mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
127 lines
3.8 KiB
127 lines
3.8 KiB
// Logistic Regression sample |
|
// AUTHOR: Rahul Kavi rahulkavi[at]live[at]com |
|
|
|
#include <iostream> |
|
|
|
#include <opencv2/core.hpp> |
|
#include <opencv2/ml.hpp> |
|
#include <opencv2/highgui.hpp> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
using namespace cv::ml; |
|
|
|
static void showImage(const Mat &data, int columns, const String &name) |
|
{ |
|
Mat bigImage; |
|
for(int i = 0; i < data.rows; ++i) |
|
{ |
|
bigImage.push_back(data.row(i).reshape(0, columns)); |
|
} |
|
imshow(name, bigImage.t()); |
|
} |
|
|
|
static float calculateAccuracyPercent(const Mat &original, const Mat &predicted) |
|
{ |
|
return 100 * (float)countNonZero(original == predicted) / predicted.rows; |
|
} |
|
|
|
int main() |
|
{ |
|
const String filename = samples::findFile("data01.xml"); |
|
cout << "**********************************************************************" << endl; |
|
cout << filename |
|
<< " contains digits 0 and 1 of 20 samples each, collected on an Android device" << endl; |
|
cout << "Each of the collected images are of size 28 x 28 re-arranged to 1 x 784 matrix" |
|
<< endl; |
|
cout << "**********************************************************************" << endl; |
|
|
|
Mat data, labels; |
|
{ |
|
cout << "loading the dataset..."; |
|
FileStorage f; |
|
if(f.open(filename, FileStorage::READ)) |
|
{ |
|
f["datamat"] >> data; |
|
f["labelsmat"] >> labels; |
|
f.release(); |
|
} |
|
else |
|
{ |
|
cerr << "file can not be opened: " << filename << endl; |
|
return 1; |
|
} |
|
data.convertTo(data, CV_32F); |
|
labels.convertTo(labels, CV_32F); |
|
cout << "read " << data.rows << " rows of data" << endl; |
|
} |
|
|
|
Mat data_train, data_test; |
|
Mat labels_train, labels_test; |
|
for(int i = 0; i < data.rows; i++) |
|
{ |
|
if(i % 2 == 0) |
|
{ |
|
data_train.push_back(data.row(i)); |
|
labels_train.push_back(labels.row(i)); |
|
} |
|
else |
|
{ |
|
data_test.push_back(data.row(i)); |
|
labels_test.push_back(labels.row(i)); |
|
} |
|
} |
|
cout << "training/testing samples count: " << data_train.rows << "/" << data_test.rows << endl; |
|
|
|
// display sample image |
|
showImage(data_train, 28, "train data"); |
|
showImage(data_test, 28, "test data"); |
|
|
|
// simple case with batch gradient |
|
cout << "training..."; |
|
//! [init] |
|
Ptr<LogisticRegression> lr1 = LogisticRegression::create(); |
|
lr1->setLearningRate(0.001); |
|
lr1->setIterations(10); |
|
lr1->setRegularization(LogisticRegression::REG_L2); |
|
lr1->setTrainMethod(LogisticRegression::BATCH); |
|
lr1->setMiniBatchSize(1); |
|
//! [init] |
|
lr1->train(data_train, ROW_SAMPLE, labels_train); |
|
cout << "done!" << endl; |
|
|
|
cout << "predicting..."; |
|
Mat responses; |
|
lr1->predict(data_test, responses); |
|
cout << "done!" << endl; |
|
|
|
// show prediction report |
|
cout << "original vs predicted:" << endl; |
|
labels_test.convertTo(labels_test, CV_32S); |
|
cout << labels_test.t() << endl; |
|
cout << responses.t() << endl; |
|
cout << "accuracy: " << calculateAccuracyPercent(labels_test, responses) << "%" << endl; |
|
|
|
// save the classifier |
|
const String saveFilename = "NewLR_Trained.xml"; |
|
cout << "saving the classifier to " << saveFilename << endl; |
|
lr1->save(saveFilename); |
|
|
|
// load the classifier onto new object |
|
cout << "loading a new classifier from " << saveFilename << endl; |
|
Ptr<LogisticRegression> lr2 = StatModel::load<LogisticRegression>(saveFilename); |
|
|
|
// predict using loaded classifier |
|
cout << "predicting the dataset using the loaded classifier..."; |
|
Mat responses2; |
|
lr2->predict(data_test, responses2); |
|
cout << "done!" << endl; |
|
|
|
// calculate accuracy |
|
cout << labels_test.t() << endl; |
|
cout << responses2.t() << endl; |
|
cout << "accuracy: " << calculateAccuracyPercent(labels_test, responses2) << "%" << endl; |
|
|
|
waitKey(0); |
|
return 0; |
|
}
|
|
|