate_cast<int>(weight * 255.f); |
|
} |
|
else |
|
rightT_(x, y) = 0; |
|
|
|
if (y > 0) |
|
{ |
|
float weight = normL2(img1.at<Point3f>(y - 1, x), img2.at<Point3f>(y - 1, x)) + |
|
normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) + |
|
weight_eps; |
|
if (!mask1.at<uchar>(y - 1, x) || !mask1.at<uchar>(y, x) || |
|
!mask2.at<uchar>(y - 1, x) || !mask2.at<uchar>(y, x)) |
|
weight += bad_region_penalty_; |
|
top_(y, x) = saturate_cast<int>(weight * 255.f); |
|
} |
|
else |
|
top_(y, x) = 0; |
|
|
|
if (y < img_size.height - 1) |
|
{ |
|
float weight = normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) + |
|
normL2(img1.at<Point3f>(y + 1, x), img2.at<Point3f>(y + 1, x)) + |
|
weight_eps; |
|
if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y + 1, x) || |
|
!mask2.at<uchar>(y, x) || !mask2.at<uchar>(y + 1, x)) |
|
weight += bad_region_penalty_; |
|
bottom_(y, x) = saturate_cast<int>(weight * 255.f); |
|
} |
|
else |
|
bottom_(y, x) = 0; |
|
} |
|
} |
|
} |
|
|
|
|
|
void GraphCutSeamFinderGpu::setGraphWeightsColorGrad( |
|
const Mat &img1, const Mat &img2, const Mat &dx1, const Mat &dx2, |
|
const Mat &dy1, const Mat &dy2, const Mat &mask1, const Mat &mask2, |
|
Mat &terminals, Mat &leftT, Mat &rightT, Mat &top, Mat &bottom) |
|
{ |
|
const Size img_size = img1.size(); |
|
|
|
terminals.create(img_size, CV_32S); |
|
leftT.create(Size(img_size.height, img_size.width), CV_32S); |
|
rightT.create(Size(img_size.height, img_size.width), CV_32S); |
|
top.create(img_size, CV_32S); |
|
bottom.create(img_size, CV_32S); |
|
|
|
Mat_<int> terminals_(terminals); |
|
Mat_<int> leftT_(leftT); |
|
Mat_<int> rightT_(rightT); |
|
Mat_<int> top_(top); |
|
Mat_<int> bottom_(bottom); |
|
|
|
// Set terminal weights |
|
for (int y = 0; y < img_size.height; ++y) |
|
{ |
|
for (int x = 0; x < img_size.width; ++x) |
|
{ |
|
float source = mask1.at<uchar>(y, x) ? terminal_cost_ : 0.f; |
|
float sink = mask2.at<uchar>(y, x) ? terminal_cost_ : 0.f; |
|
terminals_(y, x) = saturate_cast<int>((source - sink) * 255.f); |
|
} |
|
} |
|
|
|
// Set regular edge weights |
|
const float weight_eps = 1.f; |
|
for (int y = 0; y < img_size.height; ++y) |
|
{ |
|
for (int x = 0; x < img_size.width; ++x) |
|
{ |
|
if (x > 0) |
|
{ |
|
float grad = dx1.at<float>(y, x - 1) + dx1.at<float>(y, x) + |
|
dx2.at<float>(y, x - 1) + dx2.at<float>(y, x) + weight_eps; |
|
float weight = (normL2(img1.at<Point3f>(y, x - 1), img2.at<Point3f>(y, x - 1)) + |
|
normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x))) / grad + |
|
weight_eps; |
|
if (!mask1.at<uchar>(y, x - 1) || !mask1.at<uchar>(y, x) || |
|
!mask2.at<uchar>(y, x - 1) || !mask2.at<uchar>(y, x)) |
|
weight += bad_region_penalty_; |
|
leftT_(x, y) = saturate_cast<int>(weight * 255.f); |
|
} |
|
else |
|
leftT_(x, y) = 0; |
|
|
|
if (x < img_size.width - 1) |
|
{ |
|
float grad = dx1.at<float>(y, x) + dx1.at<float>(y, x + 1) + |
|
dx2.at<float>(y, x) + dx2.at<float>(y, x + 1) + weight_eps; |
|
float weight = (normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) + |
|
normL2(img1.at<Point3f>(y, x + 1), img2.at<Point3f>(y, x + 1))) / grad + |
|
weight_eps; |
|
if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y, x + 1) || |
|
!mask2.at<uchar>(y, x) || !mask2.at<uchar>(y, x + 1)) |
|
weight += bad_region_penalty_; |
|
rightT_(x, y) = saturate_cast<int>(weight * 255.f); |
|
} |
|
else |
|
rightT_(x, y) = 0; |
|
|
|
if (y > 0) |
|
{ |
|
float grad = dy1.at<float>(y - 1, x) + dy1.at<float>(y, x) + |
|
dy2.at<float>(y - 1, x) + dy2.at<float>(y, x) + weight_eps; |
|
float weight = (normL2(img1.at<Point3f>(y - 1, x), img2.at<Point3f>(y - 1, x)) + |
|
normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x))) / grad + |
|
weight_eps; |
|
if (!mask1.at<uchar>(y - 1, x) || !mask1.at<uchar>(y, x) || |
|
!mask2.at<uchar>(y - 1, x) || !mask2.at<uchar>(y, x)) |
|
weight += bad_region_penalty_; |
|
top_(y, x) = saturate_cast<int>(weight * 255.f); |
|
} |
|
else |
|
top_(y, x) = 0; |
|
|
|
if (y < img_size.height - 1) |
|
{ |
|
float grad = dy1.at<float>(y, x) + dy1.at<float>(y + 1, x) + |
|
dy2.at<float>(y, x) + dy2.at<float>(y + 1, x) + weight_eps; |
|
float weight = (normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) + |
|
normL2(img1.at<Point3f>(y + 1, x), img2.at<Point3f>(y + 1, x))) / grad + |
|
weight_eps; |
|
if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y + 1, x) || |
|
!mask2.at<uchar>(y, x) || !mask2.at<uchar>(y + 1, x)) |
|
weight += bad_region_penalty_; |
|
bottom_(y, x) = saturate_cast<int>(weight * 255.f); |
|
} |
|
else |
|
bottom_(y, x) = 0; |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
} // namespace detail |
|
} // namespace cv
|
|
|