Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

245 lines
8.5 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "precomp.hpp"
#include "opencl_kernels_core.hpp"
#include "stat.hpp"
#include "sum.simd.hpp"
#include "sum.simd_declarations.hpp" // defines CV_CPU_DISPATCH_MODES_ALL=AVX2,...,BASELINE based on CMakeLists.txt content
#undef HAVE_IPP
#undef CV_IPP_RUN_FAST
#define CV_IPP_RUN_FAST(f, ...)
#undef CV_IPP_RUN
#define CV_IPP_RUN(c, f, ...)
namespace cv
{
SumFunc getSumFunc(int depth)
{
CV_INSTRUMENT_REGION();
CV_CPU_DISPATCH(getSumFunc, (depth),
CV_CPU_DISPATCH_MODES_ALL);
}
#ifdef HAVE_OPENCL
bool ocl_sum( InputArray _src, Scalar & res, int sum_op, InputArray _mask,
InputArray _src2, bool calc2, const Scalar & res2 )
{
CV_Assert(sum_op == OCL_OP_SUM || sum_op == OCL_OP_SUM_ABS || sum_op == OCL_OP_SUM_SQR);
const ocl::Device & dev = ocl::Device::getDefault();
bool doubleSupport = dev.doubleFPConfig() > 0,
haveMask = _mask.kind() != _InputArray::NONE,
haveSrc2 = _src2.kind() != _InputArray::NONE;
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type),
kercn = cn == 1 && !haveMask ? ocl::predictOptimalVectorWidth(_src, _src2) : 1,
mcn = std::max(cn, kercn);
CV_Assert(!haveSrc2 || _src2.type() == type);
int convert_cn = haveSrc2 ? mcn : cn;
if ( (!doubleSupport && depth == CV_64F) || cn > 4 )
return false;
int ngroups = dev.maxComputeUnits(), dbsize = ngroups * (calc2 ? 2 : 1);
size_t wgs = dev.maxWorkGroupSize();
int ddepth = std::max(sum_op == OCL_OP_SUM_SQR ? CV_32F : CV_32S, depth),
dtype = CV_MAKE_TYPE(ddepth, cn);
CV_Assert(!haveMask || _mask.type() == CV_8UC1);
int wgs2_aligned = 1;
while (wgs2_aligned < (int)wgs)
wgs2_aligned <<= 1;
wgs2_aligned >>= 1;
static const char * const opMap[3] = { "OP_SUM", "OP_SUM_ABS", "OP_SUM_SQR" };
char cvt[2][40];
String opts = format("-D srcT=%s -D srcT1=%s -D dstT=%s -D dstTK=%s -D dstT1=%s -D ddepth=%d -D cn=%d"
" -D convertToDT=%s -D %s -D WGS=%d -D WGS2_ALIGNED=%d%s%s%s%s -D kercn=%d%s%s%s -D convertFromU=%s",
ocl::typeToStr(CV_MAKE_TYPE(depth, mcn)), ocl::typeToStr(depth),
ocl::typeToStr(dtype), ocl::typeToStr(CV_MAKE_TYPE(ddepth, mcn)),
ocl::typeToStr(ddepth), ddepth, cn,
ocl::convertTypeStr(depth, ddepth, mcn, cvt[0]),
opMap[sum_op], (int)wgs, wgs2_aligned,
doubleSupport ? " -D DOUBLE_SUPPORT" : "",
haveMask ? " -D HAVE_MASK" : "",
_src.isContinuous() ? " -D HAVE_SRC_CONT" : "",
haveMask && _mask.isContinuous() ? " -D HAVE_MASK_CONT" : "", kercn,
haveSrc2 ? " -D HAVE_SRC2" : "", calc2 ? " -D OP_CALC2" : "",
haveSrc2 && _src2.isContinuous() ? " -D HAVE_SRC2_CONT" : "",
depth <= CV_32S && ddepth == CV_32S ? ocl::convertTypeStr(CV_8U, ddepth, convert_cn, cvt[1]) : "noconvert");
ocl::Kernel k("reduce", ocl::core::reduce_oclsrc, opts);
if (k.empty())
return false;
UMat src = _src.getUMat(), src2 = _src2.getUMat(),
db(1, dbsize, dtype), mask = _mask.getUMat();
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src),
dbarg = ocl::KernelArg::PtrWriteOnly(db),
maskarg = ocl::KernelArg::ReadOnlyNoSize(mask),
src2arg = ocl::KernelArg::ReadOnlyNoSize(src2);
if (haveMask)
{
if (haveSrc2)
k.args(srcarg, src.cols, (int)src.total(), ngroups, dbarg, maskarg, src2arg);
else
k.args(srcarg, src.cols, (int)src.total(), ngroups, dbarg, maskarg);
}
else
{
if (haveSrc2)
k.args(srcarg, src.cols, (int)src.total(), ngroups, dbarg, src2arg);
else
k.args(srcarg, src.cols, (int)src.total(), ngroups, dbarg);
}
size_t globalsize = ngroups * wgs;
if (k.run(1, &globalsize, &wgs, false))
{
typedef Scalar (*part_sum)(Mat m);
part_sum funcs[3] = { ocl_part_sum<int>, ocl_part_sum<float>, ocl_part_sum<double> },
func = funcs[ddepth - CV_32S];
Mat mres = db.getMat(ACCESS_READ);
if (calc2)
const_cast<Scalar &>(res2) = func(mres.colRange(ngroups, dbsize));
res = func(mres.colRange(0, ngroups));
return true;
}
return false;
}
#endif
#ifdef HAVE_IPP
static bool ipp_sum(Mat &src, Scalar &_res)
{
CV_INSTRUMENT_REGION_IPP();
#if IPP_VERSION_X100 >= 700
int cn = src.channels();
if (cn > 4)
return false;
size_t total_size = src.total();
int rows = src.size[0], cols = rows ? (int)(total_size/rows) : 0;
if( src.dims == 2 || (src.isContinuous() && cols > 0 && (size_t)rows*cols == total_size) )
{
IppiSize sz = { cols, rows };
int type = src.type();
typedef IppStatus (CV_STDCALL* ippiSumFuncHint)(const void*, int, IppiSize, double *, IppHintAlgorithm);
typedef IppStatus (CV_STDCALL* ippiSumFuncNoHint)(const void*, int, IppiSize, double *);
ippiSumFuncHint ippiSumHint =
type == CV_32FC1 ? (ippiSumFuncHint)ippiSum_32f_C1R :
type == CV_32FC3 ? (ippiSumFuncHint)ippiSum_32f_C3R :
type == CV_32FC4 ? (ippiSumFuncHint)ippiSum_32f_C4R :
0;
ippiSumFuncNoHint ippiSum =
type == CV_8UC1 ? (ippiSumFuncNoHint)ippiSum_8u_C1R :
type == CV_8UC3 ? (ippiSumFuncNoHint)ippiSum_8u_C3R :
type == CV_8UC4 ? (ippiSumFuncNoHint)ippiSum_8u_C4R :
type == CV_16UC1 ? (ippiSumFuncNoHint)ippiSum_16u_C1R :
type == CV_16UC3 ? (ippiSumFuncNoHint)ippiSum_16u_C3R :
type == CV_16UC4 ? (ippiSumFuncNoHint)ippiSum_16u_C4R :
type == CV_16SC1 ? (ippiSumFuncNoHint)ippiSum_16s_C1R :
type == CV_16SC3 ? (ippiSumFuncNoHint)ippiSum_16s_C3R :
type == CV_16SC4 ? (ippiSumFuncNoHint)ippiSum_16s_C4R :
0;
CV_Assert(!ippiSumHint || !ippiSum);
if( ippiSumHint || ippiSum )
{
Ipp64f res[4];
IppStatus ret = ippiSumHint ?
CV_INSTRUMENT_FUN_IPP(ippiSumHint, src.ptr(), (int)src.step[0], sz, res, ippAlgHintAccurate) :
CV_INSTRUMENT_FUN_IPP(ippiSum, src.ptr(), (int)src.step[0], sz, res);
if( ret >= 0 )
{
for( int i = 0; i < cn; i++ )
_res[i] = res[i];
return true;
}
}
}
#else
CV_UNUSED(src); CV_UNUSED(_res);
#endif
return false;
}
#endif
Scalar sum(InputArray _src)
{
CV_INSTRUMENT_REGION();
#if defined HAVE_OPENCL || defined HAVE_IPP
Scalar _res;
#endif
#ifdef HAVE_OPENCL
CV_OCL_RUN_(OCL_PERFORMANCE_CHECK(_src.isUMat()) && _src.dims() <= 2,
ocl_sum(_src, _res, OCL_OP_SUM),
_res)
#endif
Mat src = _src.getMat();
CV_IPP_RUN(IPP_VERSION_X100 >= 700, ipp_sum(src, _res), _res);
int k, cn = src.channels(), depth = src.depth();
SumFunc func = getSumFunc(depth);
CV_Assert( cn <= 4 && func != 0 );
const Mat* arrays[] = {&src, 0};
uchar* ptrs[1] = {};
NAryMatIterator it(arrays, ptrs);
Scalar s;
int total = (int)it.size, blockSize = total, intSumBlockSize = 0;
int j, count = 0;
AutoBuffer<int> _buf;
int* buf = (int*)&s[0];
size_t esz = 0;
bool blockSum = depth < CV_32S;
if( blockSum )
{
intSumBlockSize = depth <= CV_8S ? (1 << 23) : (1 << 15);
blockSize = std::min(blockSize, intSumBlockSize);
_buf.allocate(cn);
buf = _buf.data();
for( k = 0; k < cn; k++ )
buf[k] = 0;
esz = src.elemSize();
}
for( size_t i = 0; i < it.nplanes; i++, ++it )
{
for( j = 0; j < total; j += blockSize )
{
int bsz = std::min(total - j, blockSize);
func( ptrs[0], 0, (uchar*)buf, bsz, cn );
count += bsz;
if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) )
{
for( k = 0; k < cn; k++ )
{
s[k] += buf[k];
buf[k] = 0;
}
count = 0;
}
ptrs[0] += bsz*esz;
}
}
return s;
}
} // namespace