mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
3053 lines
103 KiB
3053 lines
103 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
/* |
|
* cvhaartraining.cpp |
|
* |
|
* training of cascade of boosted classifiers based on haar features |
|
*/ |
|
|
|
#include "cvhaartraining.h" |
|
#include "_cvhaartraining.h" |
|
|
|
#include <cstdio> |
|
#include <cstdlib> |
|
#include <cmath> |
|
#include <climits> |
|
|
|
#include "highgui.h" |
|
|
|
#ifdef CV_VERBOSE |
|
#include <ctime> |
|
|
|
#ifdef _WIN32 |
|
/* use clock() function insted of time() */ |
|
#define TIME( arg ) (((double) clock()) / CLOCKS_PER_SEC) |
|
#else |
|
#define TIME( arg ) (time( arg )) |
|
#endif /* _WIN32 */ |
|
|
|
#endif /* CV_VERBOSE */ |
|
|
|
#if defined CV_OPENMP && (defined _MSC_VER || defined CV_ICC) |
|
#define CV_OPENMP 1 |
|
#else |
|
#undef CV_OPENMP |
|
#endif |
|
|
|
typedef struct CvBackgroundData |
|
{ |
|
int count; |
|
char** filename; |
|
int last; |
|
int round; |
|
CvSize winsize; |
|
} CvBackgroundData; |
|
|
|
typedef struct CvBackgroundReader |
|
{ |
|
CvMat src; |
|
CvMat img; |
|
CvPoint offset; |
|
float scale; |
|
float scalefactor; |
|
float stepfactor; |
|
CvPoint point; |
|
} CvBackgroundReader; |
|
|
|
/* |
|
* Background reader |
|
* Created in each thread |
|
*/ |
|
CvBackgroundReader* cvbgreader = NULL; |
|
|
|
#if defined CV_OPENMP |
|
#pragma omp threadprivate(cvbgreader) |
|
#endif |
|
|
|
CvBackgroundData* cvbgdata = NULL; |
|
|
|
|
|
/* |
|
* get sum image offsets for <rect> corner points |
|
* step - row step (measured in image pixels!) of sum image |
|
*/ |
|
#define CV_SUM_OFFSETS( p0, p1, p2, p3, rect, step ) \ |
|
/* (x, y) */ \ |
|
(p0) = (rect).x + (step) * (rect).y; \ |
|
/* (x + w, y) */ \ |
|
(p1) = (rect).x + (rect).width + (step) * (rect).y; \ |
|
/* (x + w, y) */ \ |
|
(p2) = (rect).x + (step) * ((rect).y + (rect).height); \ |
|
/* (x + w, y + h) */ \ |
|
(p3) = (rect).x + (rect).width + (step) * ((rect).y + (rect).height); |
|
|
|
/* |
|
* get tilted image offsets for <rect> corner points |
|
* step - row step (measured in image pixels!) of tilted image |
|
*/ |
|
#define CV_TILTED_OFFSETS( p0, p1, p2, p3, rect, step ) \ |
|
/* (x, y) */ \ |
|
(p0) = (rect).x + (step) * (rect).y; \ |
|
/* (x - h, y + h) */ \ |
|
(p1) = (rect).x - (rect).height + (step) * ((rect).y + (rect).height);\ |
|
/* (x + w, y + w) */ \ |
|
(p2) = (rect).x + (rect).width + (step) * ((rect).y + (rect).width); \ |
|
/* (x + w - h, y + w + h) */ \ |
|
(p3) = (rect).x + (rect).width - (rect).height \ |
|
+ (step) * ((rect).y + (rect).width + (rect).height); |
|
|
|
|
|
/* |
|
* icvCreateIntHaarFeatures |
|
* |
|
* Create internal representation of haar features |
|
* |
|
* mode: |
|
* 0 - BASIC = Viola |
|
* 1 - CORE = All upright |
|
* 2 - ALL = All features |
|
*/ |
|
static |
|
CvIntHaarFeatures* icvCreateIntHaarFeatures( CvSize winsize, |
|
int mode, |
|
int symmetric ) |
|
{ |
|
CvIntHaarFeatures* features = NULL; |
|
CvTHaarFeature haarFeature; |
|
|
|
CvMemStorage* storage = NULL; |
|
CvSeq* seq = NULL; |
|
CvSeqWriter writer; |
|
|
|
int s0 = 36; /* minimum total area size of basic haar feature */ |
|
int s1 = 12; /* minimum total area size of tilted haar features 2 */ |
|
int s2 = 18; /* minimum total area size of tilted haar features 3 */ |
|
int s3 = 24; /* minimum total area size of tilted haar features 4 */ |
|
|
|
int x = 0; |
|
int y = 0; |
|
int dx = 0; |
|
int dy = 0; |
|
|
|
float factor = 1.0F; |
|
|
|
factor = ((float) winsize.width) * winsize.height / (24 * 24); |
|
#if 0 |
|
s0 = (int) (s0 * factor); |
|
s1 = (int) (s1 * factor); |
|
s2 = (int) (s2 * factor); |
|
s3 = (int) (s3 * factor); |
|
#else |
|
s0 = 1; |
|
s1 = 1; |
|
s2 = 1; |
|
s3 = 1; |
|
#endif |
|
|
|
/* CV_VECTOR_CREATE( vec, CvIntHaarFeature, size, maxsize ) */ |
|
storage = cvCreateMemStorage(); |
|
cvStartWriteSeq( 0, sizeof( CvSeq ), sizeof( haarFeature ), storage, &writer ); |
|
|
|
for( x = 0; x < winsize.width; x++ ) |
|
{ |
|
for( y = 0; y < winsize.height; y++ ) |
|
{ |
|
for( dx = 1; dx <= winsize.width; dx++ ) |
|
{ |
|
for( dy = 1; dy <= winsize.height; dy++ ) |
|
{ |
|
// haar_x2 |
|
if ( (x+dx*2 <= winsize.width) && (y+dy <= winsize.height) ) { |
|
if (dx*2*dy < s0) continue; |
|
if (!symmetric || (x+x+dx*2 <=winsize.width)) { |
|
haarFeature = cvHaarFeature( "haar_x2", |
|
x, y, dx*2, dy, -1, |
|
x+dx, y, dx , dy, +2 ); |
|
/* CV_VECTOR_PUSH( vec, CvIntHaarFeature, haarFeature, size, maxsize, step ) */ |
|
CV_WRITE_SEQ_ELEM( haarFeature, writer ); |
|
} |
|
} |
|
|
|
// haar_y2 |
|
if ( (x+dx <= winsize.width) && (y+dy*2 <= winsize.height) ) { |
|
if (dx*2*dy < s0) continue; |
|
if (!symmetric || (x+x+dx <= winsize.width)) { |
|
haarFeature = cvHaarFeature( "haar_y2", |
|
x, y, dx, dy*2, -1, |
|
x, y+dy, dx, dy, +2 ); |
|
CV_WRITE_SEQ_ELEM( haarFeature, writer ); |
|
} |
|
} |
|
|
|
// haar_x3 |
|
if ( (x+dx*3 <= winsize.width) && (y+dy <= winsize.height) ) { |
|
if (dx*3*dy < s0) continue; |
|
if (!symmetric || (x+x+dx*3 <=winsize.width)) { |
|
haarFeature = cvHaarFeature( "haar_x3", |
|
x, y, dx*3, dy, -1, |
|
x+dx, y, dx, dy, +3 ); |
|
CV_WRITE_SEQ_ELEM( haarFeature, writer ); |
|
} |
|
} |
|
|
|
// haar_y3 |
|
if ( (x+dx <= winsize.width) && (y+dy*3 <= winsize.height) ) { |
|
if (dx*3*dy < s0) continue; |
|
if (!symmetric || (x+x+dx <= winsize.width)) { |
|
haarFeature = cvHaarFeature( "haar_y3", |
|
x, y, dx, dy*3, -1, |
|
x, y+dy, dx, dy, +3 ); |
|
CV_WRITE_SEQ_ELEM( haarFeature, writer ); |
|
} |
|
} |
|
|
|
if( mode != 0 /*BASIC*/ ) { |
|
// haar_x4 |
|
if ( (x+dx*4 <= winsize.width) && (y+dy <= winsize.height) ) { |
|
if (dx*4*dy < s0) continue; |
|
if (!symmetric || (x+x+dx*4 <=winsize.width)) { |
|
haarFeature = cvHaarFeature( "haar_x4", |
|
x, y, dx*4, dy, -1, |
|
x+dx, y, dx*2, dy, +2 ); |
|
CV_WRITE_SEQ_ELEM( haarFeature, writer ); |
|
} |
|
} |
|
|
|
// haar_y4 |
|
if ( (x+dx <= winsize.width ) && (y+dy*4 <= winsize.height) ) { |
|
if (dx*4*dy < s0) continue; |
|
if (!symmetric || (x+x+dx <=winsize.width)) { |
|
haarFeature = cvHaarFeature( "haar_y4", |
|
x, y, dx, dy*4, -1, |
|
x, y+dy, dx, dy*2, +2 ); |
|
CV_WRITE_SEQ_ELEM( haarFeature, writer ); |
|
} |
|
} |
|
} |
|
|
|
// x2_y2 |
|
if ( (x+dx*2 <= winsize.width) && (y+dy*2 <= winsize.height) ) { |
|
if (dx*4*dy < s0) continue; |
|
if (!symmetric || (x+x+dx*2 <=winsize.width)) { |
|
haarFeature = cvHaarFeature( "haar_x2_y2", |
|
x , y, dx*2, dy*2, -1, |
|
x , y , dx , dy, +2, |
|
x+dx, y+dy, dx , dy, +2 ); |
|
CV_WRITE_SEQ_ELEM( haarFeature, writer ); |
|
} |
|
} |
|
|
|
if (mode != 0 /*BASIC*/) { |
|
// point |
|
if ( (x+dx*3 <= winsize.width) && (y+dy*3 <= winsize.height) ) { |
|
if (dx*9*dy < s0) continue; |
|
if (!symmetric || (x+x+dx*3 <=winsize.width)) { |
|
haarFeature = cvHaarFeature( "haar_point", |
|
x , y, dx*3, dy*3, -1, |
|
x+dx, y+dy, dx , dy , +9); |
|
CV_WRITE_SEQ_ELEM( haarFeature, writer ); |
|
} |
|
} |
|
} |
|
|
|
if (mode == 2 /*ALL*/) { |
|
// tilted haar_x2 (x, y, w, h, b, weight) |
|
if ( (x+2*dx <= winsize.width) && (y+2*dx+dy <= winsize.height) && (x-dy>= 0) ) { |
|
if (dx*2*dy < s1) continue; |
|
|
|
if (!symmetric || (x <= (winsize.width / 2) )) { |
|
haarFeature = cvHaarFeature( "tilted_haar_x2", |
|
x, y, dx*2, dy, -1, |
|
x, y, dx , dy, +2 ); |
|
CV_WRITE_SEQ_ELEM( haarFeature, writer ); |
|
} |
|
} |
|
|
|
// tilted haar_y2 (x, y, w, h, b, weight) |
|
if ( (x+dx <= winsize.width) && (y+dx+2*dy <= winsize.height) && (x-2*dy>= 0) ) { |
|
if (dx*2*dy < s1) continue; |
|
|
|
if (!symmetric || (x <= (winsize.width / 2) )) { |
|
haarFeature = cvHaarFeature( "tilted_haar_y2", |
|
x, y, dx, 2*dy, -1, |
|
x, y, dx, dy, +2 ); |
|
CV_WRITE_SEQ_ELEM( haarFeature, writer ); |
|
} |
|
} |
|
|
|
// tilted haar_x3 (x, y, w, h, b, weight) |
|
if ( (x+3*dx <= winsize.width) && (y+3*dx+dy <= winsize.height) && (x-dy>= 0) ) { |
|
if (dx*3*dy < s2) continue; |
|
|
|
if (!symmetric || (x <= (winsize.width / 2) )) { |
|
haarFeature = cvHaarFeature( "tilted_haar_x3", |
|
x, y, dx*3, dy, -1, |
|
x+dx, y+dx, dx , dy, +3 ); |
|
CV_WRITE_SEQ_ELEM( haarFeature, writer ); |
|
} |
|
} |
|
|
|
// tilted haar_y3 (x, y, w, h, b, weight) |
|
if ( (x+dx <= winsize.width) && (y+dx+3*dy <= winsize.height) && (x-3*dy>= 0) ) { |
|
if (dx*3*dy < s2) continue; |
|
|
|
if (!symmetric || (x <= (winsize.width / 2) )) { |
|
haarFeature = cvHaarFeature( "tilted_haar_y3", |
|
x, y, dx, 3*dy, -1, |
|
x-dy, y+dy, dx, dy, +3 ); |
|
CV_WRITE_SEQ_ELEM( haarFeature, writer ); |
|
} |
|
} |
|
|
|
|
|
// tilted haar_x4 (x, y, w, h, b, weight) |
|
if ( (x+4*dx <= winsize.width) && (y+4*dx+dy <= winsize.height) && (x-dy>= 0) ) { |
|
if (dx*4*dy < s3) continue; |
|
|
|
if (!symmetric || (x <= (winsize.width / 2) )) { |
|
haarFeature = cvHaarFeature( "tilted_haar_x4", |
|
|
|
|
|
x, y, dx*4, dy, -1, |
|
x+dx, y+dx, dx*2, dy, +2 ); |
|
CV_WRITE_SEQ_ELEM( haarFeature, writer ); |
|
} |
|
} |
|
|
|
// tilted haar_y4 (x, y, w, h, b, weight) |
|
if ( (x+dx <= winsize.width) && (y+dx+4*dy <= winsize.height) && (x-4*dy>= 0) ) { |
|
if (dx*4*dy < s3) continue; |
|
|
|
if (!symmetric || (x <= (winsize.width / 2) )) { |
|
haarFeature = cvHaarFeature( "tilted_haar_y4", |
|
x, y, dx, 4*dy, -1, |
|
x-dy, y+dy, dx, 2*dy, +2 ); |
|
CV_WRITE_SEQ_ELEM( haarFeature, writer ); |
|
} |
|
} |
|
|
|
|
|
/* |
|
|
|
// tilted point |
|
if ( (x+dx*3 <= winsize.width - 1) && (y+dy*3 <= winsize.height - 1) && (x-3*dy>= 0)) { |
|
if (dx*9*dy < 36) continue; |
|
if (!symmetric || (x <= (winsize.width / 2) )) { |
|
haarFeature = cvHaarFeature( "tilted_haar_point", |
|
x, y, dx*3, dy*3, -1, |
|
x, y+dy, dx , dy, +9 ); |
|
CV_WRITE_SEQ_ELEM( haarFeature, writer ); |
|
} |
|
} |
|
*/ |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
seq = cvEndWriteSeq( &writer ); |
|
features = (CvIntHaarFeatures*) cvAlloc( sizeof( CvIntHaarFeatures ) + |
|
( sizeof( CvTHaarFeature ) + sizeof( CvFastHaarFeature ) ) * seq->total ); |
|
features->feature = (CvTHaarFeature*) (features + 1); |
|
features->fastfeature = (CvFastHaarFeature*) ( features->feature + seq->total ); |
|
features->count = seq->total; |
|
features->winsize = winsize; |
|
cvCvtSeqToArray( seq, (CvArr*) features->feature ); |
|
cvReleaseMemStorage( &storage ); |
|
|
|
icvConvertToFastHaarFeature( features->feature, features->fastfeature, |
|
features->count, (winsize.width + 1) ); |
|
|
|
return features; |
|
} |
|
|
|
static |
|
void icvReleaseIntHaarFeatures( CvIntHaarFeatures** intHaarFeatures ) |
|
{ |
|
if( intHaarFeatures != NULL && (*intHaarFeatures) != NULL ) |
|
{ |
|
cvFree( intHaarFeatures ); |
|
(*intHaarFeatures) = NULL; |
|
} |
|
} |
|
|
|
|
|
void icvConvertToFastHaarFeature( CvTHaarFeature* haarFeature, |
|
CvFastHaarFeature* fastHaarFeature, |
|
int size, int step ) |
|
{ |
|
int i = 0; |
|
int j = 0; |
|
|
|
for( i = 0; i < size; i++ ) |
|
{ |
|
fastHaarFeature[i].tilted = haarFeature[i].tilted; |
|
if( !fastHaarFeature[i].tilted ) |
|
{ |
|
for( j = 0; j < CV_HAAR_FEATURE_MAX; j++ ) |
|
{ |
|
fastHaarFeature[i].rect[j].weight = haarFeature[i].rect[j].weight; |
|
if( fastHaarFeature[i].rect[j].weight == 0.0F ) |
|
{ |
|
break; |
|
} |
|
CV_SUM_OFFSETS( fastHaarFeature[i].rect[j].p0, |
|
fastHaarFeature[i].rect[j].p1, |
|
fastHaarFeature[i].rect[j].p2, |
|
fastHaarFeature[i].rect[j].p3, |
|
haarFeature[i].rect[j].r, step ) |
|
} |
|
|
|
} |
|
else |
|
{ |
|
for( j = 0; j < CV_HAAR_FEATURE_MAX; j++ ) |
|
{ |
|
fastHaarFeature[i].rect[j].weight = haarFeature[i].rect[j].weight; |
|
if( fastHaarFeature[i].rect[j].weight == 0.0F ) |
|
{ |
|
break; |
|
} |
|
CV_TILTED_OFFSETS( fastHaarFeature[i].rect[j].p0, |
|
fastHaarFeature[i].rect[j].p1, |
|
fastHaarFeature[i].rect[j].p2, |
|
fastHaarFeature[i].rect[j].p3, |
|
haarFeature[i].rect[j].r, step ) |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
/* |
|
* icvCreateHaarTrainingData |
|
* |
|
* Create haar training data used in stage training |
|
*/ |
|
static |
|
CvHaarTrainigData* icvCreateHaarTrainingData( CvSize winsize, int maxnumsamples ) |
|
{ |
|
CvHaarTrainigData* data; |
|
|
|
CV_FUNCNAME( "icvCreateHaarTrainingData" ); |
|
|
|
__BEGIN__; |
|
|
|
data = NULL; |
|
uchar* ptr = NULL; |
|
size_t datasize = 0; |
|
|
|
datasize = sizeof( CvHaarTrainigData ) + |
|
/* sum and tilted */ |
|
( 2 * (winsize.width + 1) * (winsize.height + 1) * sizeof( sum_type ) + |
|
sizeof( float ) + /* normfactor */ |
|
sizeof( float ) + /* cls */ |
|
sizeof( float ) /* weight */ |
|
) * maxnumsamples; |
|
|
|
CV_CALL( data = (CvHaarTrainigData*) cvAlloc( datasize ) ); |
|
memset( (void*)data, 0, datasize ); |
|
data->maxnum = maxnumsamples; |
|
data->winsize = winsize; |
|
ptr = (uchar*)(data + 1); |
|
data->sum = cvMat( maxnumsamples, (winsize.width + 1) * (winsize.height + 1), |
|
CV_SUM_MAT_TYPE, (void*) ptr ); |
|
ptr += sizeof( sum_type ) * maxnumsamples * (winsize.width+1) * (winsize.height+1); |
|
data->tilted = cvMat( maxnumsamples, (winsize.width + 1) * (winsize.height + 1), |
|
CV_SUM_MAT_TYPE, (void*) ptr ); |
|
ptr += sizeof( sum_type ) * maxnumsamples * (winsize.width+1) * (winsize.height+1); |
|
data->normfactor = cvMat( 1, maxnumsamples, CV_32FC1, (void*) ptr ); |
|
ptr += sizeof( float ) * maxnumsamples; |
|
data->cls = cvMat( 1, maxnumsamples, CV_32FC1, (void*) ptr ); |
|
ptr += sizeof( float ) * maxnumsamples; |
|
data->weights = cvMat( 1, maxnumsamples, CV_32FC1, (void*) ptr ); |
|
|
|
data->valcache = NULL; |
|
data->idxcache = NULL; |
|
|
|
__END__; |
|
|
|
return data; |
|
} |
|
|
|
static |
|
void icvReleaseHaarTrainingDataCache( CvHaarTrainigData** haarTrainingData ) |
|
{ |
|
if( haarTrainingData != NULL && (*haarTrainingData) != NULL ) |
|
{ |
|
if( (*haarTrainingData)->valcache != NULL ) |
|
{ |
|
cvReleaseMat( &(*haarTrainingData)->valcache ); |
|
(*haarTrainingData)->valcache = NULL; |
|
} |
|
if( (*haarTrainingData)->idxcache != NULL ) |
|
{ |
|
cvReleaseMat( &(*haarTrainingData)->idxcache ); |
|
(*haarTrainingData)->idxcache = NULL; |
|
} |
|
} |
|
} |
|
|
|
static |
|
void icvReleaseHaarTrainingData( CvHaarTrainigData** haarTrainingData ) |
|
{ |
|
if( haarTrainingData != NULL && (*haarTrainingData) != NULL ) |
|
{ |
|
icvReleaseHaarTrainingDataCache( haarTrainingData ); |
|
|
|
cvFree( haarTrainingData ); |
|
} |
|
} |
|
|
|
static |
|
void icvGetTrainingDataCallback( CvMat* mat, CvMat* sampleIdx, CvMat*, |
|
int first, int num, void* userdata ) |
|
{ |
|
int i = 0; |
|
int j = 0; |
|
float val = 0.0F; |
|
float normfactor = 0.0F; |
|
|
|
CvHaarTrainingData* training_data; |
|
CvIntHaarFeatures* haar_features; |
|
|
|
#ifdef CV_COL_ARRANGEMENT |
|
assert( mat->rows >= num ); |
|
#else |
|
assert( mat->cols >= num ); |
|
#endif |
|
|
|
training_data = ((CvUserdata*) userdata)->trainingData; |
|
haar_features = ((CvUserdata*) userdata)->haarFeatures; |
|
if( sampleIdx == NULL ) |
|
{ |
|
int num_samples; |
|
|
|
#ifdef CV_COL_ARRANGEMENT |
|
num_samples = mat->cols; |
|
#else |
|
num_samples = mat->rows; |
|
#endif |
|
for( i = 0; i < num_samples; i++ ) |
|
{ |
|
for( j = 0; j < num; j++ ) |
|
{ |
|
val = cvEvalFastHaarFeature( |
|
( haar_features->fastfeature |
|
+ first + j ), |
|
(sum_type*) (training_data->sum.data.ptr |
|
+ i * training_data->sum.step), |
|
(sum_type*) (training_data->tilted.data.ptr |
|
+ i * training_data->tilted.step) ); |
|
normfactor = training_data->normfactor.data.fl[i]; |
|
val = ( normfactor == 0.0F ) ? 0.0F : (val / normfactor); |
|
|
|
#ifdef CV_COL_ARRANGEMENT |
|
CV_MAT_ELEM( *mat, float, j, i ) = val; |
|
#else |
|
CV_MAT_ELEM( *mat, float, i, j ) = val; |
|
#endif |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
uchar* idxdata = NULL; |
|
size_t step = 0; |
|
int numidx = 0; |
|
int idx = 0; |
|
|
|
assert( CV_MAT_TYPE( sampleIdx->type ) == CV_32FC1 ); |
|
|
|
idxdata = sampleIdx->data.ptr; |
|
if( sampleIdx->rows == 1 ) |
|
{ |
|
step = sizeof( float ); |
|
numidx = sampleIdx->cols; |
|
} |
|
else |
|
{ |
|
step = sampleIdx->step; |
|
numidx = sampleIdx->rows; |
|
} |
|
|
|
for( i = 0; i < numidx; i++ ) |
|
{ |
|
for( j = 0; j < num; j++ ) |
|
{ |
|
idx = (int)( *((float*) (idxdata + i * step)) ); |
|
val = cvEvalFastHaarFeature( |
|
( haar_features->fastfeature |
|
+ first + j ), |
|
(sum_type*) (training_data->sum.data.ptr |
|
+ idx * training_data->sum.step), |
|
(sum_type*) (training_data->tilted.data.ptr |
|
+ idx * training_data->tilted.step) ); |
|
normfactor = training_data->normfactor.data.fl[idx]; |
|
val = ( normfactor == 0.0F ) ? 0.0F : (val / normfactor); |
|
|
|
#ifdef CV_COL_ARRANGEMENT |
|
CV_MAT_ELEM( *mat, float, j, idx ) = val; |
|
#else |
|
CV_MAT_ELEM( *mat, float, idx, j ) = val; |
|
#endif |
|
|
|
} |
|
} |
|
} |
|
#if 0 /*def CV_VERBOSE*/ |
|
if( first % 5000 == 0 ) |
|
{ |
|
fprintf( stderr, "%3d%%\r", (int) (100.0 * first / |
|
haar_features->count) ); |
|
fflush( stderr ); |
|
} |
|
#endif /* CV_VERBOSE */ |
|
} |
|
|
|
static |
|
void icvPrecalculate( CvHaarTrainingData* data, CvIntHaarFeatures* haarFeatures, |
|
int numprecalculated ) |
|
{ |
|
CV_FUNCNAME( "icvPrecalculate" ); |
|
|
|
__BEGIN__; |
|
|
|
icvReleaseHaarTrainingDataCache( &data ); |
|
|
|
numprecalculated -= numprecalculated % CV_STUMP_TRAIN_PORTION; |
|
numprecalculated = MIN( numprecalculated, haarFeatures->count ); |
|
|
|
if( numprecalculated > 0 ) |
|
{ |
|
//size_t datasize; |
|
int m; |
|
CvUserdata userdata; |
|
|
|
/* private variables */ |
|
#ifdef CV_OPENMP |
|
CvMat t_data; |
|
CvMat t_idx; |
|
int first; |
|
int t_portion; |
|
int portion = CV_STUMP_TRAIN_PORTION; |
|
#endif /* CV_OPENMP */ |
|
|
|
m = data->sum.rows; |
|
|
|
#ifdef CV_COL_ARRANGEMENT |
|
CV_CALL( data->valcache = cvCreateMat( numprecalculated, m, CV_32FC1 ) ); |
|
#else |
|
CV_CALL( data->valcache = cvCreateMat( m, numprecalculated, CV_32FC1 ) ); |
|
#endif |
|
CV_CALL( data->idxcache = cvCreateMat( numprecalculated, m, CV_IDX_MAT_TYPE ) ); |
|
|
|
userdata = cvUserdata( data, haarFeatures ); |
|
|
|
#ifdef CV_OPENMP |
|
#pragma omp parallel for private(t_data, t_idx, first, t_portion) |
|
for( first = 0; first < numprecalculated; first += portion ) |
|
{ |
|
t_data = *data->valcache; |
|
t_idx = *data->idxcache; |
|
t_portion = MIN( portion, (numprecalculated - first) ); |
|
|
|
/* indices */ |
|
t_idx.rows = t_portion; |
|
t_idx.data.ptr = data->idxcache->data.ptr + first * ((size_t)t_idx.step); |
|
|
|
/* feature values */ |
|
#ifdef CV_COL_ARRANGEMENT |
|
t_data.rows = t_portion; |
|
t_data.data.ptr = data->valcache->data.ptr + |
|
first * ((size_t) t_data.step ); |
|
#else |
|
t_data.cols = t_portion; |
|
t_data.data.ptr = data->valcache->data.ptr + |
|
first * ((size_t) CV_ELEM_SIZE( t_data.type )); |
|
#endif |
|
icvGetTrainingDataCallback( &t_data, NULL, NULL, first, t_portion, |
|
&userdata ); |
|
#ifdef CV_COL_ARRANGEMENT |
|
cvGetSortedIndices( &t_data, &t_idx, 0 ); |
|
#else |
|
cvGetSortedIndices( &t_data, &t_idx, 1 ); |
|
#endif |
|
|
|
#ifdef CV_VERBOSE |
|
putc( '.', stderr ); |
|
fflush( stderr ); |
|
#endif /* CV_VERBOSE */ |
|
|
|
} |
|
|
|
#ifdef CV_VERBOSE |
|
fprintf( stderr, "\n" ); |
|
fflush( stderr ); |
|
#endif /* CV_VERBOSE */ |
|
|
|
#else |
|
icvGetTrainingDataCallback( data->valcache, NULL, NULL, 0, numprecalculated, |
|
&userdata ); |
|
#ifdef CV_COL_ARRANGEMENT |
|
cvGetSortedIndices( data->valcache, data->idxcache, 0 ); |
|
#else |
|
cvGetSortedIndices( data->valcache, data->idxcache, 1 ); |
|
#endif |
|
#endif /* CV_OPENMP */ |
|
} |
|
|
|
__END__; |
|
} |
|
|
|
static |
|
void icvSplitIndicesCallback( int compidx, float threshold, |
|
CvMat* idx, CvMat** left, CvMat** right, |
|
void* userdata ) |
|
{ |
|
CvHaarTrainingData* data; |
|
CvIntHaarFeatures* haar_features; |
|
int i; |
|
int m; |
|
CvFastHaarFeature* fastfeature; |
|
|
|
data = ((CvUserdata*) userdata)->trainingData; |
|
haar_features = ((CvUserdata*) userdata)->haarFeatures; |
|
fastfeature = &haar_features->fastfeature[compidx]; |
|
|
|
m = data->sum.rows; |
|
*left = cvCreateMat( 1, m, CV_32FC1 ); |
|
*right = cvCreateMat( 1, m, CV_32FC1 ); |
|
(*left)->cols = (*right)->cols = 0; |
|
if( idx == NULL ) |
|
{ |
|
for( i = 0; i < m; i++ ) |
|
{ |
|
if( cvEvalFastHaarFeature( fastfeature, |
|
(sum_type*) (data->sum.data.ptr + i * data->sum.step), |
|
(sum_type*) (data->tilted.data.ptr + i * data->tilted.step) ) |
|
< threshold * data->normfactor.data.fl[i] ) |
|
{ |
|
(*left)->data.fl[(*left)->cols++] = (float) i; |
|
} |
|
else |
|
{ |
|
(*right)->data.fl[(*right)->cols++] = (float) i; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
uchar* idxdata; |
|
int idxnum; |
|
size_t idxstep; |
|
int index; |
|
|
|
idxdata = idx->data.ptr; |
|
idxnum = (idx->rows == 1) ? idx->cols : idx->rows; |
|
idxstep = (idx->rows == 1) ? CV_ELEM_SIZE( idx->type ) : idx->step; |
|
for( i = 0; i < idxnum; i++ ) |
|
{ |
|
index = (int) *((float*) (idxdata + i * idxstep)); |
|
if( cvEvalFastHaarFeature( fastfeature, |
|
(sum_type*) (data->sum.data.ptr + index * data->sum.step), |
|
(sum_type*) (data->tilted.data.ptr + index * data->tilted.step) ) |
|
< threshold * data->normfactor.data.fl[index] ) |
|
{ |
|
(*left)->data.fl[(*left)->cols++] = (float) index; |
|
} |
|
else |
|
{ |
|
(*right)->data.fl[(*right)->cols++] = (float) index; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* |
|
* icvCreateCARTStageClassifier |
|
* |
|
* Create stage classifier with trees as weak classifiers |
|
* data - haar training data. It must be created and filled before call |
|
* minhitrate - desired min hit rate |
|
* maxfalsealarm - desired max false alarm rate |
|
* symmetric - if not 0 it is assumed that samples are vertically symmetric |
|
* numprecalculated - number of features that will be precalculated. Each precalculated |
|
* feature need (number_of_samples*(sizeof( float ) + sizeof( short ))) bytes of memory |
|
* weightfraction - weight trimming parameter |
|
* numsplits - number of binary splits in each tree |
|
* boosttype - type of applied boosting algorithm |
|
* stumperror - type of used error if Discrete AdaBoost algorithm is applied |
|
* maxsplits - maximum total number of splits in all weak classifiers. |
|
* If it is not 0 then NULL returned if total number of splits exceeds <maxsplits>. |
|
*/ |
|
static |
|
CvIntHaarClassifier* icvCreateCARTStageClassifier( CvHaarTrainingData* data, |
|
CvMat* sampleIdx, |
|
CvIntHaarFeatures* haarFeatures, |
|
float minhitrate, |
|
float maxfalsealarm, |
|
int symmetric, |
|
float weightfraction, |
|
int numsplits, |
|
CvBoostType boosttype, |
|
CvStumpError stumperror, |
|
int maxsplits ) |
|
{ |
|
|
|
#ifdef CV_COL_ARRANGEMENT |
|
int flags = CV_COL_SAMPLE; |
|
#else |
|
int flags = CV_ROW_SAMPLE; |
|
#endif |
|
|
|
CvStageHaarClassifier* stage = NULL; |
|
CvBoostTrainer* trainer; |
|
CvCARTClassifier* cart = NULL; |
|
CvCARTTrainParams trainParams; |
|
CvMTStumpTrainParams stumpTrainParams; |
|
//CvMat* trainData = NULL; |
|
//CvMat* sortedIdx = NULL; |
|
CvMat eval; |
|
int n = 0; |
|
int m = 0; |
|
int numpos = 0; |
|
int numneg = 0; |
|
int numfalse = 0; |
|
float sum_stage = 0.0F; |
|
float threshold = 0.0F; |
|
float falsealarm = 0.0F; |
|
|
|
//CvMat* sampleIdx = NULL; |
|
CvMat* trimmedIdx; |
|
//float* idxdata = NULL; |
|
//float* tempweights = NULL; |
|
//int idxcount = 0; |
|
CvUserdata userdata; |
|
|
|
int i = 0; |
|
int j = 0; |
|
int idx; |
|
int numsamples; |
|
int numtrimmed; |
|
|
|
CvCARTHaarClassifier* classifier; |
|
CvSeq* seq = NULL; |
|
CvMemStorage* storage = NULL; |
|
CvMat* weakTrainVals; |
|
float alpha; |
|
float sumalpha; |
|
int num_splits; /* total number of splits in all weak classifiers */ |
|
|
|
#ifdef CV_VERBOSE |
|
printf( "+----+----+-+---------+---------+---------+---------+\n" ); |
|
printf( "| N |%%SMP|F| ST.THR | HR | FA | EXP. ERR|\n" ); |
|
printf( "+----+----+-+---------+---------+---------+---------+\n" ); |
|
#endif /* CV_VERBOSE */ |
|
|
|
n = haarFeatures->count; |
|
m = data->sum.rows; |
|
numsamples = (sampleIdx) ? MAX( sampleIdx->rows, sampleIdx->cols ) : m; |
|
|
|
userdata = cvUserdata( data, haarFeatures ); |
|
|
|
stumpTrainParams.type = ( boosttype == CV_DABCLASS ) |
|
? CV_CLASSIFICATION_CLASS : CV_REGRESSION; |
|
stumpTrainParams.error = ( boosttype == CV_LBCLASS || boosttype == CV_GABCLASS ) |
|
? CV_SQUARE : stumperror; |
|
stumpTrainParams.portion = CV_STUMP_TRAIN_PORTION; |
|
stumpTrainParams.getTrainData = icvGetTrainingDataCallback; |
|
stumpTrainParams.numcomp = n; |
|
stumpTrainParams.userdata = &userdata; |
|
stumpTrainParams.sortedIdx = data->idxcache; |
|
|
|
trainParams.count = numsplits; |
|
trainParams.stumpTrainParams = (CvClassifierTrainParams*) &stumpTrainParams; |
|
trainParams.stumpConstructor = cvCreateMTStumpClassifier; |
|
trainParams.splitIdx = icvSplitIndicesCallback; |
|
trainParams.userdata = &userdata; |
|
|
|
eval = cvMat( 1, m, CV_32FC1, cvAlloc( sizeof( float ) * m ) ); |
|
|
|
storage = cvCreateMemStorage(); |
|
seq = cvCreateSeq( 0, sizeof( *seq ), sizeof( classifier ), storage ); |
|
|
|
weakTrainVals = cvCreateMat( 1, m, CV_32FC1 ); |
|
trainer = cvBoostStartTraining( &data->cls, weakTrainVals, &data->weights, |
|
sampleIdx, boosttype ); |
|
num_splits = 0; |
|
sumalpha = 0.0F; |
|
do |
|
{ |
|
|
|
#ifdef CV_VERBOSE |
|
int v_wt = 0; |
|
int v_flipped = 0; |
|
#endif /* CV_VERBOSE */ |
|
|
|
trimmedIdx = cvTrimWeights( &data->weights, sampleIdx, weightfraction ); |
|
numtrimmed = (trimmedIdx) ? MAX( trimmedIdx->rows, trimmedIdx->cols ) : m; |
|
|
|
#ifdef CV_VERBOSE |
|
v_wt = 100 * numtrimmed / numsamples; |
|
v_flipped = 0; |
|
|
|
#endif /* CV_VERBOSE */ |
|
|
|
cart = (CvCARTClassifier*) cvCreateCARTClassifier( data->valcache, |
|
flags, |
|
weakTrainVals, 0, 0, 0, trimmedIdx, |
|
&(data->weights), |
|
(CvClassifierTrainParams*) &trainParams ); |
|
|
|
classifier = (CvCARTHaarClassifier*) icvCreateCARTHaarClassifier( numsplits ); |
|
icvInitCARTHaarClassifier( classifier, cart, haarFeatures ); |
|
|
|
num_splits += classifier->count; |
|
|
|
cart->release( (CvClassifier**) &cart ); |
|
|
|
if( symmetric && (seq->total % 2) ) |
|
{ |
|
float normfactor = 0.0F; |
|
CvStumpClassifier* stump; |
|
|
|
/* flip haar features */ |
|
for( i = 0; i < classifier->count; i++ ) |
|
{ |
|
if( classifier->feature[i].desc[0] == 'h' ) |
|
{ |
|
for( j = 0; j < CV_HAAR_FEATURE_MAX && |
|
classifier->feature[i].rect[j].weight != 0.0F; j++ ) |
|
{ |
|
classifier->feature[i].rect[j].r.x = data->winsize.width - |
|
classifier->feature[i].rect[j].r.x - |
|
classifier->feature[i].rect[j].r.width; |
|
} |
|
} |
|
else |
|
{ |
|
int tmp = 0; |
|
|
|
/* (x,y) -> (24-x,y) */ |
|
/* w -> h; h -> w */ |
|
for( j = 0; j < CV_HAAR_FEATURE_MAX && |
|
classifier->feature[i].rect[j].weight != 0.0F; j++ ) |
|
{ |
|
classifier->feature[i].rect[j].r.x = data->winsize.width - |
|
classifier->feature[i].rect[j].r.x; |
|
CV_SWAP( classifier->feature[i].rect[j].r.width, |
|
classifier->feature[i].rect[j].r.height, tmp ); |
|
} |
|
} |
|
} |
|
icvConvertToFastHaarFeature( classifier->feature, |
|
classifier->fastfeature, |
|
classifier->count, data->winsize.width + 1 ); |
|
|
|
stumpTrainParams.getTrainData = NULL; |
|
stumpTrainParams.numcomp = 1; |
|
stumpTrainParams.userdata = NULL; |
|
stumpTrainParams.sortedIdx = NULL; |
|
|
|
for( i = 0; i < classifier->count; i++ ) |
|
{ |
|
for( j = 0; j < numtrimmed; j++ ) |
|
{ |
|
idx = icvGetIdxAt( trimmedIdx, j ); |
|
|
|
eval.data.fl[idx] = cvEvalFastHaarFeature( &classifier->fastfeature[i], |
|
(sum_type*) (data->sum.data.ptr + idx * data->sum.step), |
|
(sum_type*) (data->tilted.data.ptr + idx * data->tilted.step) ); |
|
normfactor = data->normfactor.data.fl[idx]; |
|
eval.data.fl[idx] = ( normfactor == 0.0F ) |
|
? 0.0F : (eval.data.fl[idx] / normfactor); |
|
} |
|
|
|
stump = (CvStumpClassifier*) trainParams.stumpConstructor( &eval, |
|
CV_COL_SAMPLE, |
|
weakTrainVals, 0, 0, 0, trimmedIdx, |
|
&(data->weights), |
|
trainParams.stumpTrainParams ); |
|
|
|
classifier->threshold[i] = stump->threshold; |
|
if( classifier->left[i] <= 0 ) |
|
{ |
|
classifier->val[-classifier->left[i]] = stump->left; |
|
} |
|
if( classifier->right[i] <= 0 ) |
|
{ |
|
classifier->val[-classifier->right[i]] = stump->right; |
|
} |
|
|
|
stump->release( (CvClassifier**) &stump ); |
|
|
|
} |
|
|
|
stumpTrainParams.getTrainData = icvGetTrainingDataCallback; |
|
stumpTrainParams.numcomp = n; |
|
stumpTrainParams.userdata = &userdata; |
|
stumpTrainParams.sortedIdx = data->idxcache; |
|
|
|
#ifdef CV_VERBOSE |
|
v_flipped = 1; |
|
#endif /* CV_VERBOSE */ |
|
|
|
} /* if symmetric */ |
|
if( trimmedIdx != sampleIdx ) |
|
{ |
|
cvReleaseMat( &trimmedIdx ); |
|
trimmedIdx = NULL; |
|
} |
|
|
|
for( i = 0; i < numsamples; i++ ) |
|
{ |
|
idx = icvGetIdxAt( sampleIdx, i ); |
|
|
|
eval.data.fl[idx] = classifier->eval( (CvIntHaarClassifier*) classifier, |
|
(sum_type*) (data->sum.data.ptr + idx * data->sum.step), |
|
(sum_type*) (data->tilted.data.ptr + idx * data->tilted.step), |
|
data->normfactor.data.fl[idx] ); |
|
} |
|
|
|
alpha = cvBoostNextWeakClassifier( &eval, &data->cls, weakTrainVals, |
|
&data->weights, trainer ); |
|
sumalpha += alpha; |
|
|
|
for( i = 0; i <= classifier->count; i++ ) |
|
{ |
|
if( boosttype == CV_RABCLASS ) |
|
{ |
|
classifier->val[i] = cvLogRatio( classifier->val[i] ); |
|
} |
|
classifier->val[i] *= alpha; |
|
} |
|
|
|
cvSeqPush( seq, (void*) &classifier ); |
|
|
|
numpos = 0; |
|
for( i = 0; i < numsamples; i++ ) |
|
{ |
|
idx = icvGetIdxAt( sampleIdx, i ); |
|
|
|
if( data->cls.data.fl[idx] == 1.0F ) |
|
{ |
|
eval.data.fl[numpos] = 0.0F; |
|
for( j = 0; j < seq->total; j++ ) |
|
{ |
|
classifier = *((CvCARTHaarClassifier**) cvGetSeqElem( seq, j )); |
|
eval.data.fl[numpos] += classifier->eval( |
|
(CvIntHaarClassifier*) classifier, |
|
(sum_type*) (data->sum.data.ptr + idx * data->sum.step), |
|
(sum_type*) (data->tilted.data.ptr + idx * data->tilted.step), |
|
data->normfactor.data.fl[idx] ); |
|
} |
|
/* eval.data.fl[numpos] = 2.0F * eval.data.fl[numpos] - seq->total; */ |
|
numpos++; |
|
} |
|
} |
|
icvSort_32f( eval.data.fl, numpos, 0 ); |
|
threshold = eval.data.fl[(int) ((1.0F - minhitrate) * numpos)]; |
|
|
|
numneg = 0; |
|
numfalse = 0; |
|
for( i = 0; i < numsamples; i++ ) |
|
{ |
|
idx = icvGetIdxAt( sampleIdx, i ); |
|
|
|
if( data->cls.data.fl[idx] == 0.0F ) |
|
{ |
|
numneg++; |
|
sum_stage = 0.0F; |
|
for( j = 0; j < seq->total; j++ ) |
|
{ |
|
classifier = *((CvCARTHaarClassifier**) cvGetSeqElem( seq, j )); |
|
sum_stage += classifier->eval( (CvIntHaarClassifier*) classifier, |
|
(sum_type*) (data->sum.data.ptr + idx * data->sum.step), |
|
(sum_type*) (data->tilted.data.ptr + idx * data->tilted.step), |
|
data->normfactor.data.fl[idx] ); |
|
} |
|
/* sum_stage = 2.0F * sum_stage - seq->total; */ |
|
if( sum_stage >= (threshold - CV_THRESHOLD_EPS) ) |
|
{ |
|
numfalse++; |
|
} |
|
} |
|
} |
|
falsealarm = ((float) numfalse) / ((float) numneg); |
|
|
|
#ifdef CV_VERBOSE |
|
{ |
|
float v_hitrate = 0.0F; |
|
float v_falsealarm = 0.0F; |
|
/* expected error of stage classifier regardless threshold */ |
|
float v_experr = 0.0F; |
|
|
|
for( i = 0; i < numsamples; i++ ) |
|
{ |
|
idx = icvGetIdxAt( sampleIdx, i ); |
|
|
|
sum_stage = 0.0F; |
|
for( j = 0; j < seq->total; j++ ) |
|
{ |
|
classifier = *((CvCARTHaarClassifier**) cvGetSeqElem( seq, j )); |
|
sum_stage += classifier->eval( (CvIntHaarClassifier*) classifier, |
|
(sum_type*) (data->sum.data.ptr + idx * data->sum.step), |
|
(sum_type*) (data->tilted.data.ptr + idx * data->tilted.step), |
|
data->normfactor.data.fl[idx] ); |
|
} |
|
/* sum_stage = 2.0F * sum_stage - seq->total; */ |
|
if( sum_stage >= (threshold - CV_THRESHOLD_EPS) ) |
|
{ |
|
if( data->cls.data.fl[idx] == 1.0F ) |
|
{ |
|
v_hitrate += 1.0F; |
|
} |
|
else |
|
{ |
|
v_falsealarm += 1.0F; |
|
} |
|
} |
|
if( ( sum_stage >= 0.0F ) != (data->cls.data.fl[idx] == 1.0F) ) |
|
{ |
|
v_experr += 1.0F; |
|
} |
|
} |
|
v_experr /= numsamples; |
|
printf( "|%4d|%3d%%|%c|%9f|%9f|%9f|%9f|\n", |
|
seq->total, v_wt, ( (v_flipped) ? '+' : '-' ), |
|
threshold, v_hitrate / numpos, v_falsealarm / numneg, |
|
v_experr ); |
|
printf( "+----+----+-+---------+---------+---------+---------+\n" ); |
|
fflush( stdout ); |
|
} |
|
#endif /* CV_VERBOSE */ |
|
|
|
} while( falsealarm > maxfalsealarm && (!maxsplits || (num_splits < maxsplits) ) ); |
|
cvBoostEndTraining( &trainer ); |
|
|
|
if( falsealarm > maxfalsealarm ) |
|
{ |
|
stage = NULL; |
|
} |
|
else |
|
{ |
|
stage = (CvStageHaarClassifier*) icvCreateStageHaarClassifier( seq->total, |
|
threshold ); |
|
cvCvtSeqToArray( seq, (CvArr*) stage->classifier ); |
|
} |
|
|
|
/* CLEANUP */ |
|
cvReleaseMemStorage( &storage ); |
|
cvReleaseMat( &weakTrainVals ); |
|
cvFree( &(eval.data.ptr) ); |
|
|
|
return (CvIntHaarClassifier*) stage; |
|
} |
|
|
|
|
|
static |
|
CvBackgroundData* icvCreateBackgroundData( const char* filename, CvSize winsize ) |
|
{ |
|
CvBackgroundData* data = NULL; |
|
|
|
const char* dir = NULL; |
|
char full[PATH_MAX]; |
|
char* imgfilename = NULL; |
|
size_t datasize = 0; |
|
int count = 0; |
|
FILE* input = NULL; |
|
char* tmp = NULL; |
|
int len = 0; |
|
|
|
assert( filename != NULL ); |
|
|
|
dir = strrchr( filename, '\\' ); |
|
if( dir == NULL ) |
|
{ |
|
dir = strrchr( filename, '/' ); |
|
} |
|
if( dir == NULL ) |
|
{ |
|
imgfilename = &(full[0]); |
|
} |
|
else |
|
{ |
|
strncpy( &(full[0]), filename, (dir - filename + 1) ); |
|
imgfilename = &(full[(dir - filename + 1)]); |
|
} |
|
|
|
input = fopen( filename, "r" ); |
|
if( input != NULL ) |
|
{ |
|
count = 0; |
|
datasize = 0; |
|
|
|
/* count */ |
|
while( !feof( input ) ) |
|
{ |
|
*imgfilename = '\0'; |
|
if( !fgets( imgfilename, PATH_MAX - (int)(imgfilename - full) - 1, input )) |
|
break; |
|
len = (int)strlen( imgfilename ); |
|
if( len > 0 && imgfilename[len-1] == '\n' ) |
|
imgfilename[len-1] = 0, len--; |
|
if( len > 0 ) |
|
{ |
|
if( (*imgfilename) == '#' ) continue; /* comment */ |
|
count++; |
|
datasize += sizeof( char ) * (strlen( &(full[0]) ) + 1); |
|
} |
|
} |
|
if( count > 0 ) |
|
{ |
|
//rewind( input ); |
|
fseek( input, 0, SEEK_SET ); |
|
datasize += sizeof( *data ) + sizeof( char* ) * count; |
|
data = (CvBackgroundData*) cvAlloc( datasize ); |
|
memset( (void*) data, 0, datasize ); |
|
data->count = count; |
|
data->filename = (char**) (data + 1); |
|
data->last = 0; |
|
data->round = 0; |
|
data->winsize = winsize; |
|
tmp = (char*) (data->filename + data->count); |
|
count = 0; |
|
while( !feof( input ) ) |
|
{ |
|
*imgfilename = '\0'; |
|
if( !fgets( imgfilename, PATH_MAX - (int)(imgfilename - full) - 1, input )) |
|
break; |
|
len = (int)strlen( imgfilename ); |
|
if( len > 0 && imgfilename[len-1] == '\n' ) |
|
imgfilename[len-1] = 0, len--; |
|
if( len > 0 ) |
|
{ |
|
if( (*imgfilename) == '#' ) continue; /* comment */ |
|
data->filename[count++] = tmp; |
|
strcpy( tmp, &(full[0]) ); |
|
tmp += strlen( &(full[0]) ) + 1; |
|
} |
|
} |
|
} |
|
fclose( input ); |
|
} |
|
|
|
return data; |
|
} |
|
|
|
static |
|
void icvReleaseBackgroundData( CvBackgroundData** data ) |
|
{ |
|
assert( data != NULL && (*data) != NULL ); |
|
|
|
cvFree( data ); |
|
} |
|
|
|
static |
|
CvBackgroundReader* icvCreateBackgroundReader() |
|
{ |
|
CvBackgroundReader* reader = NULL; |
|
|
|
reader = (CvBackgroundReader*) cvAlloc( sizeof( *reader ) ); |
|
memset( (void*) reader, 0, sizeof( *reader ) ); |
|
reader->src = cvMat( 0, 0, CV_8UC1, NULL ); |
|
reader->img = cvMat( 0, 0, CV_8UC1, NULL ); |
|
reader->offset = cvPoint( 0, 0 ); |
|
reader->scale = 1.0F; |
|
reader->scalefactor = 1.4142135623730950488016887242097F; |
|
reader->stepfactor = 0.5F; |
|
reader->point = reader->offset; |
|
|
|
return reader; |
|
} |
|
|
|
static |
|
void icvReleaseBackgroundReader( CvBackgroundReader** reader ) |
|
{ |
|
assert( reader != NULL && (*reader) != NULL ); |
|
|
|
if( (*reader)->src.data.ptr != NULL ) |
|
{ |
|
cvFree( &((*reader)->src.data.ptr) ); |
|
} |
|
if( (*reader)->img.data.ptr != NULL ) |
|
{ |
|
cvFree( &((*reader)->img.data.ptr) ); |
|
} |
|
|
|
cvFree( reader ); |
|
} |
|
|
|
static |
|
void icvGetNextFromBackgroundData( CvBackgroundData* data, |
|
CvBackgroundReader* reader ) |
|
{ |
|
IplImage* img = NULL; |
|
size_t datasize = 0; |
|
int round = 0; |
|
int i = 0; |
|
CvPoint offset = cvPoint(0,0); |
|
|
|
assert( data != NULL && reader != NULL ); |
|
|
|
if( reader->src.data.ptr != NULL ) |
|
{ |
|
cvFree( &(reader->src.data.ptr) ); |
|
reader->src.data.ptr = NULL; |
|
} |
|
if( reader->img.data.ptr != NULL ) |
|
{ |
|
cvFree( &(reader->img.data.ptr) ); |
|
reader->img.data.ptr = NULL; |
|
} |
|
|
|
#ifdef CV_OPENMP |
|
#pragma omp critical(c_background_data) |
|
#endif /* CV_OPENMP */ |
|
{ |
|
for( i = 0; i < data->count; i++ ) |
|
{ |
|
round = data->round; |
|
|
|
//#ifdef CV_VERBOSE |
|
// printf( "Open background image: %s\n", data->filename[data->last] ); |
|
//#endif /* CV_VERBOSE */ |
|
|
|
data->last = rand() % data->count; |
|
data->last %= data->count; |
|
img = cvLoadImage( data->filename[data->last], 0 ); |
|
if( !img ) |
|
continue; |
|
data->round += data->last / data->count; |
|
data->round = data->round % (data->winsize.width * data->winsize.height); |
|
|
|
offset.x = round % data->winsize.width; |
|
offset.y = round / data->winsize.width; |
|
|
|
offset.x = MIN( offset.x, img->width - data->winsize.width ); |
|
offset.y = MIN( offset.y, img->height - data->winsize.height ); |
|
|
|
if( img != NULL && img->depth == IPL_DEPTH_8U && img->nChannels == 1 && |
|
offset.x >= 0 && offset.y >= 0 ) |
|
{ |
|
break; |
|
} |
|
if( img != NULL ) |
|
cvReleaseImage( &img ); |
|
img = NULL; |
|
} |
|
} |
|
if( img == NULL ) |
|
{ |
|
/* no appropriate image */ |
|
|
|
#ifdef CV_VERBOSE |
|
printf( "Invalid background description file.\n" ); |
|
#endif /* CV_VERBOSE */ |
|
|
|
assert( 0 ); |
|
exit( 1 ); |
|
} |
|
datasize = sizeof( uchar ) * img->width * img->height; |
|
reader->src = cvMat( img->height, img->width, CV_8UC1, (void*) cvAlloc( datasize ) ); |
|
cvCopy( img, &reader->src, NULL ); |
|
cvReleaseImage( &img ); |
|
img = NULL; |
|
|
|
//reader->offset.x = round % data->winsize.width; |
|
//reader->offset.y = round / data->winsize.width; |
|
reader->offset = offset; |
|
reader->point = reader->offset; |
|
reader->scale = MAX( |
|
((float) data->winsize.width + reader->point.x) / ((float) reader->src.cols), |
|
((float) data->winsize.height + reader->point.y) / ((float) reader->src.rows) ); |
|
|
|
reader->img = cvMat( (int) (reader->scale * reader->src.rows + 0.5F), |
|
(int) (reader->scale * reader->src.cols + 0.5F), |
|
CV_8UC1, (void*) cvAlloc( datasize ) ); |
|
cvResize( &(reader->src), &(reader->img) ); |
|
} |
|
|
|
|
|
/* |
|
* icvGetBackgroundImage |
|
* |
|
* Get an image from background |
|
* <img> must be allocated and have size, previously passed to icvInitBackgroundReaders |
|
* |
|
* Usage example: |
|
* icvInitBackgroundReaders( "bg.txt", cvSize( 24, 24 ) ); |
|
* ... |
|
* #pragma omp parallel |
|
* { |
|
* ... |
|
* icvGetBackgourndImage( cvbgdata, cvbgreader, img ); |
|
* ... |
|
* } |
|
* ... |
|
* icvDestroyBackgroundReaders(); |
|
*/ |
|
static |
|
void icvGetBackgroundImage( CvBackgroundData* data, |
|
CvBackgroundReader* reader, |
|
CvMat* img ) |
|
{ |
|
CvMat mat; |
|
|
|
assert( data != NULL && reader != NULL && img != NULL ); |
|
assert( CV_MAT_TYPE( img->type ) == CV_8UC1 ); |
|
assert( img->cols == data->winsize.width ); |
|
assert( img->rows == data->winsize.height ); |
|
|
|
if( reader->img.data.ptr == NULL ) |
|
{ |
|
icvGetNextFromBackgroundData( data, reader ); |
|
} |
|
|
|
mat = cvMat( data->winsize.height, data->winsize.width, CV_8UC1 ); |
|
cvSetData( &mat, (void*) (reader->img.data.ptr + reader->point.y * reader->img.step |
|
+ reader->point.x * sizeof( uchar )), reader->img.step ); |
|
|
|
cvCopy( &mat, img, 0 ); |
|
if( (int) ( reader->point.x + (1.0F + reader->stepfactor ) * data->winsize.width ) |
|
< reader->img.cols ) |
|
{ |
|
reader->point.x += (int) (reader->stepfactor * data->winsize.width); |
|
} |
|
else |
|
{ |
|
reader->point.x = reader->offset.x; |
|
if( (int) ( reader->point.y + (1.0F + reader->stepfactor ) * data->winsize.height ) |
|
< reader->img.rows ) |
|
{ |
|
reader->point.y += (int) (reader->stepfactor * data->winsize.height); |
|
} |
|
else |
|
{ |
|
reader->point.y = reader->offset.y; |
|
reader->scale *= reader->scalefactor; |
|
if( reader->scale <= 1.0F ) |
|
{ |
|
reader->img = cvMat( (int) (reader->scale * reader->src.rows), |
|
(int) (reader->scale * reader->src.cols), |
|
CV_8UC1, (void*) (reader->img.data.ptr) ); |
|
cvResize( &(reader->src), &(reader->img) ); |
|
} |
|
else |
|
{ |
|
icvGetNextFromBackgroundData( data, reader ); |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
/* |
|
* icvInitBackgroundReaders |
|
* |
|
* Initialize background reading process. |
|
* <cvbgreader> and <cvbgdata> are initialized. |
|
* Must be called before any usage of background |
|
* |
|
* filename - name of background description file |
|
* winsize - size of images will be obtained from background |
|
* |
|
* return 1 on success, 0 otherwise. |
|
*/ |
|
static |
|
int icvInitBackgroundReaders( const char* filename, CvSize winsize ) |
|
{ |
|
if( cvbgdata == NULL && filename != NULL ) |
|
{ |
|
cvbgdata = icvCreateBackgroundData( filename, winsize ); |
|
} |
|
|
|
if( cvbgdata ) |
|
{ |
|
|
|
#ifdef CV_OPENMP |
|
#pragma omp parallel |
|
#endif /* CV_OPENMP */ |
|
{ |
|
#ifdef CV_OPENMP |
|
#pragma omp critical(c_create_bg_data) |
|
#endif /* CV_OPENMP */ |
|
{ |
|
if( cvbgreader == NULL ) |
|
{ |
|
cvbgreader = icvCreateBackgroundReader(); |
|
} |
|
} |
|
} |
|
|
|
} |
|
|
|
return (cvbgdata != NULL); |
|
} |
|
|
|
|
|
/* |
|
* icvDestroyBackgroundReaders |
|
* |
|
* Finish backgournd reading process |
|
*/ |
|
static |
|
void icvDestroyBackgroundReaders() |
|
{ |
|
/* release background reader in each thread */ |
|
#ifdef CV_OPENMP |
|
#pragma omp parallel |
|
#endif /* CV_OPENMP */ |
|
{ |
|
#ifdef CV_OPENMP |
|
#pragma omp critical(c_release_bg_data) |
|
#endif /* CV_OPENMP */ |
|
{ |
|
if( cvbgreader != NULL ) |
|
{ |
|
icvReleaseBackgroundReader( &cvbgreader ); |
|
cvbgreader = NULL; |
|
} |
|
} |
|
} |
|
|
|
if( cvbgdata != NULL ) |
|
{ |
|
icvReleaseBackgroundData( &cvbgdata ); |
|
cvbgdata = NULL; |
|
} |
|
} |
|
|
|
|
|
/* |
|
* icvGetAuxImages |
|
* |
|
* Get sum, tilted, sqsum images and calculate normalization factor |
|
* All images must be allocated. |
|
*/ |
|
static |
|
void icvGetAuxImages( CvMat* img, CvMat* sum, CvMat* tilted, |
|
CvMat* sqsum, float* normfactor ) |
|
{ |
|
CvRect normrect; |
|
int p0, p1, p2, p3; |
|
sum_type valsum = 0; |
|
sqsum_type valsqsum = 0; |
|
double area = 0.0; |
|
|
|
cvIntegral( img, sum, sqsum, tilted ); |
|
normrect = cvRect( 1, 1, img->cols - 2, img->rows - 2 ); |
|
CV_SUM_OFFSETS( p0, p1, p2, p3, normrect, img->cols + 1 ) |
|
|
|
area = normrect.width * normrect.height; |
|
valsum = ((sum_type*) (sum->data.ptr))[p0] - ((sum_type*) (sum->data.ptr))[p1] |
|
- ((sum_type*) (sum->data.ptr))[p2] + ((sum_type*) (sum->data.ptr))[p3]; |
|
valsqsum = ((sqsum_type*) (sqsum->data.ptr))[p0] |
|
- ((sqsum_type*) (sqsum->data.ptr))[p1] |
|
- ((sqsum_type*) (sqsum->data.ptr))[p2] |
|
+ ((sqsum_type*) (sqsum->data.ptr))[p3]; |
|
|
|
/* sqrt( valsqsum / area - ( valsum / are )^2 ) * area */ |
|
(*normfactor) = (float) sqrt( (double) (area * valsqsum - (double)valsum * valsum) ); |
|
} |
|
|
|
|
|
/* consumed counter */ |
|
typedef uint64 ccounter_t; |
|
|
|
#define CCOUNTER_MAX CV_BIG_UINT(0xffffffffffffffff) |
|
#define CCOUNTER_SET_ZERO(cc) ((cc) = 0) |
|
#define CCOUNTER_INC(cc) ( (CCOUNTER_MAX > (cc) ) ? (++(cc)) : (CCOUNTER_MAX) ) |
|
#define CCOUNTER_ADD(cc0, cc1) ( ((CCOUNTER_MAX-(cc1)) > (cc0) ) ? ((cc0) += (cc1)) : ((cc0) = CCOUNTER_MAX) ) |
|
#define CCOUNTER_DIV(cc0, cc1) ( ((cc1) == 0) ? 0 : ( ((double)(cc0))/(double)(int64)(cc1) ) ) |
|
|
|
|
|
|
|
/* |
|
* icvGetHaarTrainingData |
|
* |
|
* Unified method that can now be used for vec file, bg file and bg vec file |
|
* |
|
* Fill <data> with samples, passed <cascade> |
|
*/ |
|
static |
|
int icvGetHaarTrainingData( CvHaarTrainingData* data, int first, int count, |
|
CvIntHaarClassifier* cascade, |
|
CvGetHaarTrainingDataCallback callback, void* userdata, |
|
int* consumed, double* acceptance_ratio ) |
|
{ |
|
int i = 0; |
|
ccounter_t getcount = 0; |
|
ccounter_t thread_getcount = 0; |
|
ccounter_t consumed_count; |
|
ccounter_t thread_consumed_count; |
|
|
|
/* private variables */ |
|
CvMat img; |
|
CvMat sum; |
|
CvMat tilted; |
|
CvMat sqsum; |
|
|
|
sum_type* sumdata; |
|
sum_type* tilteddata; |
|
float* normfactor; |
|
|
|
/* end private variables */ |
|
|
|
assert( data != NULL ); |
|
assert( first + count <= data->maxnum ); |
|
assert( cascade != NULL ); |
|
assert( callback != NULL ); |
|
|
|
// if( !cvbgdata ) return 0; this check needs to be done in the callback for BG |
|
|
|
CCOUNTER_SET_ZERO(getcount); |
|
CCOUNTER_SET_ZERO(thread_getcount); |
|
CCOUNTER_SET_ZERO(consumed_count); |
|
CCOUNTER_SET_ZERO(thread_consumed_count); |
|
|
|
#ifdef CV_OPENMP |
|
#pragma omp parallel private(img, sum, tilted, sqsum, sumdata, tilteddata, \ |
|
normfactor, thread_consumed_count, thread_getcount) |
|
#endif /* CV_OPENMP */ |
|
{ |
|
sumdata = NULL; |
|
tilteddata = NULL; |
|
normfactor = NULL; |
|
|
|
CCOUNTER_SET_ZERO(thread_getcount); |
|
CCOUNTER_SET_ZERO(thread_consumed_count); |
|
int ok = 1; |
|
|
|
img = cvMat( data->winsize.height, data->winsize.width, CV_8UC1, |
|
cvAlloc( sizeof( uchar ) * data->winsize.height * data->winsize.width ) ); |
|
sum = cvMat( data->winsize.height + 1, data->winsize.width + 1, |
|
CV_SUM_MAT_TYPE, NULL ); |
|
tilted = cvMat( data->winsize.height + 1, data->winsize.width + 1, |
|
CV_SUM_MAT_TYPE, NULL ); |
|
sqsum = cvMat( data->winsize.height + 1, data->winsize.width + 1, CV_SQSUM_MAT_TYPE, |
|
cvAlloc( sizeof( sqsum_type ) * (data->winsize.height + 1) |
|
* (data->winsize.width + 1) ) ); |
|
|
|
#ifdef CV_OPENMP |
|
#pragma omp for schedule(static, 1) |
|
#endif /* CV_OPENMP */ |
|
for( i = first; (i < first + count); i++ ) |
|
{ |
|
if( !ok ) |
|
continue; |
|
for( ; ; ) |
|
{ |
|
ok = callback( &img, userdata ); |
|
if( !ok ) |
|
break; |
|
|
|
CCOUNTER_INC(thread_consumed_count); |
|
|
|
sumdata = (sum_type*) (data->sum.data.ptr + i * data->sum.step); |
|
tilteddata = (sum_type*) (data->tilted.data.ptr + i * data->tilted.step); |
|
normfactor = data->normfactor.data.fl + i; |
|
sum.data.ptr = (uchar*) sumdata; |
|
tilted.data.ptr = (uchar*) tilteddata; |
|
icvGetAuxImages( &img, &sum, &tilted, &sqsum, normfactor ); |
|
if( cascade->eval( cascade, sumdata, tilteddata, *normfactor ) != 0.0F ) |
|
{ |
|
CCOUNTER_INC(thread_getcount); |
|
break; |
|
} |
|
} |
|
|
|
#ifdef CV_VERBOSE |
|
if( (i - first) % 500 == 0 ) |
|
{ |
|
fprintf( stderr, "%3d%%\r", (int) ( 100.0 * (i - first) / count ) ); |
|
fflush( stderr ); |
|
} |
|
#endif /* CV_VERBOSE */ |
|
} |
|
|
|
cvFree( &(img.data.ptr) ); |
|
cvFree( &(sqsum.data.ptr) ); |
|
|
|
#ifdef CV_OPENMP |
|
#pragma omp critical (c_consumed_count) |
|
#endif /* CV_OPENMP */ |
|
{ |
|
/* consumed_count += thread_consumed_count; */ |
|
CCOUNTER_ADD(getcount, thread_getcount); |
|
CCOUNTER_ADD(consumed_count, thread_consumed_count); |
|
} |
|
} /* omp parallel */ |
|
|
|
if( consumed != NULL ) |
|
{ |
|
*consumed = (int)consumed_count; |
|
} |
|
|
|
if( acceptance_ratio != NULL ) |
|
{ |
|
/* *acceptance_ratio = ((double) count) / consumed_count; */ |
|
*acceptance_ratio = CCOUNTER_DIV(count, consumed_count); |
|
} |
|
|
|
return static_cast<int>(getcount); |
|
} |
|
|
|
/* |
|
* icvGetHaarTrainingDataFromBG |
|
* |
|
* Fill <data> with background samples, passed <cascade> |
|
* Background reading process must be initialized before call. |
|
*/ |
|
//static |
|
//int icvGetHaarTrainingDataFromBG( CvHaarTrainingData* data, int first, int count, |
|
// CvIntHaarClassifier* cascade, double* acceptance_ratio ) |
|
//{ |
|
// int i = 0; |
|
// ccounter_t consumed_count; |
|
// ccounter_t thread_consumed_count; |
|
// |
|
// /* private variables */ |
|
// CvMat img; |
|
// CvMat sum; |
|
// CvMat tilted; |
|
// CvMat sqsum; |
|
// |
|
// sum_type* sumdata; |
|
// sum_type* tilteddata; |
|
// float* normfactor; |
|
// |
|
// /* end private variables */ |
|
// |
|
// assert( data != NULL ); |
|
// assert( first + count <= data->maxnum ); |
|
// assert( cascade != NULL ); |
|
// |
|
// if( !cvbgdata ) return 0; |
|
// |
|
// CCOUNTER_SET_ZERO(consumed_count); |
|
// CCOUNTER_SET_ZERO(thread_consumed_count); |
|
// |
|
// #ifdef CV_OPENMP |
|
// #pragma omp parallel private(img, sum, tilted, sqsum, sumdata, tilteddata, |
|
// normfactor, thread_consumed_count) |
|
// #endif /* CV_OPENMP */ |
|
// { |
|
// sumdata = NULL; |
|
// tilteddata = NULL; |
|
// normfactor = NULL; |
|
// |
|
// CCOUNTER_SET_ZERO(thread_consumed_count); |
|
// |
|
// img = cvMat( data->winsize.height, data->winsize.width, CV_8UC1, |
|
// cvAlloc( sizeof( uchar ) * data->winsize.height * data->winsize.width ) ); |
|
// sum = cvMat( data->winsize.height + 1, data->winsize.width + 1, |
|
// CV_SUM_MAT_TYPE, NULL ); |
|
// tilted = cvMat( data->winsize.height + 1, data->winsize.width + 1, |
|
// CV_SUM_MAT_TYPE, NULL ); |
|
// sqsum = cvMat( data->winsize.height + 1, data->winsize.width + 1, |
|
// CV_SQSUM_MAT_TYPE, |
|
// cvAlloc( sizeof( sqsum_type ) * (data->winsize.height + 1) |
|
// * (data->winsize.width + 1) ) ); |
|
// |
|
// #ifdef CV_OPENMP |
|
// #pragma omp for schedule(static, 1) |
|
// #endif /* CV_OPENMP */ |
|
// for( i = first; i < first + count; i++ ) |
|
// { |
|
// for( ; ; ) |
|
// { |
|
// icvGetBackgroundImage( cvbgdata, cvbgreader, &img ); |
|
// |
|
// CCOUNTER_INC(thread_consumed_count); |
|
// |
|
// sumdata = (sum_type*) (data->sum.data.ptr + i * data->sum.step); |
|
// tilteddata = (sum_type*) (data->tilted.data.ptr + i * data->tilted.step); |
|
// normfactor = data->normfactor.data.fl + i; |
|
// sum.data.ptr = (uchar*) sumdata; |
|
// tilted.data.ptr = (uchar*) tilteddata; |
|
// icvGetAuxImages( &img, &sum, &tilted, &sqsum, normfactor ); |
|
// if( cascade->eval( cascade, sumdata, tilteddata, *normfactor ) != 0.0F ) |
|
// { |
|
// break; |
|
// } |
|
// } |
|
// |
|
//#ifdef CV_VERBOSE |
|
// if( (i - first) % 500 == 0 ) |
|
// { |
|
// fprintf( stderr, "%3d%%\r", (int) ( 100.0 * (i - first) / count ) ); |
|
// fflush( stderr ); |
|
// } |
|
//#endif /* CV_VERBOSE */ |
|
// |
|
// } |
|
// |
|
// cvFree( &(img.data.ptr) ); |
|
// cvFree( &(sqsum.data.ptr) ); |
|
// |
|
// #ifdef CV_OPENMP |
|
// #pragma omp critical (c_consumed_count) |
|
// #endif /* CV_OPENMP */ |
|
// { |
|
// /* consumed_count += thread_consumed_count; */ |
|
// CCOUNTER_ADD(consumed_count, thread_consumed_count); |
|
// } |
|
// } /* omp parallel */ |
|
// |
|
// if( acceptance_ratio != NULL ) |
|
// { |
|
// /* *acceptance_ratio = ((double) count) / consumed_count; */ |
|
// *acceptance_ratio = CCOUNTER_DIV(count, consumed_count); |
|
// } |
|
// |
|
// return count; |
|
//} |
|
|
|
int icvGetHaarTraininDataFromVecCallback( CvMat* img, void* userdata ) |
|
{ |
|
uchar tmp = 0; |
|
int r = 0; |
|
int c = 0; |
|
|
|
assert( img->rows * img->cols == ((CvVecFile*) userdata)->vecsize ); |
|
|
|
fread( &tmp, sizeof( tmp ), 1, ((CvVecFile*) userdata)->input ); |
|
fread( ((CvVecFile*) userdata)->vector, sizeof( short ), |
|
((CvVecFile*) userdata)->vecsize, ((CvVecFile*) userdata)->input ); |
|
|
|
if( feof( ((CvVecFile*) userdata)->input ) || |
|
(((CvVecFile*) userdata)->last)++ >= ((CvVecFile*) userdata)->count ) |
|
{ |
|
return 0; |
|
} |
|
|
|
for( r = 0; r < img->rows; r++ ) |
|
{ |
|
for( c = 0; c < img->cols; c++ ) |
|
{ |
|
CV_MAT_ELEM( *img, uchar, r, c ) = |
|
(uchar) ( ((CvVecFile*) userdata)->vector[r * img->cols + c] ); |
|
} |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
int icvGetHaarTrainingDataFromBGCallback ( CvMat* img, void* /*userdata*/ ) |
|
{ |
|
if (! cvbgdata) |
|
return 0; |
|
|
|
if (! cvbgreader) |
|
return 0; |
|
|
|
// just in case icvGetBackgroundImage is not thread-safe ... |
|
#ifdef CV_OPENMP |
|
#pragma omp critical (get_background_image_callback) |
|
#endif /* CV_OPENMP */ |
|
{ |
|
icvGetBackgroundImage( cvbgdata, cvbgreader, img ); |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
/* |
|
* icvGetHaarTrainingDataFromVec |
|
* Get training data from .vec file |
|
*/ |
|
static |
|
int icvGetHaarTrainingDataFromVec( CvHaarTrainingData* data, int first, int count, |
|
CvIntHaarClassifier* cascade, |
|
const char* filename, |
|
int* consumed ) |
|
{ |
|
int getcount = 0; |
|
|
|
CV_FUNCNAME( "icvGetHaarTrainingDataFromVec" ); |
|
|
|
__BEGIN__; |
|
|
|
CvVecFile file; |
|
short tmp = 0; |
|
|
|
file.input = NULL; |
|
if( filename ) file.input = fopen( filename, "rb" ); |
|
|
|
if( file.input != NULL ) |
|
{ |
|
fread( &file.count, sizeof( file.count ), 1, file.input ); |
|
fread( &file.vecsize, sizeof( file.vecsize ), 1, file.input ); |
|
fread( &tmp, sizeof( tmp ), 1, file.input ); |
|
fread( &tmp, sizeof( tmp ), 1, file.input ); |
|
if( !feof( file.input ) ) |
|
{ |
|
if( file.vecsize != data->winsize.width * data->winsize.height ) |
|
{ |
|
fclose( file.input ); |
|
CV_ERROR( CV_StsError, "Vec file sample size mismatch" ); |
|
} |
|
|
|
file.last = 0; |
|
file.vector = (short*) cvAlloc( sizeof( *file.vector ) * file.vecsize ); |
|
getcount = icvGetHaarTrainingData( data, first, count, cascade, |
|
icvGetHaarTraininDataFromVecCallback, &file, consumed, NULL); |
|
cvFree( &file.vector ); |
|
} |
|
fclose( file.input ); |
|
} |
|
|
|
__END__; |
|
|
|
return getcount; |
|
} |
|
|
|
/* |
|
* icvGetHaarTrainingDataFromBG |
|
* |
|
* Fill <data> with background samples, passed <cascade> |
|
* Background reading process must be initialized before call, alternaly, a file |
|
* name to a vec file may be passed, a NULL filename indicates old behaviour |
|
*/ |
|
static |
|
int icvGetHaarTrainingDataFromBG( CvHaarTrainingData* data, int first, int count, |
|
CvIntHaarClassifier* cascade, double* acceptance_ratio, const char * filename = NULL ) |
|
{ |
|
CV_FUNCNAME( "icvGetHaarTrainingDataFromBG" ); |
|
|
|
__BEGIN__; |
|
|
|
if (filename) |
|
{ |
|
CvVecFile file; |
|
short tmp = 0; |
|
|
|
file.input = NULL; |
|
if( filename ) file.input = fopen( filename, "rb" ); |
|
|
|
if( file.input != NULL ) |
|
{ |
|
fread( &file.count, sizeof( file.count ), 1, file.input ); |
|
fread( &file.vecsize, sizeof( file.vecsize ), 1, file.input ); |
|
fread( &tmp, sizeof( tmp ), 1, file.input ); |
|
fread( &tmp, sizeof( tmp ), 1, file.input ); |
|
if( !feof( file.input ) ) |
|
{ |
|
if( file.vecsize != data->winsize.width * data->winsize.height ) |
|
{ |
|
fclose( file.input ); |
|
CV_ERROR( CV_StsError, "Vec file sample size mismatch" ); |
|
} |
|
|
|
file.last = 0; |
|
file.vector = (short*) cvAlloc( sizeof( *file.vector ) * file.vecsize ); |
|
icvGetHaarTrainingData( data, first, count, cascade, |
|
icvGetHaarTraininDataFromVecCallback, &file, NULL, acceptance_ratio); |
|
cvFree( &file.vector ); |
|
} |
|
fclose( file.input ); |
|
} |
|
} |
|
else |
|
{ |
|
icvGetHaarTrainingData( data, first, count, cascade, |
|
icvGetHaarTrainingDataFromBGCallback, NULL, NULL, acceptance_ratio); |
|
} |
|
|
|
__END__; |
|
|
|
return count; |
|
} |
|
|
|
void cvCreateCascadeClassifier( const char* dirname, |
|
const char* vecfilename, |
|
const char* bgfilename, |
|
int npos, int nneg, int nstages, |
|
int numprecalculated, |
|
int numsplits, |
|
float minhitrate, float maxfalsealarm, |
|
float weightfraction, |
|
int mode, int symmetric, |
|
int equalweights, |
|
int winwidth, int winheight, |
|
int boosttype, int stumperror ) |
|
{ |
|
CvCascadeHaarClassifier* cascade = NULL; |
|
CvHaarTrainingData* data = NULL; |
|
CvIntHaarFeatures* haar_features; |
|
CvSize winsize; |
|
int i = 0; |
|
int j = 0; |
|
int poscount = 0; |
|
int negcount = 0; |
|
int consumed = 0; |
|
double false_alarm = 0; |
|
char stagename[PATH_MAX]; |
|
float posweight = 1.0F; |
|
float negweight = 1.0F; |
|
FILE* file; |
|
|
|
#ifdef CV_VERBOSE |
|
double proctime = 0.0F; |
|
#endif /* CV_VERBOSE */ |
|
|
|
assert( dirname != NULL ); |
|
assert( bgfilename != NULL ); |
|
assert( vecfilename != NULL ); |
|
assert( nstages > 0 ); |
|
|
|
winsize = cvSize( winwidth, winheight ); |
|
|
|
cascade = (CvCascadeHaarClassifier*) icvCreateCascadeHaarClassifier( nstages ); |
|
cascade->count = 0; |
|
|
|
if( icvInitBackgroundReaders( bgfilename, winsize ) ) |
|
{ |
|
data = icvCreateHaarTrainingData( winsize, npos + nneg ); |
|
haar_features = icvCreateIntHaarFeatures( winsize, mode, symmetric ); |
|
|
|
#ifdef CV_VERBOSE |
|
printf("Number of features used : %d\n", haar_features->count); |
|
#endif /* CV_VERBOSE */ |
|
|
|
for( i = 0; i < nstages; i++, cascade->count++ ) |
|
{ |
|
sprintf( stagename, "%s%d/%s", dirname, i, CV_STAGE_CART_FILE_NAME ); |
|
cascade->classifier[i] = |
|
icvLoadCARTStageHaarClassifier( stagename, winsize.width + 1 ); |
|
|
|
if( !icvMkDir( stagename ) ) |
|
{ |
|
|
|
#ifdef CV_VERBOSE |
|
printf( "UNABLE TO CREATE DIRECTORY: %s\n", stagename ); |
|
#endif /* CV_VERBOSE */ |
|
|
|
break; |
|
} |
|
if( cascade->classifier[i] != NULL ) |
|
{ |
|
|
|
#ifdef CV_VERBOSE |
|
printf( "STAGE: %d LOADED.\n", i ); |
|
#endif /* CV_VERBOSE */ |
|
|
|
continue; |
|
} |
|
|
|
#ifdef CV_VERBOSE |
|
printf( "STAGE: %d\n", i ); |
|
#endif /* CV_VERBOSE */ |
|
|
|
poscount = icvGetHaarTrainingDataFromVec( data, 0, npos, |
|
(CvIntHaarClassifier*) cascade, vecfilename, &consumed ); |
|
#ifdef CV_VERBOSE |
|
printf( "POS: %d %d %f\n", poscount, consumed, |
|
((float) poscount) / consumed ); |
|
#endif /* CV_VERBOSE */ |
|
|
|
if( poscount <= 0 ) |
|
{ |
|
|
|
#ifdef CV_VERBOSE |
|
printf( "UNABLE TO OBTAIN POS SAMPLES\n" ); |
|
#endif /* CV_VERBOSE */ |
|
|
|
break; |
|
} |
|
|
|
#ifdef CV_VERBOSE |
|
proctime = -TIME( 0 ); |
|
#endif /* CV_VERBOSE */ |
|
|
|
negcount = icvGetHaarTrainingDataFromBG( data, poscount, nneg, |
|
(CvIntHaarClassifier*) cascade, &false_alarm ); |
|
#ifdef CV_VERBOSE |
|
printf( "NEG: %d %g\n", negcount, false_alarm ); |
|
printf( "BACKGROUND PROCESSING TIME: %.2f\n", |
|
(proctime + TIME( 0 )) ); |
|
#endif /* CV_VERBOSE */ |
|
|
|
if( negcount <= 0 ) |
|
{ |
|
|
|
#ifdef CV_VERBOSE |
|
printf( "UNABLE TO OBTAIN NEG SAMPLES\n" ); |
|
#endif /* CV_VERBOSE */ |
|
|
|
break; |
|
} |
|
|
|
data->sum.rows = data->tilted.rows = poscount + negcount; |
|
data->normfactor.cols = data->weights.cols = data->cls.cols = |
|
poscount + negcount; |
|
|
|
posweight = (equalweights) ? 1.0F / (poscount + negcount) : (0.5F / poscount); |
|
negweight = (equalweights) ? 1.0F / (poscount + negcount) : (0.5F / negcount); |
|
for( j = 0; j < poscount; j++ ) |
|
{ |
|
data->weights.data.fl[j] = posweight; |
|
data->cls.data.fl[j] = 1.0F; |
|
|
|
} |
|
for( j = poscount; j < poscount + negcount; j++ ) |
|
{ |
|
data->weights.data.fl[j] = negweight; |
|
data->cls.data.fl[j] = 0.0F; |
|
} |
|
|
|
#ifdef CV_VERBOSE |
|
proctime = -TIME( 0 ); |
|
#endif /* CV_VERBOSE */ |
|
|
|
icvPrecalculate( data, haar_features, numprecalculated ); |
|
|
|
#ifdef CV_VERBOSE |
|
printf( "PRECALCULATION TIME: %.2f\n", (proctime + TIME( 0 )) ); |
|
#endif /* CV_VERBOSE */ |
|
|
|
#ifdef CV_VERBOSE |
|
proctime = -TIME( 0 ); |
|
#endif /* CV_VERBOSE */ |
|
|
|
cascade->classifier[i] = icvCreateCARTStageClassifier( data, NULL, |
|
haar_features, minhitrate, maxfalsealarm, symmetric, weightfraction, |
|
numsplits, (CvBoostType) boosttype, (CvStumpError) stumperror, 0 ); |
|
|
|
#ifdef CV_VERBOSE |
|
printf( "STAGE TRAINING TIME: %.2f\n", (proctime + TIME( 0 )) ); |
|
#endif /* CV_VERBOSE */ |
|
|
|
file = fopen( stagename, "w" ); |
|
if( file != NULL ) |
|
{ |
|
cascade->classifier[i]->save( |
|
(CvIntHaarClassifier*) cascade->classifier[i], file ); |
|
fclose( file ); |
|
} |
|
else |
|
{ |
|
|
|
#ifdef CV_VERBOSE |
|
printf( "FAILED TO SAVE STAGE CLASSIFIER IN FILE %s\n", stagename ); |
|
#endif /* CV_VERBOSE */ |
|
|
|
} |
|
|
|
} |
|
icvReleaseIntHaarFeatures( &haar_features ); |
|
icvReleaseHaarTrainingData( &data ); |
|
|
|
if( i == nstages ) |
|
{ |
|
char xml_path[1024]; |
|
int len = (int)strlen(dirname); |
|
CvHaarClassifierCascade* cascade = 0; |
|
strcpy( xml_path, dirname ); |
|
if( xml_path[len-1] == '\\' || xml_path[len-1] == '/' ) |
|
len--; |
|
strcpy( xml_path + len, ".xml" ); |
|
cascade = cvLoadHaarClassifierCascade( dirname, cvSize(winwidth,winheight) ); |
|
if( cascade ) |
|
cvSave( xml_path, cascade ); |
|
cvReleaseHaarClassifierCascade( &cascade ); |
|
} |
|
} |
|
else |
|
{ |
|
#ifdef CV_VERBOSE |
|
printf( "FAILED TO INITIALIZE BACKGROUND READERS\n" ); |
|
#endif /* CV_VERBOSE */ |
|
} |
|
|
|
/* CLEAN UP */ |
|
icvDestroyBackgroundReaders(); |
|
cascade->release( (CvIntHaarClassifier**) &cascade ); |
|
} |
|
|
|
/* tree cascade classifier */ |
|
|
|
int icvNumSplits( CvStageHaarClassifier* stage ) |
|
{ |
|
int i; |
|
int num; |
|
|
|
num = 0; |
|
for( i = 0; i < stage->count; i++ ) |
|
{ |
|
num += ((CvCARTHaarClassifier*) stage->classifier[i])->count; |
|
} |
|
|
|
return num; |
|
} |
|
|
|
void icvSetNumSamples( CvHaarTrainingData* training_data, int num ) |
|
{ |
|
assert( num <= training_data->maxnum ); |
|
|
|
training_data->sum.rows = training_data->tilted.rows = num; |
|
training_data->normfactor.cols = num; |
|
training_data->cls.cols = training_data->weights.cols = num; |
|
} |
|
|
|
void icvSetWeightsAndClasses( CvHaarTrainingData* training_data, |
|
int num1, float weight1, float cls1, |
|
int num2, float weight2, float cls2 ) |
|
{ |
|
int j; |
|
|
|
assert( num1 + num2 <= training_data->maxnum ); |
|
|
|
for( j = 0; j < num1; j++ ) |
|
{ |
|
training_data->weights.data.fl[j] = weight1; |
|
training_data->cls.data.fl[j] = cls1; |
|
} |
|
for( j = num1; j < num1 + num2; j++ ) |
|
{ |
|
training_data->weights.data.fl[j] = weight2; |
|
training_data->cls.data.fl[j] = cls2; |
|
} |
|
} |
|
|
|
CvMat* icvGetUsedValues( CvHaarTrainingData* training_data, |
|
int start, int num, |
|
CvIntHaarFeatures* haar_features, |
|
CvStageHaarClassifier* stage ) |
|
{ |
|
CvMat* ptr = NULL; |
|
CvMat* feature_idx = NULL; |
|
|
|
CV_FUNCNAME( "icvGetUsedValues" ); |
|
|
|
__BEGIN__; |
|
|
|
int num_splits; |
|
int i, j; |
|
int r; |
|
int total, last; |
|
|
|
num_splits = icvNumSplits( stage ); |
|
|
|
CV_CALL( feature_idx = cvCreateMat( 1, num_splits, CV_32SC1 ) ); |
|
|
|
total = 0; |
|
for( i = 0; i < stage->count; i++ ) |
|
{ |
|
CvCARTHaarClassifier* cart; |
|
|
|
cart = (CvCARTHaarClassifier*) stage->classifier[i]; |
|
for( j = 0; j < cart->count; j++ ) |
|
{ |
|
feature_idx->data.i[total++] = cart->compidx[j]; |
|
} |
|
} |
|
icvSort_32s( feature_idx->data.i, total, 0 ); |
|
|
|
last = 0; |
|
for( i = 1; i < total; i++ ) |
|
{ |
|
if( feature_idx->data.i[i] != feature_idx->data.i[last] ) |
|
{ |
|
feature_idx->data.i[++last] = feature_idx->data.i[i]; |
|
} |
|
} |
|
total = last + 1; |
|
CV_CALL( ptr = cvCreateMat( num, total, CV_32FC1 ) ); |
|
|
|
|
|
#ifdef CV_OPENMP |
|
#pragma omp parallel for |
|
#endif |
|
for( r = start; r < start + num; r++ ) |
|
{ |
|
int c; |
|
|
|
for( c = 0; c < total; c++ ) |
|
{ |
|
float val, normfactor; |
|
int fnum; |
|
|
|
fnum = feature_idx->data.i[c]; |
|
|
|
val = cvEvalFastHaarFeature( haar_features->fastfeature + fnum, |
|
(sum_type*) (training_data->sum.data.ptr |
|
+ r * training_data->sum.step), |
|
(sum_type*) (training_data->tilted.data.ptr |
|
+ r * training_data->tilted.step) ); |
|
normfactor = training_data->normfactor.data.fl[r]; |
|
val = ( normfactor == 0.0F ) ? 0.0F : (val / normfactor); |
|
CV_MAT_ELEM( *ptr, float, r - start, c ) = val; |
|
} |
|
} |
|
|
|
__END__; |
|
|
|
cvReleaseMat( &feature_idx ); |
|
|
|
return ptr; |
|
} |
|
|
|
/* possible split in the tree */ |
|
typedef struct CvSplit |
|
{ |
|
CvTreeCascadeNode* parent; |
|
CvTreeCascadeNode* single_cluster; |
|
CvTreeCascadeNode* multiple_clusters; |
|
int num_clusters; |
|
float single_multiple_ratio; |
|
|
|
struct CvSplit* next; |
|
} CvSplit; |
|
|
|
|
|
void cvCreateTreeCascadeClassifier( const char* dirname, |
|
const char* vecfilename, |
|
const char* bgfilename, |
|
int npos, int nneg, int nstages, |
|
int numprecalculated, |
|
int numsplits, |
|
float minhitrate, float maxfalsealarm, |
|
float weightfraction, |
|
int mode, int symmetric, |
|
int equalweights, |
|
int winwidth, int winheight, |
|
int boosttype, int stumperror, |
|
int maxtreesplits, int minpos, bool bg_vecfile ) |
|
{ |
|
CvTreeCascadeClassifier* tcc = NULL; |
|
CvIntHaarFeatures* haar_features = NULL; |
|
CvHaarTrainingData* training_data = NULL; |
|
CvMat* vals = NULL; |
|
CvMat* cluster_idx = NULL; |
|
CvMat* idx = NULL; |
|
CvMat* features_idx = NULL; |
|
|
|
CV_FUNCNAME( "cvCreateTreeCascadeClassifier" ); |
|
|
|
__BEGIN__; |
|
|
|
int i, k; |
|
CvTreeCascadeNode* leaves; |
|
int best_num, cur_num; |
|
CvSize winsize; |
|
char stage_name[PATH_MAX]; |
|
char buf[PATH_MAX]; |
|
char* suffix; |
|
int total_splits; |
|
|
|
int poscount; |
|
int negcount; |
|
int consumed; |
|
double false_alarm; |
|
double proctime; |
|
|
|
int nleaves; |
|
double required_leaf_fa_rate; |
|
float neg_ratio; |
|
|
|
int max_clusters; |
|
|
|
max_clusters = CV_MAX_CLUSTERS; |
|
neg_ratio = (float) nneg / npos; |
|
|
|
nleaves = 1 + MAX( 0, maxtreesplits ); |
|
required_leaf_fa_rate = pow( (double) maxfalsealarm, (double) nstages ) / nleaves; |
|
|
|
printf( "Required leaf false alarm rate: %g\n", required_leaf_fa_rate ); |
|
|
|
total_splits = 0; |
|
|
|
winsize = cvSize( winwidth, winheight ); |
|
|
|
CV_CALL( cluster_idx = cvCreateMat( 1, npos + nneg, CV_32SC1 ) ); |
|
CV_CALL( idx = cvCreateMat( 1, npos + nneg, CV_32SC1 ) ); |
|
|
|
CV_CALL( tcc = (CvTreeCascadeClassifier*) |
|
icvLoadTreeCascadeClassifier( dirname, winwidth + 1, &total_splits ) ); |
|
CV_CALL( leaves = icvFindDeepestLeaves( tcc ) ); |
|
|
|
CV_CALL( icvPrintTreeCascade( tcc->root ) ); |
|
|
|
haar_features = icvCreateIntHaarFeatures( winsize, mode, symmetric ); |
|
|
|
printf( "Number of features used : %d\n", haar_features->count ); |
|
|
|
training_data = icvCreateHaarTrainingData( winsize, npos + nneg ); |
|
|
|
sprintf( stage_name, "%s/", dirname ); |
|
suffix = stage_name + strlen( stage_name ); |
|
|
|
if (! bg_vecfile) |
|
if( !icvInitBackgroundReaders( bgfilename, winsize ) && nstages > 0 ) |
|
CV_ERROR( CV_StsError, "Unable to read negative images" ); |
|
|
|
if( nstages > 0 ) |
|
{ |
|
/* width-first search in the tree */ |
|
do |
|
{ |
|
CvSplit* first_split; |
|
CvSplit* last_split; |
|
CvSplit* cur_split; |
|
|
|
CvTreeCascadeNode* parent; |
|
CvTreeCascadeNode* cur_node; |
|
CvTreeCascadeNode* last_node; |
|
|
|
first_split = last_split = cur_split = NULL; |
|
parent = leaves; |
|
leaves = NULL; |
|
do |
|
{ |
|
int best_clusters; /* best selected number of clusters */ |
|
float posweight, negweight; |
|
double leaf_fa_rate; |
|
|
|
if( parent ) sprintf( buf, "%d", parent->idx ); |
|
else sprintf( buf, "NULL" ); |
|
printf( "\nParent node: %s\n\n", buf ); |
|
|
|
printf( "*** 1 cluster ***\n" ); |
|
|
|
tcc->eval = icvEvalTreeCascadeClassifierFilter; |
|
/* find path from the root to the node <parent> */ |
|
icvSetLeafNode( tcc, parent ); |
|
|
|
/* load samples */ |
|
consumed = 0; |
|
poscount = icvGetHaarTrainingDataFromVec( training_data, 0, npos, |
|
(CvIntHaarClassifier*) tcc, vecfilename, &consumed ); |
|
|
|
printf( "POS: %d %d %f\n", poscount, consumed, ((double) poscount)/consumed ); |
|
|
|
if( poscount <= 0 ) |
|
CV_ERROR( CV_StsError, "Unable to obtain positive samples" ); |
|
|
|
fflush( stdout ); |
|
|
|
proctime = -TIME( 0 ); |
|
|
|
nneg = (int) (neg_ratio * poscount); |
|
negcount = icvGetHaarTrainingDataFromBG( training_data, poscount, nneg, |
|
(CvIntHaarClassifier*) tcc, &false_alarm, bg_vecfile ? bgfilename : NULL ); |
|
printf( "NEG: %d %g\n", negcount, false_alarm ); |
|
|
|
printf( "BACKGROUND PROCESSING TIME: %.2f\n", (proctime + TIME( 0 )) ); |
|
|
|
if( negcount <= 0 ) |
|
CV_ERROR( CV_StsError, "Unable to obtain negative samples" ); |
|
|
|
leaf_fa_rate = false_alarm; |
|
if( leaf_fa_rate <= required_leaf_fa_rate ) |
|
{ |
|
printf( "Required leaf false alarm rate achieved. " |
|
"Branch training terminated.\n" ); |
|
} |
|
else if( nleaves == 1 && tcc->next_idx == nstages ) |
|
{ |
|
printf( "Required number of stages achieved. " |
|
"Branch training terminated.\n" ); |
|
} |
|
else |
|
{ |
|
CvTreeCascadeNode* single_cluster; |
|
CvTreeCascadeNode* multiple_clusters; |
|
CvSplit* cur_split; |
|
int single_num; |
|
|
|
icvSetNumSamples( training_data, poscount + negcount ); |
|
posweight = (equalweights) ? 1.0F / (poscount + negcount) : (0.5F/poscount); |
|
negweight = (equalweights) ? 1.0F / (poscount + negcount) : (0.5F/negcount); |
|
icvSetWeightsAndClasses( training_data, |
|
poscount, posweight, 1.0F, negcount, negweight, 0.0F ); |
|
|
|
fflush( stdout ); |
|
|
|
/* precalculate feature values */ |
|
proctime = -TIME( 0 ); |
|
icvPrecalculate( training_data, haar_features, numprecalculated ); |
|
printf( "Precalculation time: %.2f\n", (proctime + TIME( 0 )) ); |
|
|
|
/* train stage classifier using all positive samples */ |
|
CV_CALL( single_cluster = icvCreateTreeCascadeNode() ); |
|
fflush( stdout ); |
|
|
|
proctime = -TIME( 0 ); |
|
single_cluster->stage = |
|
(CvStageHaarClassifier*) icvCreateCARTStageClassifier( |
|
training_data, NULL, haar_features, |
|
minhitrate, maxfalsealarm, symmetric, |
|
weightfraction, numsplits, (CvBoostType) boosttype, |
|
(CvStumpError) stumperror, 0 ); |
|
printf( "Stage training time: %.2f\n", (proctime + TIME( 0 )) ); |
|
|
|
single_num = icvNumSplits( single_cluster->stage ); |
|
best_num = single_num; |
|
best_clusters = 1; |
|
multiple_clusters = NULL; |
|
|
|
printf( "Number of used features: %d\n", single_num ); |
|
|
|
if( maxtreesplits >= 0 ) |
|
{ |
|
max_clusters = MIN( max_clusters, maxtreesplits - total_splits + 1 ); |
|
} |
|
|
|
/* try clustering */ |
|
vals = NULL; |
|
for( k = 2; k <= max_clusters; k++ ) |
|
{ |
|
int cluster; |
|
int stop_clustering; |
|
|
|
printf( "*** %d clusters ***\n", k ); |
|
|
|
/* check whether clusters are big enough */ |
|
stop_clustering = ( k * minpos > poscount ); |
|
if( !stop_clustering ) |
|
{ |
|
int num[CV_MAX_CLUSTERS]; |
|
|
|
if( k == 2 ) |
|
{ |
|
proctime = -TIME( 0 ); |
|
CV_CALL( vals = icvGetUsedValues( training_data, 0, poscount, |
|
haar_features, single_cluster->stage ) ); |
|
printf( "Getting values for clustering time: %.2f\n", (proctime + TIME(0)) ); |
|
printf( "Value matirx size: %d x %d\n", vals->rows, vals->cols ); |
|
fflush( stdout ); |
|
|
|
cluster_idx->cols = vals->rows; |
|
for( i = 0; i < negcount; i++ ) idx->data.i[i] = poscount + i; |
|
} |
|
|
|
proctime = -TIME( 0 ); |
|
|
|
CV_CALL( cvKMeans2( vals, k, cluster_idx, CV_TERM_CRITERIA() ) ); |
|
|
|
printf( "Clustering time: %.2f\n", (proctime + TIME( 0 )) ); |
|
|
|
for( cluster = 0; cluster < k; cluster++ ) num[cluster] = 0; |
|
for( i = 0; i < cluster_idx->cols; i++ ) |
|
num[cluster_idx->data.i[i]]++; |
|
for( cluster = 0; cluster < k; cluster++ ) |
|
{ |
|
if( num[cluster] < minpos ) |
|
{ |
|
stop_clustering = 1; |
|
break; |
|
} |
|
} |
|
} |
|
|
|
if( stop_clustering ) |
|
{ |
|
printf( "Clusters are too small. Clustering aborted.\n" ); |
|
break; |
|
} |
|
|
|
cur_num = 0; |
|
cur_node = last_node = NULL; |
|
for( cluster = 0; (cluster < k) && (cur_num < best_num); cluster++ ) |
|
{ |
|
CvTreeCascadeNode* new_node; |
|
|
|
int num_splits; |
|
int last_pos; |
|
int total_pos; |
|
|
|
printf( "Cluster: %d\n", cluster ); |
|
|
|
last_pos = negcount; |
|
for( i = 0; i < cluster_idx->cols; i++ ) |
|
{ |
|
if( cluster_idx->data.i[i] == cluster ) |
|
{ |
|
idx->data.i[last_pos++] = i; |
|
} |
|
} |
|
idx->cols = last_pos; |
|
|
|
total_pos = idx->cols - negcount; |
|
printf( "# pos: %d of %d. (%d%%)\n", total_pos, poscount, |
|
100 * total_pos / poscount ); |
|
|
|
CV_CALL( new_node = icvCreateTreeCascadeNode() ); |
|
if( last_node ) last_node->next = new_node; |
|
else cur_node = new_node; |
|
last_node = new_node; |
|
|
|
posweight = (equalweights) |
|
? 1.0F / (total_pos + negcount) : (0.5F / total_pos); |
|
negweight = (equalweights) |
|
? 1.0F / (total_pos + negcount) : (0.5F / negcount); |
|
|
|
icvSetWeightsAndClasses( training_data, |
|
poscount, posweight, 1.0F, negcount, negweight, 0.0F ); |
|
|
|
/* CV_DEBUG_SAVE( idx ); */ |
|
|
|
fflush( stdout ); |
|
|
|
proctime = -TIME( 0 ); |
|
new_node->stage = (CvStageHaarClassifier*) |
|
icvCreateCARTStageClassifier( training_data, idx, haar_features, |
|
minhitrate, maxfalsealarm, symmetric, |
|
weightfraction, numsplits, (CvBoostType) boosttype, |
|
(CvStumpError) stumperror, best_num - cur_num ); |
|
printf( "Stage training time: %.2f\n", (proctime + TIME( 0 )) ); |
|
|
|
if( !(new_node->stage) ) |
|
{ |
|
printf( "Stage training aborted.\n" ); |
|
cur_num = best_num + 1; |
|
} |
|
else |
|
{ |
|
num_splits = icvNumSplits( new_node->stage ); |
|
cur_num += num_splits; |
|
|
|
printf( "Number of used features: %d\n", num_splits ); |
|
} |
|
} /* for each cluster */ |
|
|
|
if( cur_num < best_num ) |
|
{ |
|
icvReleaseTreeCascadeNodes( &multiple_clusters ); |
|
best_num = cur_num; |
|
best_clusters = k; |
|
multiple_clusters = cur_node; |
|
} |
|
else |
|
{ |
|
icvReleaseTreeCascadeNodes( &cur_node ); |
|
} |
|
} /* try different number of clusters */ |
|
cvReleaseMat( &vals ); |
|
|
|
CV_CALL( cur_split = (CvSplit*) cvAlloc( sizeof( *cur_split ) ) ); |
|
CV_ZERO_OBJ( cur_split ); |
|
|
|
if( last_split ) last_split->next = cur_split; |
|
else first_split = cur_split; |
|
last_split = cur_split; |
|
|
|
cur_split->single_cluster = single_cluster; |
|
cur_split->multiple_clusters = multiple_clusters; |
|
cur_split->num_clusters = best_clusters; |
|
cur_split->parent = parent; |
|
cur_split->single_multiple_ratio = (float) single_num / best_num; |
|
} |
|
|
|
if( parent ) parent = parent->next_same_level; |
|
} while( parent ); |
|
|
|
/* choose which nodes should be splitted */ |
|
do |
|
{ |
|
float max_single_multiple_ratio; |
|
|
|
cur_split = NULL; |
|
max_single_multiple_ratio = 0.0F; |
|
last_split = first_split; |
|
while( last_split ) |
|
{ |
|
if( last_split->single_cluster && last_split->multiple_clusters && |
|
last_split->single_multiple_ratio > max_single_multiple_ratio ) |
|
{ |
|
max_single_multiple_ratio = last_split->single_multiple_ratio; |
|
cur_split = last_split; |
|
} |
|
last_split = last_split->next; |
|
} |
|
if( cur_split ) |
|
{ |
|
if( maxtreesplits < 0 || |
|
cur_split->num_clusters <= maxtreesplits - total_splits + 1 ) |
|
{ |
|
cur_split->single_cluster = NULL; |
|
total_splits += cur_split->num_clusters - 1; |
|
} |
|
else |
|
{ |
|
icvReleaseTreeCascadeNodes( &(cur_split->multiple_clusters) ); |
|
cur_split->multiple_clusters = NULL; |
|
} |
|
} |
|
} while( cur_split ); |
|
|
|
/* attach new nodes to the tree */ |
|
leaves = last_node = NULL; |
|
last_split = first_split; |
|
while( last_split ) |
|
{ |
|
cur_node = (last_split->multiple_clusters) |
|
? last_split->multiple_clusters : last_split->single_cluster; |
|
parent = last_split->parent; |
|
if( parent ) parent->child = cur_node; |
|
|
|
/* connect leaves via next_same_level and save them */ |
|
for( ; cur_node; cur_node = cur_node->next ) |
|
{ |
|
FILE* file; |
|
|
|
if( last_node ) last_node->next_same_level = cur_node; |
|
else leaves = cur_node; |
|
last_node = cur_node; |
|
cur_node->parent = parent; |
|
|
|
cur_node->idx = tcc->next_idx; |
|
tcc->next_idx++; |
|
sprintf( suffix, "%d/%s", cur_node->idx, CV_STAGE_CART_FILE_NAME ); |
|
file = NULL; |
|
if( icvMkDir( stage_name ) && (file = fopen( stage_name, "w" )) != 0 ) |
|
{ |
|
cur_node->stage->save( (CvIntHaarClassifier*) cur_node->stage, file ); |
|
fprintf( file, "\n%d\n%d\n", |
|
((parent) ? parent->idx : -1), |
|
((cur_node->next) ? tcc->next_idx : -1) ); |
|
} |
|
else |
|
{ |
|
printf( "Failed to save classifier into %s\n", stage_name ); |
|
} |
|
if( file ) fclose( file ); |
|
} |
|
|
|
if( parent ) sprintf( buf, "%d", parent->idx ); |
|
else sprintf( buf, "NULL" ); |
|
printf( "\nParent node: %s\n", buf ); |
|
printf( "Chosen number of splits: %d\n\n", (last_split->multiple_clusters) |
|
? (last_split->num_clusters - 1) : 0 ); |
|
|
|
cur_split = last_split; |
|
last_split = last_split->next; |
|
cvFree( &cur_split ); |
|
} /* for each split point */ |
|
|
|
printf( "Total number of splits: %d\n", total_splits ); |
|
|
|
if( !(tcc->root) ) tcc->root = leaves; |
|
CV_CALL( icvPrintTreeCascade( tcc->root ) ); |
|
|
|
} while( leaves ); |
|
|
|
/* save the cascade to xml file */ |
|
{ |
|
char xml_path[1024]; |
|
int len = (int)strlen(dirname); |
|
CvHaarClassifierCascade* cascade = 0; |
|
strcpy( xml_path, dirname ); |
|
if( xml_path[len-1] == '\\' || xml_path[len-1] == '/' ) |
|
len--; |
|
strcpy( xml_path + len, ".xml" ); |
|
cascade = cvLoadHaarClassifierCascade( dirname, cvSize(winwidth,winheight) ); |
|
if( cascade ) |
|
cvSave( xml_path, cascade ); |
|
cvReleaseHaarClassifierCascade( &cascade ); |
|
} |
|
|
|
} /* if( nstages > 0 ) */ |
|
|
|
/* check cascade performance */ |
|
printf( "\nCascade performance\n" ); |
|
|
|
tcc->eval = icvEvalTreeCascadeClassifier; |
|
|
|
/* load samples */ |
|
consumed = 0; |
|
poscount = icvGetHaarTrainingDataFromVec( training_data, 0, npos, |
|
(CvIntHaarClassifier*) tcc, vecfilename, &consumed ); |
|
|
|
printf( "POS: %d %d %f\n", poscount, consumed, |
|
(consumed > 0) ? (((float) poscount)/consumed) : 0 ); |
|
|
|
if( poscount <= 0 ) |
|
fprintf( stderr, "Warning: unable to obtain positive samples\n" ); |
|
|
|
proctime = -TIME( 0 ); |
|
|
|
negcount = icvGetHaarTrainingDataFromBG( training_data, poscount, nneg, |
|
(CvIntHaarClassifier*) tcc, &false_alarm, bg_vecfile ? bgfilename : NULL ); |
|
|
|
printf( "NEG: %d %g\n", negcount, false_alarm ); |
|
|
|
printf( "BACKGROUND PROCESSING TIME: %.2f\n", (proctime + TIME( 0 )) ); |
|
|
|
if( negcount <= 0 ) |
|
fprintf( stderr, "Warning: unable to obtain negative samples\n" ); |
|
|
|
__END__; |
|
|
|
if (! bg_vecfile) |
|
icvDestroyBackgroundReaders(); |
|
|
|
if( tcc ) tcc->release( (CvIntHaarClassifier**) &tcc ); |
|
icvReleaseIntHaarFeatures( &haar_features ); |
|
icvReleaseHaarTrainingData( &training_data ); |
|
cvReleaseMat( &cluster_idx ); |
|
cvReleaseMat( &idx ); |
|
cvReleaseMat( &vals ); |
|
cvReleaseMat( &features_idx ); |
|
} |
|
|
|
|
|
|
|
void cvCreateTrainingSamples( const char* filename, |
|
const char* imgfilename, int bgcolor, int bgthreshold, |
|
const char* bgfilename, int count, |
|
int invert, int maxintensitydev, |
|
double maxxangle, double maxyangle, double maxzangle, |
|
int showsamples, |
|
int winwidth, int winheight ) |
|
{ |
|
CvSampleDistortionData data; |
|
|
|
assert( filename != NULL ); |
|
assert( imgfilename != NULL ); |
|
|
|
if( !icvMkDir( filename ) ) |
|
{ |
|
fprintf( stderr, "Unable to create output file: %s\n", filename ); |
|
return; |
|
} |
|
if( icvStartSampleDistortion( imgfilename, bgcolor, bgthreshold, &data ) ) |
|
{ |
|
FILE* output = NULL; |
|
|
|
output = fopen( filename, "wb" ); |
|
if( output != NULL ) |
|
{ |
|
int hasbg; |
|
int i; |
|
CvMat sample; |
|
int inverse; |
|
|
|
hasbg = 0; |
|
hasbg = (bgfilename != NULL && icvInitBackgroundReaders( bgfilename, |
|
cvSize( winwidth,winheight ) ) ); |
|
|
|
sample = cvMat( winheight, winwidth, CV_8UC1, cvAlloc( sizeof( uchar ) * |
|
winheight * winwidth ) ); |
|
|
|
icvWriteVecHeader( output, count, sample.cols, sample.rows ); |
|
|
|
if( showsamples ) |
|
{ |
|
cvNamedWindow( "Sample", CV_WINDOW_AUTOSIZE ); |
|
} |
|
|
|
inverse = invert; |
|
for( i = 0; i < count; i++ ) |
|
{ |
|
if( hasbg ) |
|
{ |
|
icvGetBackgroundImage( cvbgdata, cvbgreader, &sample ); |
|
} |
|
else |
|
{ |
|
cvSet( &sample, cvScalar( bgcolor ) ); |
|
} |
|
|
|
if( invert == CV_RANDOM_INVERT ) |
|
{ |
|
inverse = (rand() > (RAND_MAX/2)); |
|
} |
|
icvPlaceDistortedSample( &sample, inverse, maxintensitydev, |
|
maxxangle, maxyangle, maxzangle, |
|
0 /* nonzero means placing image without cut offs */, |
|
0.0 /* nozero adds random shifting */, |
|
0.0 /* nozero adds random scaling */, |
|
&data ); |
|
|
|
if( showsamples ) |
|
{ |
|
cvShowImage( "Sample", &sample ); |
|
if( cvWaitKey( 0 ) == 27 ) |
|
{ |
|
showsamples = 0; |
|
} |
|
} |
|
|
|
icvWriteVecSample( output, &sample ); |
|
|
|
#ifdef CV_VERBOSE |
|
if( i % 500 == 0 ) |
|
{ |
|
printf( "\r%3d%%", 100 * i / count ); |
|
} |
|
#endif /* CV_VERBOSE */ |
|
} |
|
icvDestroyBackgroundReaders(); |
|
cvFree( &(sample.data.ptr) ); |
|
fclose( output ); |
|
} /* if( output != NULL ) */ |
|
|
|
icvEndSampleDistortion( &data ); |
|
} |
|
|
|
#ifdef CV_VERBOSE |
|
printf( "\r \r" ); |
|
#endif /* CV_VERBOSE */ |
|
|
|
} |
|
|
|
#define CV_INFO_FILENAME "info.dat" |
|
|
|
|
|
void cvCreateTestSamples( const char* infoname, |
|
const char* imgfilename, int bgcolor, int bgthreshold, |
|
const char* bgfilename, int count, |
|
int invert, int maxintensitydev, |
|
double maxxangle, double maxyangle, double maxzangle, |
|
int showsamples, |
|
int winwidth, int winheight ) |
|
{ |
|
CvSampleDistortionData data; |
|
|
|
assert( infoname != NULL ); |
|
assert( imgfilename != NULL ); |
|
assert( bgfilename != NULL ); |
|
|
|
if( !icvMkDir( infoname ) ) |
|
{ |
|
|
|
#if CV_VERBOSE |
|
fprintf( stderr, "Unable to create directory hierarchy: %s\n", infoname ); |
|
#endif /* CV_VERBOSE */ |
|
|
|
return; |
|
} |
|
if( icvStartSampleDistortion( imgfilename, bgcolor, bgthreshold, &data ) ) |
|
{ |
|
char fullname[PATH_MAX]; |
|
char* filename; |
|
CvMat win; |
|
FILE* info; |
|
|
|
if( icvInitBackgroundReaders( bgfilename, cvSize( 10, 10 ) ) ) |
|
{ |
|
int i; |
|
int x, y, width, height; |
|
float scale; |
|
float maxscale; |
|
int inverse; |
|
|
|
if( showsamples ) |
|
{ |
|
cvNamedWindow( "Image", CV_WINDOW_AUTOSIZE ); |
|
} |
|
|
|
info = fopen( infoname, "w" ); |
|
strcpy( fullname, infoname ); |
|
filename = strrchr( fullname, '\\' ); |
|
if( filename == NULL ) |
|
{ |
|
filename = strrchr( fullname, '/' ); |
|
} |
|
if( filename == NULL ) |
|
{ |
|
filename = fullname; |
|
} |
|
else |
|
{ |
|
filename++; |
|
} |
|
|
|
count = MIN( count, cvbgdata->count ); |
|
inverse = invert; |
|
for( i = 0; i < count; i++ ) |
|
{ |
|
icvGetNextFromBackgroundData( cvbgdata, cvbgreader ); |
|
|
|
maxscale = MIN( 0.7F * cvbgreader->src.cols / winwidth, |
|
0.7F * cvbgreader->src.rows / winheight ); |
|
if( maxscale < 1.0F ) continue; |
|
|
|
scale = (maxscale - 1.0F) * rand() / RAND_MAX + 1.0F; |
|
width = (int) (scale * winwidth); |
|
height = (int) (scale * winheight); |
|
x = (int) ((0.1+0.8 * rand()/RAND_MAX) * (cvbgreader->src.cols - width)); |
|
y = (int) ((0.1+0.8 * rand()/RAND_MAX) * (cvbgreader->src.rows - height)); |
|
|
|
cvGetSubArr( &cvbgreader->src, &win, cvRect( x, y ,width, height ) ); |
|
if( invert == CV_RANDOM_INVERT ) |
|
{ |
|
inverse = (rand() > (RAND_MAX/2)); |
|
} |
|
icvPlaceDistortedSample( &win, inverse, maxintensitydev, |
|
maxxangle, maxyangle, maxzangle, |
|
1, 0.0, 0.0, &data ); |
|
|
|
|
|
sprintf( filename, "%04d_%04d_%04d_%04d_%04d.jpg", |
|
(i + 1), x, y, width, height ); |
|
|
|
if( info ) |
|
{ |
|
fprintf( info, "%s %d %d %d %d %d\n", |
|
filename, 1, x, y, width, height ); |
|
} |
|
|
|
cvSaveImage( fullname, &cvbgreader->src ); |
|
if( showsamples ) |
|
{ |
|
cvShowImage( "Image", &cvbgreader->src ); |
|
if( cvWaitKey( 0 ) == 27 ) |
|
{ |
|
showsamples = 0; |
|
} |
|
} |
|
} |
|
if( info ) fclose( info ); |
|
icvDestroyBackgroundReaders(); |
|
} |
|
icvEndSampleDistortion( &data ); |
|
} |
|
} |
|
|
|
|
|
/* End of file. */
|
|
|