Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
139 lines
4.9 KiB
139 lines
4.9 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// This file originates from the openFABMAP project: |
|
// [http://code.google.com/p/openfabmap/] |
|
// |
|
// For published work which uses all or part of OpenFABMAP, please cite: |
|
// [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6224843] |
|
// |
|
// Original Algorithm by Mark Cummins and Paul Newman: |
|
// [http://ijr.sagepub.com/content/27/6/647.short] |
|
// [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5613942] |
|
// [http://ijr.sagepub.com/content/30/9/1100.abstract] |
|
// |
|
// License Agreement |
|
// |
|
// Copyright (C) 2012 Arren Glover [aj.glover@qut.edu.au] and |
|
// Will Maddern [w.maddern@qut.edu.au], all rights reserved. |
|
// |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "opencv2/contrib/openfabmap.hpp" |
|
|
|
namespace cv { |
|
|
|
namespace of2 { |
|
|
|
BOWMSCTrainer::BOWMSCTrainer(double _clusterSize) : |
|
clusterSize(_clusterSize) { |
|
} |
|
|
|
BOWMSCTrainer::~BOWMSCTrainer() { |
|
} |
|
|
|
Mat BOWMSCTrainer::cluster() const { |
|
CV_Assert(!descriptors.empty()); |
|
int descCount = 0; |
|
for(size_t i = 0; i < descriptors.size(); i++) |
|
descCount += descriptors[i].rows; |
|
|
|
Mat mergedDescriptors(descCount, descriptors[0].cols, |
|
descriptors[0].type()); |
|
for(size_t i = 0, start = 0; i < descriptors.size(); i++) |
|
{ |
|
Mat submut = mergedDescriptors.rowRange((int)start, |
|
(int)(start + descriptors[i].rows)); |
|
descriptors[i].copyTo(submut); |
|
start += descriptors[i].rows; |
|
} |
|
return cluster(mergedDescriptors); |
|
} |
|
|
|
Mat BOWMSCTrainer::cluster(const Mat& _descriptors) const { |
|
|
|
CV_Assert(!_descriptors.empty()); |
|
|
|
// TODO: sort the descriptors before clustering. |
|
|
|
|
|
Mat icovar = Mat::eye(_descriptors.cols,_descriptors.cols,_descriptors.type()); |
|
|
|
std::vector<Mat> initialCentres; |
|
initialCentres.push_back(_descriptors.row(0)); |
|
for (int i = 1; i < _descriptors.rows; i++) { |
|
double minDist = DBL_MAX; |
|
for (size_t j = 0; j < initialCentres.size(); j++) { |
|
minDist = std::min(minDist, |
|
cv::Mahalanobis(_descriptors.row(i),initialCentres[j], |
|
icovar)); |
|
} |
|
if (minDist > clusterSize) |
|
initialCentres.push_back(_descriptors.row(i)); |
|
} |
|
|
|
std::vector<std::list<cv::Mat> > clusters; |
|
clusters.resize(initialCentres.size()); |
|
for (int i = 0; i < _descriptors.rows; i++) { |
|
int index = 0; double dist = 0, minDist = DBL_MAX; |
|
for (size_t j = 0; j < initialCentres.size(); j++) { |
|
dist = cv::Mahalanobis(_descriptors.row(i),initialCentres[j],icovar); |
|
if (dist < minDist) { |
|
minDist = dist; |
|
index = (int)j; |
|
} |
|
} |
|
clusters[index].push_back(_descriptors.row(i)); |
|
} |
|
|
|
// TODO: throw away small clusters. |
|
|
|
Mat vocabulary; |
|
Mat centre = Mat::zeros(1,_descriptors.cols,_descriptors.type()); |
|
for (size_t i = 0; i < clusters.size(); i++) { |
|
centre.setTo(0); |
|
for (std::list<cv::Mat>::iterator Ci = clusters[i].begin(); Ci != clusters[i].end(); Ci++) { |
|
centre += *Ci; |
|
} |
|
centre /= (double)clusters[i].size(); |
|
vocabulary.push_back(centre); |
|
} |
|
|
|
return vocabulary; |
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|