mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
107 lines
4.0 KiB
107 lines
4.0 KiB
package org.opencv.test.features2d; |
|
|
|
import org.opencv.core.Core; |
|
import org.opencv.core.CvType; |
|
import org.opencv.core.Mat; |
|
import org.opencv.core.MatOfKeyPoint; |
|
import org.opencv.core.Point; |
|
import org.opencv.core.Scalar; |
|
import org.opencv.features2d.DescriptorExtractor; |
|
import org.opencv.core.KeyPoint; |
|
import org.opencv.test.OpenCVTestCase; |
|
import org.opencv.test.OpenCVTestRunner; |
|
import org.opencv.imgproc.Imgproc; |
|
|
|
public class SIFTDescriptorExtractorTest extends OpenCVTestCase { |
|
|
|
DescriptorExtractor extractor; |
|
KeyPoint keypoint; |
|
int matSize; |
|
Mat truth; |
|
|
|
private Mat getTestImg() { |
|
Mat cross = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255)); |
|
Imgproc.line(cross, new Point(20, matSize / 2), new Point(matSize - 21, matSize / 2), new Scalar(100), 2); |
|
Imgproc.line(cross, new Point(matSize / 2, 20), new Point(matSize / 2, matSize - 21), new Scalar(100), 2); |
|
|
|
return cross; |
|
} |
|
|
|
@Override |
|
protected void setUp() throws Exception { |
|
super.setUp(); |
|
extractor = DescriptorExtractor.create(DescriptorExtractor.SIFT); |
|
keypoint = new KeyPoint(55.775577545166016f, 44.224422454833984f, 16, 9.754629f, 8617.863f, 1, -1); |
|
matSize = 100; |
|
truth = new Mat(1, 128, CvType.CV_32FC1) { |
|
{ |
|
put(0, 0, |
|
0, 0, 0, 1, 3, 0, 0, 0, 15, 23, 22, 20, 24, 2, 0, 0, 7, 8, 2, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 27, 16, 13, 2, 0, 0, 117, |
|
86, 79, 68, 117, 42, 5, 5, 79, 60, 117, 25, 9, 2, 28, 19, 11, 13, |
|
20, 2, 0, 0, 5, 8, 0, 0, 76, 58, 34, 31, 97, 16, 95, 49, 117, 92, |
|
117, 112, 117, 76, 117, 54, 117, 25, 29, 22, 117, 117, 16, 11, 14, |
|
1, 0, 0, 22, 26, 0, 0, 0, 0, 1, 4, 15, 2, 47, 8, 0, 0, 82, 56, 31, |
|
17, 81, 12, 0, 0, 26, 23, 18, 23, 0, 0, 0, 0, 0, 0, 0, 0 |
|
); |
|
} |
|
}; |
|
} |
|
|
|
public void testComputeListOfMatListOfListOfKeyPointListOfMat() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testComputeMatListOfKeyPointMat() { |
|
MatOfKeyPoint keypoints = new MatOfKeyPoint(keypoint); |
|
Mat img = getTestImg(); |
|
Mat descriptors = new Mat(); |
|
|
|
extractor.compute(img, keypoints, descriptors); |
|
|
|
assertMatEqual(truth, descriptors, EPS); |
|
} |
|
|
|
public void testCreate() { |
|
assertNotNull(extractor); |
|
} |
|
|
|
public void testDescriptorSize() { |
|
assertEquals(128, extractor.descriptorSize()); |
|
} |
|
|
|
public void testDescriptorType() { |
|
assertEquals(CvType.CV_32F, extractor.descriptorType()); |
|
} |
|
|
|
public void testEmpty() { |
|
assertFalse(extractor.empty()); |
|
} |
|
|
|
public void testRead() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testWrite() { |
|
String filename = OpenCVTestRunner.getTempFileName("xml"); |
|
|
|
extractor.write(filename); |
|
|
|
String truth = "<?xml version=\"1.0\"?>\n<opencv_storage>\n<name>Feature2D.SIFT</name>\n<contrastThreshold>4.0000000000000001e-02</contrastThreshold>\n<edgeThreshold>10.</edgeThreshold>\n<nFeatures>0</nFeatures>\n<nOctaveLayers>3</nOctaveLayers>\n<sigma>1.6000000000000001e+00</sigma>\n</opencv_storage>\n"; |
|
String actual = readFile(filename); |
|
actual = actual.replaceAll("e([+-])0(\\d\\d)", "e$1$2"); // NOTE: workaround for different platforms double representation |
|
assertEquals(truth, actual); |
|
} |
|
|
|
public void testWriteYml() { |
|
String filename = OpenCVTestRunner.getTempFileName("yml"); |
|
|
|
extractor.write(filename); |
|
|
|
String truth = "%YAML:1.0\nname: \"Feature2D.SIFT\"\ncontrastThreshold: 4.0000000000000001e-02\nedgeThreshold: 10.\nnFeatures: 0\nnOctaveLayers: 3\nsigma: 1.6000000000000001e+00\n"; |
|
String actual = readFile(filename); |
|
actual = actual.replaceAll("e([+-])0(\\d\\d)", "e$1$2"); // NOTE: workaround for different platforms double representation |
|
assertEquals(truth, actual); |
|
} |
|
|
|
}
|
|
|