mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
960 lines
32 KiB
960 lines
32 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
// |
|
// Copyright (C) 2018-2019, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
|
|
#include "precomp.hpp" |
|
#include "ie_ngraph.hpp" |
|
|
|
#include <opencv2/dnn/shape_utils.hpp> |
|
|
|
#ifdef HAVE_DNN_NGRAPH |
|
#include <ie_extension.h> |
|
#include <ie_plugin_dispatcher.hpp> |
|
#endif // HAVE_DNN_NGRAPH |
|
|
|
#include <opencv2/core/utils/configuration.private.hpp> |
|
#include <opencv2/core/utils/logger.hpp> |
|
|
|
namespace cv { namespace dnn { |
|
|
|
#ifdef HAVE_DNN_NGRAPH |
|
|
|
// For networks with input layer which has an empty name, IE generates a name id[some_number]. |
|
// OpenCV lets users use an empty input name and to prevent unexpected naming, |
|
// we can use some predefined name. |
|
static std::string kDefaultInpLayerName = "opencv_ngraph_empty_inp_layer_name"; |
|
static constexpr const char* kOpenCVLayersType = "opencv_ngraph_layer"; |
|
|
|
static std::string shapesToStr(const std::vector<Mat>& mats) |
|
{ |
|
std::ostringstream shapes; |
|
shapes << mats.size() << " "; |
|
for (const Mat& m : mats) |
|
{ |
|
shapes << m.dims << " "; |
|
for (int i = 0; i < m.dims; ++i) |
|
shapes << m.size[i] << " "; |
|
} |
|
return shapes.str(); |
|
} |
|
|
|
static void strToShapes(const std::string& str, std::vector<std::vector<size_t> >& shapes) |
|
{ |
|
std::istringstream ss(str); |
|
int num, dims; |
|
ss >> num; |
|
shapes.resize(num); |
|
for (int i = 0; i < num; ++i) |
|
{ |
|
ss >> dims; |
|
shapes[i].resize(dims); |
|
for (int j = 0; j < dims; ++j) |
|
ss >> shapes[i][j]; |
|
} |
|
} |
|
|
|
static std::vector<Ptr<NgraphBackendWrapper> > |
|
ngraphWrappers(const std::vector<Ptr<BackendWrapper> >& ptrs) |
|
{ |
|
std::vector<Ptr<NgraphBackendWrapper> > wrappers(ptrs.size()); |
|
for (int i = 0; i < ptrs.size(); ++i) |
|
{ |
|
CV_Assert(!ptrs[i].empty()); |
|
wrappers[i] = ptrs[i].dynamicCast<NgraphBackendWrapper>(); |
|
CV_Assert(!wrappers[i].empty()); |
|
} |
|
return wrappers; |
|
} |
|
|
|
class NgraphCustomOp: public ngraph::op::Op { |
|
public: |
|
const ngraph::NodeTypeInfo& get_type_info() const override |
|
{ |
|
static constexpr ngraph::NodeTypeInfo type_info{kOpenCVLayersType, 0}; |
|
return type_info; |
|
} |
|
|
|
#if INF_ENGINE_VER_MAJOR_GT(2020020000) |
|
NgraphCustomOp(const ngraph::OutputVector& inputs, |
|
#else |
|
NgraphCustomOp(const ngraph::NodeVector& inputs, |
|
#endif |
|
const std::map<std::string, InferenceEngine::Parameter>& params = {}): |
|
Op(inputs), params(params) |
|
{ |
|
constructor_validate_and_infer_types(); |
|
} |
|
|
|
~NgraphCustomOp() |
|
{ |
|
// nothing |
|
} |
|
|
|
void validate_and_infer_types() override |
|
{ |
|
std::vector<std::vector<size_t> > shapes; |
|
strToShapes(params["outputs"], shapes); |
|
set_output_size(shapes.size()); |
|
for (size_t i = 0; i < shapes.size(); ++i) |
|
{ |
|
ngraph::Shape output_shape(shapes[i]); |
|
set_output_type(i, get_input_element_type(0), output_shape); |
|
} |
|
} |
|
|
|
std::shared_ptr<ngraph::Node> copy_with_new_args(const ngraph::NodeVector& new_args) const override |
|
{ |
|
#if INF_ENGINE_VER_MAJOR_GT(2020020000) |
|
return std::make_shared<NgraphCustomOp>(ngraph::as_output_vector(new_args), params); |
|
#else |
|
return std::make_shared<NgraphCustomOp>(new_args, params); |
|
#endif |
|
} |
|
|
|
bool visit_attributes(ngraph::AttributeVisitor& visitor) override |
|
{ |
|
for (auto& attr : params) |
|
{ |
|
if (attr.second.is<std::string>()) |
|
visitor.on_attribute(attr.first, attr.second.as<std::string>()); |
|
} |
|
return true; |
|
} |
|
|
|
private: |
|
std::map<std::string, InferenceEngine::Parameter> params; |
|
}; |
|
|
|
|
|
class InfEngineNgraphCustomLayer : public InferenceEngine::ILayerExecImpl |
|
{ |
|
public: |
|
explicit InfEngineNgraphCustomLayer(const InferenceEngine::CNNLayer& layer) : cnnLayer(layer) |
|
{ |
|
std::istringstream iss(layer.GetParamAsString("impl")); |
|
size_t ptr; |
|
iss >> ptr; |
|
cvLayer = (Layer*)ptr; |
|
|
|
std::vector<std::vector<size_t> > shapes; |
|
strToShapes(layer.GetParamAsString("internals"), shapes); |
|
internals.resize(shapes.size()); |
|
for (int i = 0; i < shapes.size(); ++i) |
|
internals[i].create(std::vector<int>(shapes[i].begin(), shapes[i].end()), CV_32F); |
|
} |
|
|
|
~InfEngineNgraphCustomLayer() |
|
{ |
|
// nothing |
|
} |
|
|
|
virtual InferenceEngine::StatusCode execute(std::vector<InferenceEngine::Blob::Ptr>& inputs, |
|
std::vector<InferenceEngine::Blob::Ptr>& outputs, |
|
InferenceEngine::ResponseDesc *resp) noexcept |
|
{ |
|
std::vector<Mat> inpMats, outMats; |
|
infEngineBlobsToMats(inputs, inpMats); |
|
infEngineBlobsToMats(outputs, outMats); |
|
|
|
try |
|
{ |
|
cvLayer->forward(inpMats, outMats, internals); |
|
return InferenceEngine::StatusCode::OK; |
|
} |
|
catch (...) |
|
{ |
|
return InferenceEngine::StatusCode::GENERAL_ERROR; |
|
} |
|
} |
|
|
|
virtual InferenceEngine::StatusCode |
|
getSupportedConfigurations(std::vector<InferenceEngine::LayerConfig>& conf, |
|
InferenceEngine::ResponseDesc* resp) noexcept |
|
{ |
|
std::vector<InferenceEngine::DataConfig> inDataConfig; |
|
std::vector<InferenceEngine::DataConfig> outDataConfig; |
|
for (auto& it : cnnLayer.insData) |
|
{ |
|
InferenceEngine::DataConfig conf; |
|
conf.desc = it.lock()->getTensorDesc(); |
|
inDataConfig.push_back(conf); |
|
} |
|
|
|
for (auto& it : cnnLayer.outData) |
|
{ |
|
InferenceEngine::DataConfig conf; |
|
conf.desc = it->getTensorDesc(); |
|
outDataConfig.push_back(conf); |
|
} |
|
|
|
InferenceEngine::LayerConfig layerConfig; |
|
layerConfig.inConfs = inDataConfig; |
|
layerConfig.outConfs = outDataConfig; |
|
|
|
conf.push_back(layerConfig); |
|
return InferenceEngine::StatusCode::OK; |
|
} |
|
|
|
InferenceEngine::StatusCode init(InferenceEngine::LayerConfig& config, |
|
InferenceEngine::ResponseDesc *resp) noexcept |
|
{ |
|
return InferenceEngine::StatusCode::OK; |
|
} |
|
|
|
private: |
|
InferenceEngine::CNNLayer cnnLayer; |
|
dnn::Layer* cvLayer; |
|
std::vector<Mat> internals; |
|
}; |
|
|
|
|
|
class InfEngineNgraphCustomLayerFactory : public InferenceEngine::ILayerImplFactory { |
|
public: |
|
explicit InfEngineNgraphCustomLayerFactory(const InferenceEngine::CNNLayer* layer) : cnnLayer(*layer) |
|
{ |
|
// nothing |
|
} |
|
|
|
InferenceEngine::StatusCode |
|
getImplementations(std::vector<InferenceEngine::ILayerImpl::Ptr>& impls, |
|
InferenceEngine::ResponseDesc* resp) noexcept override |
|
{ |
|
impls.push_back(std::make_shared<InfEngineNgraphCustomLayer>(cnnLayer)); |
|
return InferenceEngine::StatusCode::OK; |
|
} |
|
|
|
private: |
|
InferenceEngine::CNNLayer cnnLayer; |
|
}; |
|
|
|
|
|
class InfEngineNgraphExtension : public InferenceEngine::IExtension |
|
{ |
|
public: |
|
virtual void SetLogCallback(InferenceEngine::IErrorListener&) noexcept {} |
|
virtual void Unload() noexcept {} |
|
virtual void Release() noexcept {} |
|
virtual void GetVersion(const InferenceEngine::Version*&) const noexcept {} |
|
|
|
virtual InferenceEngine::StatusCode getPrimitiveTypes(char**&, unsigned int&, |
|
InferenceEngine::ResponseDesc*) noexcept |
|
{ |
|
return InferenceEngine::StatusCode::OK; |
|
} |
|
|
|
InferenceEngine::StatusCode getFactoryFor(InferenceEngine::ILayerImplFactory*& factory, |
|
const InferenceEngine::CNNLayer* cnnLayer, |
|
InferenceEngine::ResponseDesc* resp) noexcept |
|
{ |
|
if (cnnLayer->type != kOpenCVLayersType) |
|
return InferenceEngine::StatusCode::NOT_IMPLEMENTED; |
|
factory = new InfEngineNgraphCustomLayerFactory(cnnLayer); |
|
return InferenceEngine::StatusCode::OK; |
|
} |
|
}; |
|
|
|
|
|
|
|
InfEngineNgraphNode::InfEngineNgraphNode(std::shared_ptr<ngraph::Node>&& _node) |
|
: BackendNode(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH), node(std::move(_node)) {} |
|
|
|
InfEngineNgraphNode::InfEngineNgraphNode(std::shared_ptr<ngraph::Node>& _node) |
|
: BackendNode(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH), node(_node) {} |
|
|
|
InfEngineNgraphNode::InfEngineNgraphNode(const std::vector<Ptr<BackendNode> >& nodes, |
|
Ptr<Layer>& cvLayer_, std::vector<Mat*>& inputs, |
|
std::vector<Mat>& outputs, std::vector<Mat>& internals) |
|
: BackendNode(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH), cvLayer(cvLayer_) |
|
{ |
|
std::ostringstream oss; |
|
oss << (size_t)cvLayer.get(); |
|
|
|
std::map<std::string, InferenceEngine::Parameter> params = { |
|
{"impl", oss.str()}, |
|
{"outputs", shapesToStr(outputs)}, |
|
{"internals", shapesToStr(internals)} |
|
}; |
|
|
|
#if INF_ENGINE_VER_MAJOR_GT(2020020000) |
|
ngraph::OutputVector inp_nodes; |
|
#else |
|
ngraph::NodeVector inp_nodes; |
|
#endif |
|
for (const auto& node : nodes) |
|
inp_nodes.emplace_back(node.dynamicCast<InfEngineNgraphNode>()->node); |
|
node = std::make_shared<NgraphCustomOp>(inp_nodes, params); |
|
|
|
CV_Assert(!cvLayer->name.empty()); |
|
setName(cvLayer->name); |
|
} |
|
|
|
void InfEngineNgraphNode::setName(const std::string& name) { |
|
node->set_friendly_name(name); |
|
} |
|
|
|
InfEngineNgraphNet::InfEngineNgraphNet() |
|
{ |
|
hasNetOwner = false; |
|
device_name = "CPU"; |
|
} |
|
|
|
InfEngineNgraphNet::InfEngineNgraphNet(InferenceEngine::CNNNetwork& net) : cnn(net) |
|
{ |
|
hasNetOwner = true; |
|
device_name = "CPU"; |
|
} |
|
|
|
void InfEngineNgraphNet::addOutput(const std::string& name) |
|
{ |
|
requestedOutputs.push_back(name); |
|
} |
|
|
|
void InfEngineNgraphNet::setNodePtr(std::shared_ptr<ngraph::Node>* ptr) { |
|
all_nodes.emplace((*ptr)->get_friendly_name(), ptr); |
|
} |
|
|
|
void InfEngineNgraphNet::release() { |
|
for (auto& node : components.back()) { |
|
if (!(node->is_parameter() || node->is_output() || node->is_constant()) ) { |
|
auto it = all_nodes.find(node->get_friendly_name()); |
|
if (it != all_nodes.end()) { |
|
unconnectedNodes.erase(*(it->second)); |
|
it->second->reset(); |
|
all_nodes.erase(it); |
|
} |
|
} |
|
} |
|
} |
|
|
|
void InfEngineNgraphNet::dfs(std::shared_ptr<ngraph::Node>& node, |
|
std::vector<std::shared_ptr<ngraph::Node>>& comp, |
|
std::unordered_map<std::string, bool>& used) { |
|
used[node->get_friendly_name()] = true; |
|
comp.push_back(node); |
|
auto inputs = node->get_users(); |
|
for (size_t i = 0; i < node->get_input_size(); ++i) { |
|
inputs.push_back(node->input_value(i).get_node()->shared_from_this()); |
|
} |
|
|
|
for (auto& to : inputs) { |
|
if (!used[to->get_friendly_name()]) { |
|
dfs(to, comp, used); |
|
} |
|
} |
|
} |
|
|
|
int InfEngineNgraphNet::getNumComponents() { |
|
if (!components.empty()) { |
|
return components.size(); |
|
} |
|
std::unordered_map<std::string, bool> used; |
|
auto inputs = ngraph_function->get_ordered_ops(); |
|
for (auto& node : inputs) { |
|
used.emplace(node->get_friendly_name(), false); |
|
} |
|
|
|
for (auto& node : inputs) { |
|
if (!used[node->get_friendly_name()]) { |
|
std::vector<std::shared_ptr<ngraph::Node>> current_comp; |
|
dfs(node, current_comp, used); |
|
components.push_back(current_comp); |
|
} |
|
} |
|
return components.size(); |
|
} |
|
|
|
void InfEngineNgraphNet::createNet(Target targetId) { |
|
if (!hasNetOwner) |
|
{ |
|
CV_Assert(!unconnectedNodes.empty()); |
|
ngraph::ResultVector outs; |
|
for (auto& node : unconnectedNodes) |
|
{ |
|
auto out = std::make_shared<ngraph::op::Result>(node); |
|
outs.push_back(out); |
|
} |
|
CV_Assert_N(!inputs_vec.empty(), !outs.empty()); |
|
ngraph_function = std::make_shared<ngraph::Function>(outs, inputs_vec); |
|
|
|
int num_comp = getNumComponents(); |
|
if (num_comp > 1) { |
|
for (int i = num_comp - 1; i >= 0; --i) { |
|
ngraph::ResultVector outputs; |
|
ngraph::ParameterVector inps; |
|
for (auto& node : components.back()) { |
|
if (node->is_parameter()) { |
|
auto parameter = std::dynamic_pointer_cast<ngraph::op::Parameter>(node); |
|
inps.push_back(parameter); |
|
} |
|
else if (node->is_output()) { |
|
auto result = std::dynamic_pointer_cast<ngraph::op::Result>(node); |
|
outputs.push_back(result); |
|
} |
|
} |
|
isInit = false; |
|
CV_Assert_N(!inps.empty(), !outputs.empty()); |
|
ngraph_function = std::make_shared<ngraph::Function>(outputs, inps); |
|
release(); |
|
components.pop_back(); |
|
init(targetId); |
|
} |
|
} else { |
|
release(); |
|
components.clear(); |
|
init(targetId); |
|
} |
|
} |
|
} |
|
|
|
void InfEngineNgraphNet::init(Target targetId) |
|
{ |
|
if (!hasNetOwner) |
|
{ |
|
if (targetId == DNN_TARGET_OPENCL_FP16) |
|
{ |
|
auto nodes = ngraph_function->get_ordered_ops(); |
|
for (auto& node : nodes) |
|
{ |
|
auto parameter = std::dynamic_pointer_cast<ngraph::op::Parameter>(node); |
|
if (parameter && parameter->get_element_type() == ngraph::element::f32) |
|
{ |
|
parameter->set_element_type(ngraph::element::f16); |
|
} |
|
auto constant = std::dynamic_pointer_cast<ngraph::op::Constant>(node); |
|
if (constant && constant->get_element_type() == ngraph::element::f32) |
|
{ |
|
const float* floatsData = constant->get_data_ptr<float>(); |
|
size_t total = ngraph::shape_size(constant->get_shape()); |
|
Mat floats(1, total, CV_32F, (void*)floatsData); |
|
Mat halfs; |
|
cv::convertFp16(floats, halfs); |
|
|
|
auto new_const = std::make_shared<ngraph::op::Constant>(ngraph::element::f16, constant->get_shape(), halfs.data); |
|
new_const->set_friendly_name(constant->get_friendly_name()); |
|
ngraph::replace_node(constant, new_const); |
|
} |
|
} |
|
ngraph_function->validate_nodes_and_infer_types(); |
|
} |
|
cnn = InferenceEngine::CNNNetwork(ngraph_function); |
|
#ifdef _DEBUG // TODO |
|
//cnn.serialize("/tmp/cnn.xml", "/tmp/cnn.bin"); |
|
#endif |
|
} |
|
|
|
switch (targetId) |
|
{ |
|
case DNN_TARGET_CPU: |
|
device_name = "CPU"; |
|
break; |
|
case DNN_TARGET_OPENCL: |
|
case DNN_TARGET_OPENCL_FP16: |
|
device_name = "GPU"; |
|
break; |
|
case DNN_TARGET_MYRIAD: |
|
device_name = "MYRIAD"; |
|
break; |
|
case DNN_TARGET_FPGA: |
|
device_name = "FPGA"; |
|
break; |
|
default: |
|
CV_Error(Error::StsNotImplemented, "Unknown target"); |
|
}; |
|
|
|
if (!hasNetOwner) { |
|
for (size_t i = 0; i < ngraph_function->get_output_size(); ++i) { |
|
auto node = ngraph_function->output(i).get_node(); |
|
for (size_t j = 0; j < node->get_input_size(); ++j) { |
|
std::string name = node->input_value(j).get_node()->get_friendly_name(); |
|
auto iter = std::find(requestedOutputs.begin(), requestedOutputs.end(), name); |
|
if (iter != requestedOutputs.end()) { |
|
requestedOutputs.erase(iter); |
|
cnn.addOutput(name); |
|
} |
|
} |
|
} |
|
} |
|
for (const auto& name : requestedOutputs) |
|
{ |
|
cnn.addOutput(name); |
|
} |
|
|
|
for (const auto& it : cnn.getInputsInfo()) |
|
{ |
|
const std::string& name = it.first; |
|
auto blobIt = allBlobs.find(name); |
|
CV_Assert(blobIt != allBlobs.end()); |
|
it.second->setPrecision(blobIt->second->getTensorDesc().getPrecision()); |
|
} |
|
|
|
for (const auto& it : cnn.getOutputsInfo()) |
|
{ |
|
const std::string& name = it.first; |
|
auto blobIt = allBlobs.find(name); |
|
CV_Assert(blobIt != allBlobs.end()); |
|
it.second->setPrecision(blobIt->second->getTensorDesc().getPrecision()); // Should be always FP32 |
|
} |
|
|
|
initPlugin(cnn); |
|
} |
|
|
|
ngraph::ParameterVector InfEngineNgraphNet::setInputs(const std::vector<cv::Mat>& inputs, |
|
const std::vector<std::string>& names) { |
|
CV_Assert_N(inputs.size() == names.size()); |
|
ngraph::ParameterVector current_inp; |
|
for (size_t i = 0; i < inputs.size(); i++) |
|
{ |
|
std::vector<size_t> shape = getShape<size_t>(inputs[i]); |
|
auto inp = std::make_shared<ngraph::op::Parameter>(ngraph::element::f32, ngraph::Shape(shape)); |
|
inp->set_friendly_name(names[i]); |
|
|
|
auto it = std::find_if(inputs_vec.begin(), inputs_vec.end(), |
|
[&inp](const std::shared_ptr<ngraph::op::Parameter>& a) { |
|
return a->get_friendly_name() == inp->get_friendly_name(); |
|
}); |
|
if (it == inputs_vec.end()) { |
|
inputs_vec.push_back(inp); |
|
current_inp.push_back(inp); |
|
} else { |
|
current_inp.push_back(*it); |
|
} |
|
} |
|
return current_inp; |
|
} |
|
|
|
void InfEngineNgraphNet::setUnconnectedNodes(Ptr<InfEngineNgraphNode>& node) { |
|
unconnectedNodes.insert(node->node); |
|
} |
|
|
|
void InfEngineNgraphNet::initPlugin(InferenceEngine::CNNNetwork& net) |
|
{ |
|
CV_Assert(!isInitialized()); |
|
|
|
try |
|
{ |
|
AutoLock lock(getInitializationMutex()); |
|
InferenceEngine::Core& ie = getCore(device_name); |
|
{ |
|
isInit = true; |
|
std::vector<std::string> candidates; |
|
std::string param_pluginPath = utils::getConfigurationParameterString("OPENCV_DNN_IE_EXTRA_PLUGIN_PATH", ""); |
|
if (!param_pluginPath.empty()) |
|
{ |
|
candidates.push_back(param_pluginPath); |
|
} |
|
bool found = false; |
|
for (size_t i = 0; i != candidates.size(); ++i) |
|
{ |
|
const std::string& libName = candidates[i]; |
|
try |
|
{ |
|
InferenceEngine::IExtensionPtr extension = |
|
InferenceEngine::make_so_pointer<InferenceEngine::IExtension>(libName); |
|
|
|
ie.AddExtension(extension, "CPU"); |
|
CV_LOG_INFO(NULL, "DNN-IE: Loaded extension plugin: " << libName); |
|
found = true; |
|
break; |
|
} |
|
catch(...) {} |
|
} |
|
if (!found && !candidates.empty()) |
|
{ |
|
CV_LOG_WARNING(NULL, "DNN-IE: Can't load extension plugin (extra layers for some networks). Specify path via OPENCV_DNN_IE_EXTRA_PLUGIN_PATH parameter"); |
|
} |
|
// Some of networks can work without a library of extra layers. |
|
// OpenCV fallbacks as extensions. |
|
try |
|
{ |
|
ie.AddExtension(std::make_shared<InfEngineNgraphExtension>(), "CPU"); |
|
} |
|
catch(const std::exception& e) |
|
{ |
|
CV_LOG_INFO(NULL, "DNN-IE: Can't register OpenCV custom layers nGraph extension: " << e.what()); |
|
} |
|
#ifndef _WIN32 |
|
// Limit the number of CPU threads. |
|
if (device_name == "CPU") |
|
ie.SetConfig({{ |
|
InferenceEngine::PluginConfigParams::KEY_CPU_THREADS_NUM, format("%d", getNumThreads()), |
|
}}, device_name); |
|
#endif |
|
} |
|
std::map<std::string, std::string> config; |
|
if (device_name == "MYRIAD") { |
|
config.emplace("VPU_DETECT_NETWORK_BATCH", CONFIG_VALUE(NO)); |
|
} |
|
|
|
bool isHetero = device_name == "FPGA"; |
|
// It is actual only for non-CPU targets and networks built in runtime using nGraph. |
|
// We do not check IR models because they can be with version less than IRv10 |
|
if (!isHetero && device_name != "CPU" && !hasNetOwner) |
|
{ |
|
for (auto& node : net.getFunction()->get_ops()) |
|
{ |
|
if (node->description() == kOpenCVLayersType) |
|
{ |
|
isHetero = true; |
|
break; |
|
} |
|
} |
|
} |
|
if (isHetero) |
|
netExec = ie.LoadNetwork(net, "HETERO:" + device_name + ",CPU", config); |
|
else |
|
netExec = ie.LoadNetwork(net, device_name, config); |
|
} |
|
catch (const std::exception& ex) |
|
{ |
|
CV_Error(Error::StsError, format("Failed to initialize Inference Engine backend (device = %s): %s", device_name.c_str(), ex.what())); |
|
} |
|
} |
|
|
|
bool InfEngineNgraphNet::isInitialized() |
|
{ |
|
return isInit; |
|
} |
|
|
|
bool NgraphBackendLayer::getMemoryShapes(const std::vector<MatShape> &inputs, |
|
const int requiredOutputs, |
|
std::vector<MatShape> &outputs, |
|
std::vector<MatShape> &internals) const |
|
{ |
|
InferenceEngine::ICNNNetwork::InputShapes inShapes = t_net.getInputShapes(); |
|
InferenceEngine::ICNNNetwork::InputShapes::iterator itr; |
|
bool equal_flag = true; |
|
size_t i = 0; |
|
for (itr = inShapes.begin(); itr != inShapes.end(); ++itr) |
|
{ |
|
InferenceEngine::SizeVector currentInShape(inputs[i].begin(), inputs[i].end()); |
|
if (itr->second != currentInShape) |
|
{ |
|
itr->second = currentInShape; |
|
equal_flag = false; |
|
} |
|
i++; |
|
} |
|
|
|
if (!equal_flag) |
|
{ |
|
InferenceEngine::CNNNetwork curr_t_net(t_net); |
|
curr_t_net.reshape(inShapes); |
|
} |
|
std::vector<size_t> dims = t_net.getOutputsInfo()[name]->getDims(); |
|
outputs.push_back(MatShape(dims.begin(), dims.end())); |
|
return false; |
|
} |
|
|
|
bool NgraphBackendLayer::supportBackend(int backendId) |
|
{ |
|
CV_LOG_DEBUG(NULL, "NgraphBackendLayer::supportBackend(" << backendId << ")"); |
|
return backendId == DNN_BACKEND_DEFAULT || |
|
(backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH); |
|
} |
|
|
|
void NgraphBackendLayer::forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, |
|
OutputArrayOfArrays internals) |
|
{ |
|
CV_Error(Error::StsInternal, "Choose Inference Engine as a preferable backend."); |
|
} |
|
|
|
|
|
static InferenceEngine::Layout estimateLayout(const Mat& m) |
|
{ |
|
if (m.dims == 4) |
|
return InferenceEngine::Layout::NCHW; |
|
else if (m.dims == 2) |
|
return InferenceEngine::Layout::NC; |
|
else |
|
return InferenceEngine::Layout::ANY; |
|
} |
|
|
|
static InferenceEngine::DataPtr wrapToInfEngineDataNode(const Mat& m, const std::string& name = "") |
|
{ |
|
std::vector<size_t> shape = getShape<size_t>(m); |
|
if (m.type() == CV_32F) |
|
return InferenceEngine::DataPtr(new InferenceEngine::Data(name, |
|
{InferenceEngine::Precision::FP32, shape, estimateLayout(m)})); |
|
else if (m.type() == CV_8U) |
|
return InferenceEngine::DataPtr(new InferenceEngine::Data(name, |
|
{InferenceEngine::Precision::U8, shape, estimateLayout(m)})); |
|
else |
|
CV_Error(Error::StsNotImplemented, format("Unsupported data type %s", typeToString(m.type()).c_str())); |
|
} |
|
|
|
InferenceEngine::Blob::Ptr wrapToNgraphBlob(const Mat& m, const std::vector<size_t>& shape, |
|
InferenceEngine::Layout layout) |
|
{ |
|
if (m.type() == CV_32F) |
|
return InferenceEngine::make_shared_blob<float>( |
|
{InferenceEngine::Precision::FP32, shape, layout}, (float*)m.data); |
|
else if (m.type() == CV_8U) |
|
return InferenceEngine::make_shared_blob<uint8_t>( |
|
{InferenceEngine::Precision::U8, shape, layout}, (uint8_t*)m.data); |
|
else |
|
CV_Error(Error::StsNotImplemented, format("Unsupported data type %s", typeToString(m.type()).c_str())); |
|
} |
|
|
|
InferenceEngine::Blob::Ptr wrapToNgraphBlob(const Mat& m, InferenceEngine::Layout layout) |
|
{ |
|
std::vector<size_t> shape = getShape<size_t>(m); |
|
return wrapToNgraphBlob(m, shape, layout); |
|
} |
|
|
|
NgraphBackendWrapper::NgraphBackendWrapper(int targetId, const cv::Mat& m) |
|
: BackendWrapper(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, targetId) |
|
{ |
|
dataPtr = wrapToInfEngineDataNode(m); |
|
blob = wrapToNgraphBlob(m, estimateLayout(m)); |
|
} |
|
|
|
NgraphBackendWrapper::NgraphBackendWrapper(Ptr<BackendWrapper> wrapper) |
|
: BackendWrapper(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, wrapper->targetId) |
|
{ |
|
Ptr<NgraphBackendWrapper> ieWrapper = wrapper.dynamicCast<NgraphBackendWrapper>(); |
|
CV_Assert(!ieWrapper.empty()); |
|
InferenceEngine::DataPtr srcData = ieWrapper->dataPtr; |
|
dataPtr = InferenceEngine::DataPtr(new InferenceEngine::Data(srcData->getName(), srcData->getTensorDesc())); |
|
blob = ieWrapper->blob; |
|
} |
|
|
|
Ptr<BackendWrapper> NgraphBackendWrapper::create(Ptr<BackendWrapper> wrapper) |
|
{ |
|
return Ptr<BackendWrapper>(new NgraphBackendWrapper(wrapper)); |
|
} |
|
|
|
NgraphBackendWrapper::~NgraphBackendWrapper() |
|
{ |
|
// nothing |
|
} |
|
|
|
void NgraphBackendWrapper::copyToHost() |
|
{ |
|
CV_LOG_DEBUG(NULL, "NgraphBackendWrapper::copyToHost()"); |
|
//CV_Error(Error::StsNotImplemented, ""); |
|
} |
|
|
|
void NgraphBackendWrapper::setHostDirty() |
|
{ |
|
CV_LOG_DEBUG(NULL, "NgraphBackendWrapper::setHostDirty()"); |
|
//CV_Error(Error::StsNotImplemented, ""); |
|
} |
|
|
|
InferenceEngine::Blob::Ptr copyBlob(const InferenceEngine::Blob::Ptr& blob) |
|
{ |
|
InferenceEngine::Blob::Ptr copy; |
|
auto description = blob->getTensorDesc(); |
|
InferenceEngine::Precision precision = description.getPrecision(); |
|
if (precision == InferenceEngine::Precision::FP32) |
|
{ |
|
copy = InferenceEngine::make_shared_blob<float>(description); |
|
} |
|
else if (precision == InferenceEngine::Precision::U8) |
|
{ |
|
copy = InferenceEngine::make_shared_blob<uint8_t>(description); |
|
} |
|
else |
|
CV_Error(Error::StsNotImplemented, "Unsupported blob precision"); |
|
copy->allocate(); |
|
return copy; |
|
} |
|
|
|
InferenceEngine::DataPtr ngraphDataNode(const Ptr<BackendWrapper>& ptr) |
|
{ |
|
CV_Assert(!ptr.empty()); |
|
Ptr<NgraphBackendWrapper> p = ptr.dynamicCast<NgraphBackendWrapper>(); |
|
CV_Assert(!p.empty()); |
|
return p->dataPtr; |
|
} |
|
|
|
|
|
void forwardNgraph(const std::vector<Ptr<BackendWrapper> >& outBlobsWrappers, |
|
Ptr<BackendNode>& node, bool isAsync) |
|
{ |
|
CV_Assert(!node.empty()); |
|
Ptr<InfEngineNgraphNode> ieNode = node.dynamicCast<InfEngineNgraphNode>(); |
|
CV_Assert(!ieNode.empty()); |
|
ieNode->net->forward(outBlobsWrappers, isAsync); |
|
} |
|
|
|
void InfEngineNgraphNet::reset() |
|
{ |
|
allBlobs.clear(); |
|
infRequests.clear(); |
|
isInit = false; |
|
} |
|
|
|
void InfEngineNgraphNet::addBlobs(const std::vector<cv::Ptr<BackendWrapper> >& ptrs) |
|
{ |
|
auto wrappers = ngraphWrappers(ptrs); |
|
for (const auto& wrapper : wrappers) |
|
{ |
|
std::string name = wrapper->dataPtr->getName(); |
|
name = name.empty() ? kDefaultInpLayerName : name; |
|
allBlobs.insert({name, wrapper->blob}); |
|
} |
|
} |
|
|
|
void InfEngineNgraphNet::NgraphReqWrapper::makePromises(const std::vector<Ptr<BackendWrapper> >& outsWrappers) |
|
{ |
|
auto outs = ngraphWrappers(outsWrappers); |
|
outProms.clear(); |
|
outProms.resize(outs.size()); |
|
outsNames.resize(outs.size()); |
|
for (int i = 0; i < outs.size(); ++i) |
|
{ |
|
outs[i]->futureMat = outProms[i].getArrayResult(); |
|
outsNames[i] = outs[i]->dataPtr->getName(); |
|
} |
|
} |
|
|
|
Mat ngraphBlobToMat(const InferenceEngine::Blob::Ptr& blob) |
|
{ |
|
std::vector<size_t> dims = blob->getTensorDesc().getDims(); |
|
std::vector<int> size(dims.begin(), dims.end()); |
|
auto precision = blob->getTensorDesc().getPrecision(); |
|
|
|
int type = -1; |
|
switch (precision) |
|
{ |
|
case InferenceEngine::Precision::FP32: type = CV_32F; break; |
|
case InferenceEngine::Precision::U8: type = CV_8U; break; |
|
default: |
|
CV_Error(Error::StsNotImplemented, "Unsupported blob precision"); |
|
} |
|
return Mat(size, type, (void*)blob->buffer()); |
|
} |
|
|
|
void InfEngineNgraphNet::forward(const std::vector<Ptr<BackendWrapper> >& outBlobsWrappers, bool isAsync) |
|
{ |
|
CV_LOG_DEBUG(NULL, "InfEngineNgraphNet::forward(" << (isAsync ? "async" : "sync") << ")"); |
|
|
|
// Look for finished requests. |
|
Ptr<NgraphReqWrapper> reqWrapper; |
|
for (auto& wrapper : infRequests) |
|
{ |
|
if (wrapper->isReady) |
|
{ |
|
reqWrapper = wrapper; |
|
break; |
|
} |
|
} |
|
if (reqWrapper.empty()) |
|
{ |
|
reqWrapper = Ptr<NgraphReqWrapper>(new NgraphReqWrapper()); |
|
try |
|
{ |
|
reqWrapper->req = netExec.CreateInferRequest(); |
|
} |
|
catch (const std::exception& ex) |
|
{ |
|
CV_Error(Error::StsAssert, format("Failed to initialize Inference Engine backend: %s", ex.what())); |
|
} |
|
infRequests.push_back(reqWrapper); |
|
|
|
InferenceEngine::BlobMap inpBlobs, outBlobs; |
|
for (const auto& it : cnn.getInputsInfo()) |
|
{ |
|
const std::string& name = it.first; |
|
auto blobIt = allBlobs.find(name); |
|
CV_Assert(blobIt != allBlobs.end()); |
|
inpBlobs[name] = isAsync ? copyBlob(blobIt->second) : blobIt->second; |
|
} |
|
for (const auto& it : cnn.getOutputsInfo()) |
|
{ |
|
const std::string& name = it.first; |
|
auto blobIt = allBlobs.find(name); |
|
CV_Assert(blobIt != allBlobs.end()); |
|
outBlobs[name] = isAsync ? copyBlob(blobIt->second) : blobIt->second; |
|
} |
|
reqWrapper->req.SetInput(inpBlobs); |
|
reqWrapper->req.SetOutput(outBlobs); |
|
|
|
InferenceEngine::IInferRequest::Ptr infRequestPtr = reqWrapper->req; |
|
infRequestPtr->SetUserData(reqWrapper.get(), 0); |
|
|
|
infRequestPtr->SetCompletionCallback( |
|
[](InferenceEngine::IInferRequest::Ptr request, InferenceEngine::StatusCode status) |
|
{ |
|
CV_LOG_DEBUG(NULL, "DNN(nGraph): completionCallback(" << (int)status << ")"); |
|
|
|
NgraphReqWrapper* wrapper; |
|
request->GetUserData((void**)&wrapper, 0); |
|
CV_Assert(wrapper && "Internal error"); |
|
|
|
size_t processedOutputs = 0; |
|
try |
|
{ |
|
for (; processedOutputs < wrapper->outProms.size(); ++processedOutputs) |
|
{ |
|
const std::string& name = wrapper->outsNames[processedOutputs]; |
|
Mat m = ngraphBlobToMat(wrapper->req.GetBlob(name)); |
|
|
|
try |
|
{ |
|
CV_Assert(status == InferenceEngine::StatusCode::OK); |
|
wrapper->outProms[processedOutputs].setValue(m.clone()); |
|
} |
|
catch (...) |
|
{ |
|
try { |
|
wrapper->outProms[processedOutputs].setException(std::current_exception()); |
|
} catch(...) { |
|
CV_LOG_ERROR(NULL, "DNN: Exception occurred during async inference exception propagation"); |
|
} |
|
} |
|
} |
|
} |
|
catch (...) |
|
{ |
|
std::exception_ptr e = std::current_exception(); |
|
for (; processedOutputs < wrapper->outProms.size(); ++processedOutputs) |
|
{ |
|
try { |
|
wrapper->outProms[processedOutputs].setException(e); |
|
} catch(...) { |
|
CV_LOG_ERROR(NULL, "DNN: Exception occurred during async inference exception propagation"); |
|
} |
|
} |
|
} |
|
wrapper->isReady = true; |
|
} |
|
); |
|
} |
|
|
|
if (isAsync) |
|
{ |
|
// Copy actual data to infer request's input blobs. |
|
for (const auto& it : cnn.getInputsInfo()) |
|
{ |
|
const std::string& name = it.first; |
|
auto blobIt = allBlobs.find(name); |
|
Mat srcMat = ngraphBlobToMat(blobIt->second); |
|
Mat dstMat = ngraphBlobToMat(reqWrapper->req.GetBlob(name)); |
|
srcMat.copyTo(dstMat); |
|
} |
|
|
|
// Set promises to output blobs wrappers. |
|
reqWrapper->makePromises(outBlobsWrappers); |
|
|
|
reqWrapper->isReady = false; |
|
reqWrapper->req.StartAsync(); |
|
} |
|
else |
|
{ |
|
reqWrapper->req.Infer(); |
|
} |
|
} |
|
|
|
#else |
|
void forwardNgraph(const std::vector<Ptr<BackendWrapper> >& outBlobsWrappers, |
|
Ptr<BackendNode>& node, bool isAsync) |
|
{ |
|
CV_Assert(false && "nGraph is not enabled in this OpenCV build"); |
|
} |
|
#endif |
|
|
|
}}
|
|
|