mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
755 lines
27 KiB
755 lines
27 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
#if !defined HAVE_CUDA || defined(CUDA_DISABLER) |
|
|
|
class cv::gpu::FGDStatModel::Impl |
|
{ |
|
}; |
|
|
|
cv::gpu::FGDStatModel::Params::Params() { throw_nogpu(); } |
|
|
|
cv::gpu::FGDStatModel::FGDStatModel(int) { throw_nogpu(); } |
|
cv::gpu::FGDStatModel::FGDStatModel(const cv::gpu::GpuMat&, const Params&, int) { throw_nogpu(); } |
|
cv::gpu::FGDStatModel::~FGDStatModel() {} |
|
void cv::gpu::FGDStatModel::create(const cv::gpu::GpuMat&, const Params&) { throw_nogpu(); } |
|
void cv::gpu::FGDStatModel::release() {} |
|
int cv::gpu::FGDStatModel::update(const cv::gpu::GpuMat&) { throw_nogpu(); return 0; } |
|
|
|
#else |
|
|
|
#include "fgd_bgfg_common.hpp" |
|
|
|
namespace |
|
{ |
|
class BGPixelStat |
|
{ |
|
public: |
|
void create(cv::Size size, const cv::gpu::FGDStatModel::Params& params, int out_cn); |
|
void release(); |
|
|
|
void setTrained(); |
|
|
|
operator bgfg::BGPixelStat(); |
|
|
|
private: |
|
cv::gpu::GpuMat Pbc_; |
|
cv::gpu::GpuMat Pbcc_; |
|
cv::gpu::GpuMat is_trained_st_model_; |
|
cv::gpu::GpuMat is_trained_dyn_model_; |
|
|
|
cv::gpu::GpuMat ctable_Pv_; |
|
cv::gpu::GpuMat ctable_Pvb_; |
|
cv::gpu::GpuMat ctable_v_; |
|
|
|
cv::gpu::GpuMat cctable_Pv_; |
|
cv::gpu::GpuMat cctable_Pvb_; |
|
cv::gpu::GpuMat cctable_v1_; |
|
cv::gpu::GpuMat cctable_v2_; |
|
}; |
|
|
|
void BGPixelStat::create(cv::Size size, const cv::gpu::FGDStatModel::Params& params, int out_cn) |
|
{ |
|
cv::gpu::ensureSizeIsEnough(size, CV_32FC1, Pbc_); |
|
Pbc_.setTo(cv::Scalar::all(0)); |
|
|
|
cv::gpu::ensureSizeIsEnough(size, CV_32FC1, Pbcc_); |
|
Pbcc_.setTo(cv::Scalar::all(0)); |
|
|
|
cv::gpu::ensureSizeIsEnough(size, CV_8UC1, is_trained_st_model_); |
|
is_trained_st_model_.setTo(cv::Scalar::all(0)); |
|
|
|
cv::gpu::ensureSizeIsEnough(size, CV_8UC1, is_trained_dyn_model_); |
|
is_trained_dyn_model_.setTo(cv::Scalar::all(0)); |
|
|
|
cv::gpu::ensureSizeIsEnough(params.N2c * size.height, size.width, CV_32FC1, ctable_Pv_); |
|
ctable_Pv_.setTo(cv::Scalar::all(0)); |
|
|
|
cv::gpu::ensureSizeIsEnough(params.N2c * size.height, size.width, CV_32FC1, ctable_Pvb_); |
|
ctable_Pvb_.setTo(cv::Scalar::all(0)); |
|
|
|
cv::gpu::ensureSizeIsEnough(params.N2c * size.height, size.width, CV_8UC(out_cn), ctable_v_); |
|
ctable_v_.setTo(cv::Scalar::all(0)); |
|
|
|
cv::gpu::ensureSizeIsEnough(params.N2cc * size.height, size.width, CV_32FC1, cctable_Pv_); |
|
cctable_Pv_.setTo(cv::Scalar::all(0)); |
|
|
|
cv::gpu::ensureSizeIsEnough(params.N2cc * size.height, size.width, CV_32FC1, cctable_Pvb_); |
|
cctable_Pvb_.setTo(cv::Scalar::all(0)); |
|
|
|
cv::gpu::ensureSizeIsEnough(params.N2cc * size.height, size.width, CV_8UC(out_cn), cctable_v1_); |
|
cctable_v1_.setTo(cv::Scalar::all(0)); |
|
|
|
cv::gpu::ensureSizeIsEnough(params.N2cc * size.height, size.width, CV_8UC(out_cn), cctable_v2_); |
|
cctable_v2_.setTo(cv::Scalar::all(0)); |
|
} |
|
|
|
void BGPixelStat::release() |
|
{ |
|
Pbc_.release(); |
|
Pbcc_.release(); |
|
is_trained_st_model_.release(); |
|
is_trained_dyn_model_.release(); |
|
|
|
ctable_Pv_.release(); |
|
ctable_Pvb_.release(); |
|
ctable_v_.release(); |
|
|
|
cctable_Pv_.release(); |
|
cctable_Pvb_.release(); |
|
cctable_v1_.release(); |
|
cctable_v2_.release(); |
|
} |
|
|
|
void BGPixelStat::setTrained() |
|
{ |
|
is_trained_st_model_.setTo(cv::Scalar::all(1)); |
|
is_trained_dyn_model_.setTo(cv::Scalar::all(1)); |
|
} |
|
|
|
BGPixelStat::operator bgfg::BGPixelStat() |
|
{ |
|
bgfg::BGPixelStat stat; |
|
|
|
stat.rows_ = Pbc_.rows; |
|
|
|
stat.Pbc_data_ = Pbc_.data; |
|
stat.Pbc_step_ = Pbc_.step; |
|
|
|
stat.Pbcc_data_ = Pbcc_.data; |
|
stat.Pbcc_step_ = Pbcc_.step; |
|
|
|
stat.is_trained_st_model_data_ = is_trained_st_model_.data; |
|
stat.is_trained_st_model_step_ = is_trained_st_model_.step; |
|
|
|
stat.is_trained_dyn_model_data_ = is_trained_dyn_model_.data; |
|
stat.is_trained_dyn_model_step_ = is_trained_dyn_model_.step; |
|
|
|
stat.ctable_Pv_data_ = ctable_Pv_.data; |
|
stat.ctable_Pv_step_ = ctable_Pv_.step; |
|
|
|
stat.ctable_Pvb_data_ = ctable_Pvb_.data; |
|
stat.ctable_Pvb_step_ = ctable_Pvb_.step; |
|
|
|
stat.ctable_v_data_ = ctable_v_.data; |
|
stat.ctable_v_step_ = ctable_v_.step; |
|
|
|
stat.cctable_Pv_data_ = cctable_Pv_.data; |
|
stat.cctable_Pv_step_ = cctable_Pv_.step; |
|
|
|
stat.cctable_Pvb_data_ = cctable_Pvb_.data; |
|
stat.cctable_Pvb_step_ = cctable_Pvb_.step; |
|
|
|
stat.cctable_v1_data_ = cctable_v1_.data; |
|
stat.cctable_v1_step_ = cctable_v1_.step; |
|
|
|
stat.cctable_v2_data_ = cctable_v2_.data; |
|
stat.cctable_v2_step_ = cctable_v2_.step; |
|
|
|
return stat; |
|
} |
|
} |
|
|
|
class cv::gpu::FGDStatModel::Impl |
|
{ |
|
public: |
|
Impl(cv::gpu::GpuMat& background, cv::gpu::GpuMat& foreground, std::vector< std::vector<cv::Point> >& foreground_regions, int out_cn); |
|
~Impl(); |
|
|
|
void create(const cv::gpu::GpuMat& firstFrame, const cv::gpu::FGDStatModel::Params& params); |
|
void release(); |
|
|
|
int update(const cv::gpu::GpuMat& curFrame); |
|
|
|
private: |
|
Impl(const Impl&); |
|
Impl& operator=(const Impl&); |
|
|
|
int out_cn_; |
|
|
|
cv::gpu::FGDStatModel::Params params_; |
|
|
|
cv::gpu::GpuMat& background_; |
|
cv::gpu::GpuMat& foreground_; |
|
std::vector< std::vector<cv::Point> >& foreground_regions_; |
|
|
|
cv::Mat h_foreground_; |
|
|
|
cv::gpu::GpuMat prevFrame_; |
|
cv::gpu::GpuMat Ftd_; |
|
cv::gpu::GpuMat Fbd_; |
|
BGPixelStat stat_; |
|
|
|
cv::gpu::GpuMat hist_; |
|
cv::gpu::GpuMat histBuf_; |
|
|
|
cv::gpu::GpuMat countBuf_; |
|
|
|
cv::gpu::GpuMat buf_; |
|
cv::gpu::GpuMat filterBuf_; |
|
cv::gpu::GpuMat filterBrd_; |
|
|
|
cv::Ptr<cv::gpu::FilterEngine_GPU> dilateFilter_; |
|
cv::Ptr<cv::gpu::FilterEngine_GPU> erodeFilter_; |
|
|
|
CvMemStorage* storage_; |
|
}; |
|
|
|
cv::gpu::FGDStatModel::Impl::Impl(cv::gpu::GpuMat& background, cv::gpu::GpuMat& foreground, std::vector< std::vector<cv::Point> >& foreground_regions, int out_cn) : |
|
out_cn_(out_cn), background_(background), foreground_(foreground), foreground_regions_(foreground_regions) |
|
{ |
|
CV_Assert( out_cn_ == 3 || out_cn_ == 4 ); |
|
|
|
storage_ = cvCreateMemStorage(); |
|
CV_Assert( storage_ != 0 ); |
|
} |
|
|
|
cv::gpu::FGDStatModel::Impl::~Impl() |
|
{ |
|
cvReleaseMemStorage(&storage_); |
|
} |
|
|
|
namespace |
|
{ |
|
void copyChannels(const cv::gpu::GpuMat& src, cv::gpu::GpuMat& dst, int dst_cn = -1) |
|
{ |
|
const int src_cn = src.channels(); |
|
|
|
if (dst_cn < 0) |
|
dst_cn = src_cn; |
|
|
|
cv::gpu::ensureSizeIsEnough(src.size(), CV_MAKE_TYPE(src.depth(), dst_cn), dst); |
|
|
|
if (src_cn == dst_cn) |
|
src.copyTo(dst); |
|
else |
|
{ |
|
static const int cvt_codes[4][4] = |
|
{ |
|
{-1, -1, cv::COLOR_GRAY2BGR, cv::COLOR_GRAY2BGRA}, |
|
{-1, -1, -1, -1}, |
|
{cv::COLOR_BGR2GRAY, -1, -1, cv::COLOR_BGR2BGRA}, |
|
{cv::COLOR_BGRA2GRAY, -1, cv::COLOR_BGRA2BGR, -1} |
|
}; |
|
|
|
const int cvt_code = cvt_codes[src_cn - 1][dst_cn - 1]; |
|
CV_DbgAssert( cvt_code >= 0 ); |
|
|
|
cv::gpu::cvtColor(src, dst, cvt_code, dst_cn); |
|
} |
|
} |
|
} |
|
|
|
void cv::gpu::FGDStatModel::Impl::create(const cv::gpu::GpuMat& firstFrame, const cv::gpu::FGDStatModel::Params& params) |
|
{ |
|
CV_Assert(firstFrame.type() == CV_8UC3 || firstFrame.type() == CV_8UC4); |
|
|
|
params_ = params; |
|
|
|
cv::gpu::ensureSizeIsEnough(firstFrame.size(), CV_8UC1, foreground_); |
|
|
|
copyChannels(firstFrame, background_, out_cn_); |
|
|
|
copyChannels(firstFrame, prevFrame_); |
|
|
|
cv::gpu::ensureSizeIsEnough(firstFrame.size(), CV_8UC1, Ftd_); |
|
cv::gpu::ensureSizeIsEnough(firstFrame.size(), CV_8UC1, Fbd_); |
|
|
|
stat_.create(firstFrame.size(), params_, out_cn_); |
|
bgfg::setBGPixelStat(stat_); |
|
|
|
if (params_.perform_morphing > 0) |
|
{ |
|
cv::Mat kernel = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(1 + params_.perform_morphing * 2, 1 + params_.perform_morphing * 2)); |
|
cv::Point anchor(params_.perform_morphing, params_.perform_morphing); |
|
|
|
dilateFilter_ = cv::gpu::createMorphologyFilter_GPU(cv::MORPH_DILATE, CV_8UC1, kernel, filterBuf_, anchor); |
|
erodeFilter_ = cv::gpu::createMorphologyFilter_GPU(cv::MORPH_ERODE, CV_8UC1, kernel, filterBuf_, anchor); |
|
} |
|
} |
|
|
|
void cv::gpu::FGDStatModel::Impl::release() |
|
{ |
|
background_.release(); |
|
foreground_.release(); |
|
|
|
prevFrame_.release(); |
|
Ftd_.release(); |
|
Fbd_.release(); |
|
stat_.release(); |
|
|
|
hist_.release(); |
|
histBuf_.release(); |
|
|
|
countBuf_.release(); |
|
|
|
buf_.release(); |
|
filterBuf_.release(); |
|
filterBrd_.release(); |
|
} |
|
|
|
///////////////////////////////////////////////////////////////////////// |
|
// changeDetection |
|
|
|
namespace |
|
{ |
|
void calcDiffHistogram(const cv::gpu::GpuMat& prevFrame, const cv::gpu::GpuMat& curFrame, cv::gpu::GpuMat& hist, cv::gpu::GpuMat& histBuf) |
|
{ |
|
typedef void (*func_t)(cv::gpu::PtrStepSzb prevFrame, cv::gpu::PtrStepSzb curFrame, unsigned int* hist0, unsigned int* hist1, unsigned int* hist2, unsigned int* partialBuf0, unsigned int* partialBuf1, unsigned int* partialBuf2, int cc, cudaStream_t stream); |
|
static const func_t funcs[4][4] = |
|
{ |
|
{0,0,0,0}, |
|
{0,0,0,0}, |
|
{0,0,bgfg::calcDiffHistogram_gpu<uchar3, uchar3>,bgfg::calcDiffHistogram_gpu<uchar3, uchar4>}, |
|
{0,0,bgfg::calcDiffHistogram_gpu<uchar4, uchar3>,bgfg::calcDiffHistogram_gpu<uchar4, uchar4>} |
|
}; |
|
|
|
hist.create(3, 256, CV_32SC1); |
|
histBuf.create(3, bgfg::PARTIAL_HISTOGRAM_COUNT * bgfg::HISTOGRAM_BIN_COUNT, CV_32SC1); |
|
|
|
cv::gpu::DeviceInfo devInfo; |
|
int cc = devInfo.majorVersion() * 10 + devInfo.minorVersion(); |
|
|
|
funcs[prevFrame.channels() - 1][curFrame.channels() - 1]( |
|
prevFrame, curFrame, |
|
hist.ptr<unsigned int>(0), hist.ptr<unsigned int>(1), hist.ptr<unsigned int>(2), |
|
histBuf.ptr<unsigned int>(0), histBuf.ptr<unsigned int>(1), histBuf.ptr<unsigned int>(2), |
|
cc, 0); |
|
} |
|
|
|
void calcRelativeVariance(unsigned int hist[3 * 256], double relativeVariance[3][bgfg::HISTOGRAM_BIN_COUNT]) |
|
{ |
|
std::memset(relativeVariance, 0, 3 * bgfg::HISTOGRAM_BIN_COUNT * sizeof(double)); |
|
|
|
for (int thres = bgfg::HISTOGRAM_BIN_COUNT - 2; thres >= 0; --thres) |
|
{ |
|
cv::Vec3d sum(0.0, 0.0, 0.0); |
|
cv::Vec3d sqsum(0.0, 0.0, 0.0); |
|
cv::Vec3i count(0, 0, 0); |
|
|
|
for (int j = thres; j < bgfg::HISTOGRAM_BIN_COUNT; ++j) |
|
{ |
|
sum[0] += static_cast<double>(j) * hist[j]; |
|
sqsum[0] += static_cast<double>(j * j) * hist[j]; |
|
count[0] += hist[j]; |
|
|
|
sum[1] += static_cast<double>(j) * hist[j + 256]; |
|
sqsum[1] += static_cast<double>(j * j) * hist[j + 256]; |
|
count[1] += hist[j + 256]; |
|
|
|
sum[2] += static_cast<double>(j) * hist[j + 512]; |
|
sqsum[2] += static_cast<double>(j * j) * hist[j + 512]; |
|
count[2] += hist[j + 512]; |
|
} |
|
|
|
count[0] = std::max(count[0], 1); |
|
count[1] = std::max(count[1], 1); |
|
count[2] = std::max(count[2], 1); |
|
|
|
cv::Vec3d my( |
|
sum[0] / count[0], |
|
sum[1] / count[1], |
|
sum[2] / count[2] |
|
); |
|
|
|
relativeVariance[0][thres] = std::sqrt(sqsum[0] / count[0] - my[0] * my[0]); |
|
relativeVariance[1][thres] = std::sqrt(sqsum[1] / count[1] - my[1] * my[1]); |
|
relativeVariance[2][thres] = std::sqrt(sqsum[2] / count[2] - my[2] * my[2]); |
|
} |
|
} |
|
|
|
void calcDiffThreshMask(const cv::gpu::GpuMat& prevFrame, const cv::gpu::GpuMat& curFrame, cv::Vec3d bestThres, cv::gpu::GpuMat& changeMask) |
|
{ |
|
typedef void (*func_t)(cv::gpu::PtrStepSzb prevFrame, cv::gpu::PtrStepSzb curFrame, uchar3 bestThres, cv::gpu::PtrStepSzb changeMask, cudaStream_t stream); |
|
static const func_t funcs[4][4] = |
|
{ |
|
{0,0,0,0}, |
|
{0,0,0,0}, |
|
{0,0,bgfg::calcDiffThreshMask_gpu<uchar3, uchar3>,bgfg::calcDiffThreshMask_gpu<uchar3, uchar4>}, |
|
{0,0,bgfg::calcDiffThreshMask_gpu<uchar4, uchar3>,bgfg::calcDiffThreshMask_gpu<uchar4, uchar4>} |
|
}; |
|
|
|
changeMask.setTo(cv::Scalar::all(0)); |
|
|
|
funcs[prevFrame.channels() - 1][curFrame.channels() - 1](prevFrame, curFrame, make_uchar3((uchar)bestThres[0], (uchar)bestThres[1], (uchar)bestThres[2]), changeMask, 0); |
|
} |
|
|
|
// performs change detection for Foreground detection algorithm |
|
void changeDetection(const cv::gpu::GpuMat& prevFrame, const cv::gpu::GpuMat& curFrame, cv::gpu::GpuMat& changeMask, cv::gpu::GpuMat& hist, cv::gpu::GpuMat& histBuf) |
|
{ |
|
calcDiffHistogram(prevFrame, curFrame, hist, histBuf); |
|
|
|
unsigned int histData[3 * 256]; |
|
cv::Mat h_hist(3, 256, CV_32SC1, histData); |
|
hist.download(h_hist); |
|
|
|
double relativeVariance[3][bgfg::HISTOGRAM_BIN_COUNT]; |
|
calcRelativeVariance(histData, relativeVariance); |
|
|
|
// Find maximum: |
|
cv::Vec3d bestThres(10.0, 10.0, 10.0); |
|
for (int i = 0; i < bgfg::HISTOGRAM_BIN_COUNT; ++i) |
|
{ |
|
bestThres[0] = std::max(bestThres[0], relativeVariance[0][i]); |
|
bestThres[1] = std::max(bestThres[1], relativeVariance[1][i]); |
|
bestThres[2] = std::max(bestThres[2], relativeVariance[2][i]); |
|
} |
|
|
|
calcDiffThreshMask(prevFrame, curFrame, bestThres, changeMask); |
|
} |
|
} |
|
|
|
///////////////////////////////////////////////////////////////////////// |
|
// bgfgClassification |
|
|
|
namespace |
|
{ |
|
int bgfgClassification(const cv::gpu::GpuMat& prevFrame, const cv::gpu::GpuMat& curFrame, |
|
const cv::gpu::GpuMat& Ftd, const cv::gpu::GpuMat& Fbd, |
|
cv::gpu::GpuMat& foreground, cv::gpu::GpuMat& countBuf, |
|
const cv::gpu::FGDStatModel::Params& params, int out_cn) |
|
{ |
|
typedef void (*func_t)(cv::gpu::PtrStepSzb prevFrame, cv::gpu::PtrStepSzb curFrame, cv::gpu::PtrStepSzb Ftd, cv::gpu::PtrStepSzb Fbd, cv::gpu::PtrStepSzb foreground, |
|
int deltaC, int deltaCC, float alpha2, int N1c, int N1cc, cudaStream_t stream); |
|
static const func_t funcs[4][4][4] = |
|
{ |
|
{ |
|
{0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,0,0,0} |
|
}, |
|
{ |
|
{0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,0,0,0} |
|
}, |
|
{ |
|
{0,0,0,0}, {0,0,0,0}, |
|
{0,0,bgfg::bgfgClassification_gpu<uchar3, uchar3, uchar3>,bgfg::bgfgClassification_gpu<uchar3, uchar3, uchar4>}, |
|
{0,0,bgfg::bgfgClassification_gpu<uchar3, uchar4, uchar3>,bgfg::bgfgClassification_gpu<uchar3, uchar4, uchar4>} |
|
}, |
|
{ |
|
{0,0,0,0}, {0,0,0,0}, |
|
{0,0,bgfg::bgfgClassification_gpu<uchar4, uchar3, uchar3>,bgfg::bgfgClassification_gpu<uchar4, uchar3, uchar4>}, |
|
{0,0,bgfg::bgfgClassification_gpu<uchar4, uchar4, uchar3>,bgfg::bgfgClassification_gpu<uchar4, uchar4, uchar4>} |
|
} |
|
}; |
|
|
|
const int deltaC = cvRound(params.delta * 256 / params.Lc); |
|
const int deltaCC = cvRound(params.delta * 256 / params.Lcc); |
|
|
|
funcs[prevFrame.channels() - 1][curFrame.channels() - 1][out_cn - 1](prevFrame, curFrame, Ftd, Fbd, foreground, deltaC, deltaCC, params.alpha2, params.N1c, params.N1cc, 0); |
|
|
|
int count = cv::gpu::countNonZero(foreground, countBuf); |
|
|
|
cv::gpu::multiply(foreground, cv::Scalar::all(255), foreground); |
|
|
|
return count; |
|
} |
|
} |
|
|
|
///////////////////////////////////////////////////////////////////////// |
|
// smoothForeground |
|
|
|
namespace |
|
{ |
|
void morphology(const cv::gpu::GpuMat& src, cv::gpu::GpuMat& dst, cv::gpu::GpuMat& filterBrd, int brd, cv::Ptr<cv::gpu::FilterEngine_GPU>& filter, cv::Scalar brdVal) |
|
{ |
|
cv::gpu::copyMakeBorder(src, filterBrd, brd, brd, brd, brd, cv::BORDER_CONSTANT, brdVal); |
|
filter->apply(filterBrd(cv::Rect(brd, brd, src.cols, src.rows)), dst, cv::Rect(0, 0, src.cols, src.rows)); |
|
} |
|
|
|
void smoothForeground(cv::gpu::GpuMat& foreground, cv::gpu::GpuMat& filterBrd, cv::gpu::GpuMat& buf, |
|
cv::Ptr<cv::gpu::FilterEngine_GPU>& erodeFilter, cv::Ptr<cv::gpu::FilterEngine_GPU>& dilateFilter, |
|
const cv::gpu::FGDStatModel::Params& params) |
|
{ |
|
const int brd = params.perform_morphing; |
|
|
|
const cv::Scalar erodeBrdVal = cv::Scalar::all(UCHAR_MAX); |
|
const cv::Scalar dilateBrdVal = cv::Scalar::all(0); |
|
|
|
// MORPH_OPEN |
|
morphology(foreground, buf, filterBrd, brd, erodeFilter, erodeBrdVal); |
|
morphology(buf, foreground, filterBrd, brd, dilateFilter, dilateBrdVal); |
|
|
|
// MORPH_CLOSE |
|
morphology(foreground, buf, filterBrd, brd, dilateFilter, dilateBrdVal); |
|
morphology(buf, foreground, filterBrd, brd, erodeFilter, erodeBrdVal); |
|
} |
|
} |
|
|
|
///////////////////////////////////////////////////////////////////////// |
|
// findForegroundRegions |
|
|
|
namespace |
|
{ |
|
void seqToContours(CvSeq* _ccontours, CvMemStorage* storage, cv::OutputArrayOfArrays _contours) |
|
{ |
|
cv::Seq<CvSeq*> all_contours(cvTreeToNodeSeq(_ccontours, sizeof(CvSeq), storage)); |
|
|
|
size_t total = all_contours.size(); |
|
|
|
_contours.create(total, 1, 0, -1, true); |
|
|
|
cv::SeqIterator<CvSeq*> it = all_contours.begin(); |
|
for (size_t i = 0; i < total; ++i, ++it) |
|
{ |
|
CvSeq* c = *it; |
|
((CvContour*)c)->color = (int)i; |
|
_contours.create((int)c->total, 1, CV_32SC2, i, true); |
|
cv::Mat ci = _contours.getMat(i); |
|
CV_Assert( ci.isContinuous() ); |
|
cvCvtSeqToArray(c, ci.data); |
|
} |
|
} |
|
|
|
int findForegroundRegions(cv::gpu::GpuMat& d_foreground, cv::Mat& h_foreground, std::vector< std::vector<cv::Point> >& foreground_regions, |
|
CvMemStorage* storage, const cv::gpu::FGDStatModel::Params& params) |
|
{ |
|
int region_count = 0; |
|
|
|
// Discard under-size foreground regions: |
|
|
|
d_foreground.download(h_foreground); |
|
IplImage ipl_foreground = h_foreground; |
|
CvSeq* first_seq = 0; |
|
|
|
cvFindContours(&ipl_foreground, storage, &first_seq, sizeof(CvContour), CV_RETR_LIST); |
|
|
|
for (CvSeq* seq = first_seq; seq; seq = seq->h_next) |
|
{ |
|
CvContour* cnt = reinterpret_cast<CvContour*>(seq); |
|
|
|
if (cnt->rect.width * cnt->rect.height < params.minArea || (params.is_obj_without_holes && CV_IS_SEQ_HOLE(seq))) |
|
{ |
|
// Delete under-size contour: |
|
CvSeq* prev_seq = seq->h_prev; |
|
if (prev_seq) |
|
{ |
|
prev_seq->h_next = seq->h_next; |
|
|
|
if (seq->h_next) |
|
seq->h_next->h_prev = prev_seq; |
|
} |
|
else |
|
{ |
|
first_seq = seq->h_next; |
|
|
|
if (seq->h_next) |
|
seq->h_next->h_prev = NULL; |
|
} |
|
} |
|
else |
|
{ |
|
region_count++; |
|
} |
|
} |
|
|
|
seqToContours(first_seq, storage, foreground_regions); |
|
h_foreground.setTo(0); |
|
|
|
cv::drawContours(h_foreground, foreground_regions, -1, cv::Scalar::all(255), -1); |
|
|
|
d_foreground.upload(h_foreground); |
|
|
|
return region_count; |
|
} |
|
} |
|
|
|
///////////////////////////////////////////////////////////////////////// |
|
// updateBackgroundModel |
|
|
|
namespace |
|
{ |
|
void updateBackgroundModel(const cv::gpu::GpuMat& prevFrame, const cv::gpu::GpuMat& curFrame, const cv::gpu::GpuMat& Ftd, const cv::gpu::GpuMat& Fbd, |
|
const cv::gpu::GpuMat& foreground, cv::gpu::GpuMat& background, |
|
const cv::gpu::FGDStatModel::Params& params) |
|
{ |
|
typedef void (*func_t)(cv::gpu::PtrStepSzb prevFrame, cv::gpu::PtrStepSzb curFrame, cv::gpu::PtrStepSzb Ftd, cv::gpu::PtrStepSzb Fbd, |
|
cv::gpu::PtrStepSzb foreground, cv::gpu::PtrStepSzb background, |
|
int deltaC, int deltaCC, float alpha1, float alpha2, float alpha3, int N1c, int N1cc, int N2c, int N2cc, float T, cudaStream_t stream); |
|
static const func_t funcs[4][4][4] = |
|
{ |
|
{ |
|
{0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,0,0,0} |
|
}, |
|
{ |
|
{0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,0,0,0} |
|
}, |
|
{ |
|
{0,0,0,0}, {0,0,0,0}, |
|
{0,0,bgfg::updateBackgroundModel_gpu<uchar3, uchar3, uchar3>,bgfg::updateBackgroundModel_gpu<uchar3, uchar3, uchar4>}, |
|
{0,0,bgfg::updateBackgroundModel_gpu<uchar3, uchar4, uchar3>,bgfg::updateBackgroundModel_gpu<uchar3, uchar4, uchar4>} |
|
}, |
|
{ |
|
{0,0,0,0}, {0,0,0,0}, |
|
{0,0,bgfg::updateBackgroundModel_gpu<uchar4, uchar3, uchar3>,bgfg::updateBackgroundModel_gpu<uchar4, uchar3, uchar4>}, |
|
{0,0,bgfg::updateBackgroundModel_gpu<uchar4, uchar4, uchar3>,bgfg::updateBackgroundModel_gpu<uchar4, uchar4, uchar4>} |
|
} |
|
}; |
|
|
|
const int deltaC = cvRound(params.delta * 256 / params.Lc); |
|
const int deltaCC = cvRound(params.delta * 256 / params.Lcc); |
|
|
|
funcs[prevFrame.channels() - 1][curFrame.channels() - 1][background.channels() - 1]( |
|
prevFrame, curFrame, Ftd, Fbd, foreground, background, |
|
deltaC, deltaCC, params.alpha1, params.alpha2, params.alpha3, params.N1c, params.N1cc, params.N2c, params.N2cc, params.T, |
|
0); |
|
} |
|
} |
|
|
|
///////////////////////////////////////////////////////////////////////// |
|
// Impl::update |
|
|
|
int cv::gpu::FGDStatModel::Impl::update(const cv::gpu::GpuMat& curFrame) |
|
{ |
|
CV_Assert(curFrame.type() == CV_8UC3 || curFrame.type() == CV_8UC4); |
|
CV_Assert(curFrame.size() == prevFrame_.size()); |
|
|
|
cvClearMemStorage(storage_); |
|
foreground_regions_.clear(); |
|
foreground_.setTo(cv::Scalar::all(0)); |
|
|
|
changeDetection(prevFrame_, curFrame, Ftd_, hist_, histBuf_); |
|
changeDetection(background_, curFrame, Fbd_, hist_, histBuf_); |
|
|
|
int FG_pixels_count = bgfgClassification(prevFrame_, curFrame, Ftd_, Fbd_, foreground_, countBuf_, params_, out_cn_); |
|
|
|
if (params_.perform_morphing > 0) |
|
smoothForeground(foreground_, filterBrd_, buf_, erodeFilter_, dilateFilter_, params_); |
|
|
|
int region_count = 0; |
|
if (params_.minArea > 0 || params_.is_obj_without_holes) |
|
region_count = findForegroundRegions(foreground_, h_foreground_, foreground_regions_, storage_, params_); |
|
|
|
// Check ALL BG update condition: |
|
const double BGFG_FGD_BG_UPDATE_TRESH = 0.5; |
|
if (static_cast<double>(FG_pixels_count) / Ftd_.size().area() > BGFG_FGD_BG_UPDATE_TRESH) |
|
stat_.setTrained(); |
|
|
|
updateBackgroundModel(prevFrame_, curFrame, Ftd_, Fbd_, foreground_, background_, params_); |
|
|
|
copyChannels(curFrame, prevFrame_); |
|
|
|
return region_count; |
|
} |
|
|
|
namespace |
|
{ |
|
// Default parameters of foreground detection algorithm: |
|
const int BGFG_FGD_LC = 128; |
|
const int BGFG_FGD_N1C = 15; |
|
const int BGFG_FGD_N2C = 25; |
|
|
|
const int BGFG_FGD_LCC = 64; |
|
const int BGFG_FGD_N1CC = 25; |
|
const int BGFG_FGD_N2CC = 40; |
|
|
|
// Background reference image update parameter: |
|
const float BGFG_FGD_ALPHA_1 = 0.1f; |
|
|
|
// stat model update parameter |
|
// 0.002f ~ 1K frame(~45sec), 0.005 ~ 18sec (if 25fps and absolutely static BG) |
|
const float BGFG_FGD_ALPHA_2 = 0.005f; |
|
|
|
// start value for alpha parameter (to fast initiate statistic model) |
|
const float BGFG_FGD_ALPHA_3 = 0.1f; |
|
|
|
const float BGFG_FGD_DELTA = 2.0f; |
|
|
|
const float BGFG_FGD_T = 0.9f; |
|
|
|
const float BGFG_FGD_MINAREA= 15.0f; |
|
} |
|
|
|
cv::gpu::FGDStatModel::Params::Params() |
|
{ |
|
Lc = BGFG_FGD_LC; |
|
N1c = BGFG_FGD_N1C; |
|
N2c = BGFG_FGD_N2C; |
|
|
|
Lcc = BGFG_FGD_LCC; |
|
N1cc = BGFG_FGD_N1CC; |
|
N2cc = BGFG_FGD_N2CC; |
|
|
|
delta = BGFG_FGD_DELTA; |
|
|
|
alpha1 = BGFG_FGD_ALPHA_1; |
|
alpha2 = BGFG_FGD_ALPHA_2; |
|
alpha3 = BGFG_FGD_ALPHA_3; |
|
|
|
T = BGFG_FGD_T; |
|
minArea = BGFG_FGD_MINAREA; |
|
|
|
is_obj_without_holes = true; |
|
perform_morphing = 1; |
|
} |
|
|
|
cv::gpu::FGDStatModel::FGDStatModel(int out_cn) |
|
{ |
|
impl_.reset(new Impl(background, foreground, foreground_regions, out_cn)); |
|
} |
|
|
|
cv::gpu::FGDStatModel::FGDStatModel(const cv::gpu::GpuMat& firstFrame, const Params& params, int out_cn) |
|
{ |
|
impl_.reset(new Impl(background, foreground, foreground_regions, out_cn)); |
|
create(firstFrame, params); |
|
} |
|
|
|
cv::gpu::FGDStatModel::~FGDStatModel() |
|
{ |
|
} |
|
|
|
void cv::gpu::FGDStatModel::create(const cv::gpu::GpuMat& firstFrame, const Params& params) |
|
{ |
|
impl_->create(firstFrame, params); |
|
} |
|
|
|
void cv::gpu::FGDStatModel::release() |
|
{ |
|
impl_->release(); |
|
} |
|
|
|
int cv::gpu::FGDStatModel::update(const cv::gpu::GpuMat& curFrame) |
|
{ |
|
return impl_->update(curFrame); |
|
} |
|
|
|
#endif // HAVE_CUDA
|
|
|