mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1134 lines
39 KiB
1134 lines
39 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2014, Itseez Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "opencl_kernels_imgproc.hpp" |
|
#include "opencv2/core/hal/intrin.hpp" |
|
#include <deque> |
|
|
|
#include "opencv2/core/openvx/ovx_defs.hpp" |
|
|
|
#if CV_SIMD128 |
|
#define CV_MALLOC_SIMD128 16 |
|
#endif |
|
|
|
namespace cv |
|
{ |
|
|
|
#ifdef HAVE_IPP |
|
static bool ipp_Canny(const Mat& src , const Mat& dx_, const Mat& dy_, Mat& dst, float low, float high, bool L2gradient, int aperture_size) |
|
{ |
|
#ifdef HAVE_IPP_IW |
|
CV_INSTRUMENT_REGION_IPP(); |
|
|
|
#if IPP_DISABLE_PERF_CANNY_MT |
|
if(cv::getNumThreads()>1) |
|
return false; |
|
#endif |
|
|
|
::ipp::IwiSize size(dst.cols, dst.rows); |
|
IppDataType type = ippiGetDataType(dst.depth()); |
|
int channels = dst.channels(); |
|
IppNormType norm = (L2gradient)?ippNormL2:ippNormL1; |
|
|
|
if(size.width <= 3 || size.height <= 3) |
|
return false; |
|
|
|
if(channels != 1) |
|
return false; |
|
|
|
if(type != ipp8u) |
|
return false; |
|
|
|
if(src.empty()) |
|
{ |
|
try |
|
{ |
|
::ipp::IwiImage iwSrcDx; |
|
::ipp::IwiImage iwSrcDy; |
|
::ipp::IwiImage iwDst; |
|
|
|
ippiGetImage(dx_, iwSrcDx); |
|
ippiGetImage(dy_, iwSrcDy); |
|
ippiGetImage(dst, iwDst); |
|
|
|
CV_INSTRUMENT_FUN_IPP(::ipp::iwiFilterCannyDeriv, iwSrcDx, iwSrcDy, iwDst, low, high, ::ipp::IwiFilterCannyDerivParams(norm)); |
|
} |
|
catch (::ipp::IwException ex) |
|
{ |
|
return false; |
|
} |
|
} |
|
else |
|
{ |
|
IppiMaskSize kernel; |
|
|
|
if(aperture_size == 3) |
|
kernel = ippMskSize3x3; |
|
else if(aperture_size == 5) |
|
kernel = ippMskSize5x5; |
|
else |
|
return false; |
|
|
|
try |
|
{ |
|
::ipp::IwiImage iwSrc; |
|
::ipp::IwiImage iwDst; |
|
|
|
ippiGetImage(src, iwSrc); |
|
ippiGetImage(dst, iwDst); |
|
|
|
CV_INSTRUMENT_FUN_IPP(::ipp::iwiFilterCanny, iwSrc, iwDst, low, high, ::ipp::IwiFilterCannyParams(ippFilterSobel, kernel, norm), ippBorderRepl); |
|
} |
|
catch (::ipp::IwException) |
|
{ |
|
return false; |
|
} |
|
} |
|
|
|
return true; |
|
#else |
|
CV_UNUSED(src); CV_UNUSED(dx_); CV_UNUSED(dy_); CV_UNUSED(dst); CV_UNUSED(low); CV_UNUSED(high); CV_UNUSED(L2gradient); CV_UNUSED(aperture_size); |
|
return false; |
|
#endif |
|
} |
|
#endif |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
template <bool useCustomDeriv> |
|
static bool ocl_Canny(InputArray _src, const UMat& dx_, const UMat& dy_, OutputArray _dst, float low_thresh, float high_thresh, |
|
int aperture_size, bool L2gradient, int cn, const Size & size) |
|
{ |
|
CV_INSTRUMENT_REGION_OPENCL(); |
|
|
|
UMat map; |
|
|
|
const ocl::Device &dev = ocl::Device::getDefault(); |
|
int max_wg_size = (int)dev.maxWorkGroupSize(); |
|
|
|
int lSizeX = 32; |
|
int lSizeY = max_wg_size / 32; |
|
|
|
if (lSizeY == 0) |
|
{ |
|
lSizeX = 16; |
|
lSizeY = max_wg_size / 16; |
|
} |
|
if (lSizeY == 0) |
|
{ |
|
lSizeY = 1; |
|
} |
|
|
|
if (aperture_size == 7) |
|
{ |
|
low_thresh = low_thresh / 16.0f; |
|
high_thresh = high_thresh / 16.0f; |
|
} |
|
|
|
if (L2gradient) |
|
{ |
|
low_thresh = std::min(32767.0f, low_thresh); |
|
high_thresh = std::min(32767.0f, high_thresh); |
|
|
|
if (low_thresh > 0) |
|
low_thresh *= low_thresh; |
|
if (high_thresh > 0) |
|
high_thresh *= high_thresh; |
|
} |
|
int low = cvFloor(low_thresh), high = cvFloor(high_thresh); |
|
|
|
if (!useCustomDeriv && |
|
aperture_size == 3 && !_src.isSubmatrix()) |
|
{ |
|
/* |
|
stage1_with_sobel: |
|
Sobel operator |
|
Calc magnitudes |
|
Non maxima suppression |
|
Double thresholding |
|
*/ |
|
char cvt[40]; |
|
ocl::Kernel with_sobel("stage1_with_sobel", ocl::imgproc::canny_oclsrc, |
|
format("-D WITH_SOBEL -D cn=%d -D TYPE=%s -D convert_floatN=%s -D floatN=%s -D GRP_SIZEX=%d -D GRP_SIZEY=%d%s", |
|
cn, ocl::memopTypeToStr(_src.depth()), |
|
ocl::convertTypeStr(_src.depth(), CV_32F, cn, cvt), |
|
ocl::typeToStr(CV_MAKE_TYPE(CV_32F, cn)), |
|
lSizeX, lSizeY, |
|
L2gradient ? " -D L2GRAD" : "")); |
|
if (with_sobel.empty()) |
|
return false; |
|
|
|
UMat src = _src.getUMat(); |
|
map.create(size, CV_32S); |
|
with_sobel.args(ocl::KernelArg::ReadOnly(src), |
|
ocl::KernelArg::WriteOnlyNoSize(map), |
|
(float) low, (float) high); |
|
|
|
size_t globalsize[2] = { (size_t)size.width, (size_t)size.height }, |
|
localsize[2] = { (size_t)lSizeX, (size_t)lSizeY }; |
|
|
|
if (!with_sobel.run(2, globalsize, localsize, false)) |
|
return false; |
|
} |
|
else |
|
{ |
|
/* |
|
stage1_without_sobel: |
|
Calc magnitudes |
|
Non maxima suppression |
|
Double thresholding |
|
*/ |
|
double scale = 1.0; |
|
if (aperture_size == 7) |
|
{ |
|
scale = 1 / 16.0; |
|
} |
|
|
|
UMat dx, dy; |
|
if (!useCustomDeriv) |
|
{ |
|
Sobel(_src, dx, CV_16S, 1, 0, aperture_size, scale, 0, BORDER_REPLICATE); |
|
Sobel(_src, dy, CV_16S, 0, 1, aperture_size, scale, 0, BORDER_REPLICATE); |
|
} |
|
else |
|
{ |
|
dx = dx_; |
|
dy = dy_; |
|
} |
|
|
|
ocl::Kernel without_sobel("stage1_without_sobel", ocl::imgproc::canny_oclsrc, |
|
format("-D WITHOUT_SOBEL -D cn=%d -D GRP_SIZEX=%d -D GRP_SIZEY=%d%s", |
|
cn, lSizeX, lSizeY, L2gradient ? " -D L2GRAD" : "")); |
|
if (without_sobel.empty()) |
|
return false; |
|
|
|
map.create(size, CV_32S); |
|
without_sobel.args(ocl::KernelArg::ReadOnlyNoSize(dx), ocl::KernelArg::ReadOnlyNoSize(dy), |
|
ocl::KernelArg::WriteOnly(map), |
|
low, high); |
|
|
|
size_t globalsize[2] = { (size_t)size.width, (size_t)size.height }, |
|
localsize[2] = { (size_t)lSizeX, (size_t)lSizeY }; |
|
|
|
if (!without_sobel.run(2, globalsize, localsize, false)) |
|
return false; |
|
} |
|
|
|
int PIX_PER_WI = 8; |
|
/* |
|
stage2: |
|
hysteresis (add weak edges if they are connected with strong edges) |
|
*/ |
|
|
|
int sizey = lSizeY / PIX_PER_WI; |
|
if (sizey == 0) |
|
sizey = 1; |
|
|
|
size_t globalsize[2] = { (size_t)size.width, ((size_t)size.height + PIX_PER_WI - 1) / PIX_PER_WI }, localsize[2] = { (size_t)lSizeX, (size_t)sizey }; |
|
|
|
ocl::Kernel edgesHysteresis("stage2_hysteresis", ocl::imgproc::canny_oclsrc, |
|
format("-D STAGE2 -D PIX_PER_WI=%d -D LOCAL_X=%d -D LOCAL_Y=%d", |
|
PIX_PER_WI, lSizeX, sizey)); |
|
|
|
if (edgesHysteresis.empty()) |
|
return false; |
|
|
|
edgesHysteresis.args(ocl::KernelArg::ReadWrite(map)); |
|
if (!edgesHysteresis.run(2, globalsize, localsize, false)) |
|
return false; |
|
|
|
// get edges |
|
|
|
ocl::Kernel getEdgesKernel("getEdges", ocl::imgproc::canny_oclsrc, |
|
format("-D GET_EDGES -D PIX_PER_WI=%d", PIX_PER_WI)); |
|
if (getEdgesKernel.empty()) |
|
return false; |
|
|
|
_dst.create(size, CV_8UC1); |
|
UMat dst = _dst.getUMat(); |
|
|
|
getEdgesKernel.args(ocl::KernelArg::ReadOnly(map), ocl::KernelArg::WriteOnlyNoSize(dst)); |
|
|
|
return getEdgesKernel.run(2, globalsize, NULL, false); |
|
} |
|
|
|
#endif |
|
|
|
#define CANNY_PUSH(map, stack) *map = 2, stack.push_back(map) |
|
|
|
#define CANNY_CHECK_SIMD(m, high, map, stack) \ |
|
if (m > high) \ |
|
CANNY_PUSH(map, stack); \ |
|
else \ |
|
*map = 0 |
|
|
|
#define CANNY_CHECK(m, high, map, stack) \ |
|
if (m > high) \ |
|
CANNY_PUSH(map, stack); \ |
|
else \ |
|
*map = 0; \ |
|
continue |
|
|
|
class parallelCanny : public ParallelLoopBody |
|
{ |
|
public: |
|
parallelCanny(const Mat &_src, Mat &_map, std::deque<uchar*> &borderPeaksParallel, |
|
int _low, int _high, int _aperture_size, bool _L2gradient) : |
|
src(_src), src2(_src), map(_map), _borderPeaksParallel(borderPeaksParallel), |
|
low(_low), high(_high), aperture_size(_aperture_size), L2gradient(_L2gradient) |
|
{ |
|
#if CV_SIMD128 |
|
haveSIMD = hasSIMD128(); |
|
if(haveSIMD) |
|
_map.create(src.rows + 2, (int)alignSize((size_t)(src.cols + CV_MALLOC_SIMD128 + 1), CV_MALLOC_SIMD128), CV_8UC1); |
|
else |
|
#endif |
|
_map.create(src.rows + 2, src.cols + 2, CV_8UC1); |
|
map = _map; |
|
map.row(0).setTo(1); |
|
map.row(src.rows + 1).setTo(1); |
|
mapstep = map.cols; |
|
needGradient = true; |
|
cn = src.channels(); |
|
} |
|
|
|
parallelCanny(const Mat &_dx, const Mat &_dy, Mat &_map, std::deque<uchar*> &borderPeaksParallel, |
|
int _low, int _high, bool _L2gradient) : |
|
src(_dx), src2(_dy), map(_map), _borderPeaksParallel(borderPeaksParallel), |
|
low(_low), high(_high), aperture_size(0), L2gradient(_L2gradient) |
|
{ |
|
#if CV_SIMD128 |
|
haveSIMD = hasSIMD128(); |
|
if(haveSIMD) |
|
_map.create(src.rows + 2, (int)alignSize((size_t)(src.cols + CV_MALLOC_SIMD128 + 1), CV_MALLOC_SIMD128), CV_8UC1); |
|
else |
|
#endif |
|
_map.create(src.rows + 2, src.cols + 2, CV_8UC1); |
|
map = _map; |
|
map.row(0).setTo(1); |
|
map.row(src.rows + 1).setTo(1); |
|
mapstep = map.cols; |
|
needGradient = false; |
|
cn = src.channels(); |
|
} |
|
|
|
~parallelCanny() {} |
|
|
|
parallelCanny& operator=(const parallelCanny&) { return *this; } |
|
|
|
void operator()(const Range &boundaries) const CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
|
|
Mat dx, dy; |
|
AutoBuffer<short> dxMax(0), dyMax(0); |
|
std::deque<uchar*> stack, borderPeaksLocal; |
|
const int rowStart = max(0, boundaries.start - 1), rowEnd = min(src.rows, boundaries.end + 1); |
|
int *_mag_p, *_mag_a, *_mag_n; |
|
short *_dx, *_dy, *_dx_a = NULL, *_dy_a = NULL, *_dx_n = NULL, *_dy_n = NULL; |
|
uchar *_pmap; |
|
double scale = 1.0; |
|
|
|
CV_TRACE_REGION("gradient") |
|
if(needGradient) |
|
{ |
|
if (aperture_size == 7) |
|
{ |
|
scale = 1 / 16.0; |
|
} |
|
Sobel(src.rowRange(rowStart, rowEnd), dx, CV_16S, 1, 0, aperture_size, scale, 0, BORDER_REPLICATE); |
|
Sobel(src.rowRange(rowStart, rowEnd), dy, CV_16S, 0, 1, aperture_size, scale, 0, BORDER_REPLICATE); |
|
} |
|
else |
|
{ |
|
dx = src.rowRange(rowStart, rowEnd); |
|
dy = src2.rowRange(rowStart, rowEnd); |
|
} |
|
|
|
CV_TRACE_REGION_NEXT("magnitude"); |
|
if(cn > 1) |
|
{ |
|
dxMax.allocate(2 * dx.cols); |
|
dyMax.allocate(2 * dy.cols); |
|
_dx_a = dxMax.data(); |
|
_dx_n = _dx_a + dx.cols; |
|
_dy_a = dyMax.data(); |
|
_dy_n = _dy_a + dy.cols; |
|
} |
|
|
|
// _mag_p: previous row, _mag_a: actual row, _mag_n: next row |
|
#if CV_SIMD128 |
|
AutoBuffer<int> buffer(3 * (mapstep * cn + CV_MALLOC_SIMD128)); |
|
_mag_p = alignPtr(buffer.data() + 1, CV_MALLOC_SIMD128); |
|
_mag_a = alignPtr(_mag_p + mapstep * cn, CV_MALLOC_SIMD128); |
|
_mag_n = alignPtr(_mag_a + mapstep * cn, CV_MALLOC_SIMD128); |
|
#else |
|
AutoBuffer<int> buffer(3 * (mapstep * cn)); |
|
_mag_p = buffer.data() + 1; |
|
_mag_a = _mag_p + mapstep * cn; |
|
_mag_n = _mag_a + mapstep * cn; |
|
#endif |
|
|
|
// For the first time when just 2 rows are filled and for left and right borders |
|
if(rowStart == boundaries.start) |
|
memset(_mag_n - 1, 0, mapstep * sizeof(int)); |
|
else |
|
_mag_n[src.cols] = _mag_n[-1] = 0; |
|
|
|
_mag_a[src.cols] = _mag_a[-1] = _mag_p[src.cols] = _mag_p[-1] = 0; |
|
|
|
// calculate magnitude and angle of gradient, perform non-maxima suppression. |
|
// fill the map with one of the following values: |
|
// 0 - the pixel might belong to an edge |
|
// 1 - the pixel can not belong to an edge |
|
// 2 - the pixel does belong to an edge |
|
for (int i = rowStart; i <= boundaries.end; ++i) |
|
{ |
|
// Scroll the ring buffer |
|
std::swap(_mag_n, _mag_a); |
|
std::swap(_mag_n, _mag_p); |
|
|
|
if(i < rowEnd) |
|
{ |
|
// Next row calculation |
|
_dx = dx.ptr<short>(i - rowStart); |
|
_dy = dy.ptr<short>(i - rowStart); |
|
|
|
if (L2gradient) |
|
{ |
|
int j = 0, width = src.cols * cn; |
|
#if CV_SIMD128 |
|
if (haveSIMD) |
|
{ |
|
for ( ; j <= width - 8; j += 8) |
|
{ |
|
v_int16x8 v_dx = v_load((const short*)(_dx + j)); |
|
v_int16x8 v_dy = v_load((const short*)(_dy + j)); |
|
|
|
v_int32x4 v_dxp_low, v_dxp_high; |
|
v_int32x4 v_dyp_low, v_dyp_high; |
|
v_expand(v_dx, v_dxp_low, v_dxp_high); |
|
v_expand(v_dy, v_dyp_low, v_dyp_high); |
|
|
|
v_store_aligned((int *)(_mag_n + j), v_dxp_low*v_dxp_low+v_dyp_low*v_dyp_low); |
|
v_store_aligned((int *)(_mag_n + j + 4), v_dxp_high*v_dxp_high+v_dyp_high*v_dyp_high); |
|
} |
|
} |
|
#endif |
|
for ( ; j < width; ++j) |
|
_mag_n[j] = int(_dx[j])*_dx[j] + int(_dy[j])*_dy[j]; |
|
} |
|
else |
|
{ |
|
int j = 0, width = src.cols * cn; |
|
#if CV_SIMD128 |
|
if (haveSIMD) |
|
{ |
|
for(; j <= width - 8; j += 8) |
|
{ |
|
v_int16x8 v_dx = v_load((const short *)(_dx + j)); |
|
v_int16x8 v_dy = v_load((const short *)(_dy + j)); |
|
|
|
v_dx = v_reinterpret_as_s16(v_abs(v_dx)); |
|
v_dy = v_reinterpret_as_s16(v_abs(v_dy)); |
|
|
|
v_int32x4 v_dx_ml, v_dy_ml, v_dx_mh, v_dy_mh; |
|
v_expand(v_dx, v_dx_ml, v_dx_mh); |
|
v_expand(v_dy, v_dy_ml, v_dy_mh); |
|
|
|
v_store_aligned((int *)(_mag_n + j), v_dx_ml + v_dy_ml); |
|
v_store_aligned((int *)(_mag_n + j + 4), v_dx_mh + v_dy_mh); |
|
} |
|
} |
|
#endif |
|
for ( ; j < width; ++j) |
|
_mag_n[j] = std::abs(int(_dx[j])) + std::abs(int(_dy[j])); |
|
} |
|
|
|
if(cn > 1) |
|
{ |
|
std::swap(_dx_n, _dx_a); |
|
std::swap(_dy_n, _dy_a); |
|
|
|
for(int j = 0, jn = 0; j < src.cols; ++j, jn += cn) |
|
{ |
|
int maxIdx = jn; |
|
for(int k = 1; k < cn; ++k) |
|
if(_mag_n[jn + k] > _mag_n[maxIdx]) maxIdx = jn + k; |
|
|
|
_mag_n[j] = _mag_n[maxIdx]; |
|
_dx_n[j] = _dx[maxIdx]; |
|
_dy_n[j] = _dy[maxIdx]; |
|
} |
|
|
|
_mag_n[src.cols] = 0; |
|
} |
|
|
|
// at the very beginning we do not have a complete ring |
|
// buffer of 3 magnitude rows for non-maxima suppression |
|
if (i <= boundaries.start) |
|
continue; |
|
} |
|
else |
|
{ |
|
memset(_mag_n - 1, 0, mapstep * sizeof(int)); |
|
|
|
if(cn > 1) |
|
{ |
|
std::swap(_dx_n, _dx_a); |
|
std::swap(_dy_n, _dy_a); |
|
} |
|
} |
|
|
|
// From here actual src row is (i - 1) |
|
// Set left and right border to 1 |
|
#if CV_SIMD128 |
|
if(haveSIMD) |
|
_pmap = map.ptr<uchar>(i) + CV_MALLOC_SIMD128; |
|
else |
|
#endif |
|
_pmap = map.ptr<uchar>(i) + 1; |
|
|
|
_pmap[src.cols] =_pmap[-1] = 1; |
|
|
|
if(cn == 1) |
|
{ |
|
_dx = dx.ptr<short>(i - rowStart - 1); |
|
_dy = dy.ptr<short>(i - rowStart - 1); |
|
} |
|
else |
|
{ |
|
_dx = _dx_a; |
|
_dy = _dy_a; |
|
} |
|
|
|
const int TG22 = 13573; |
|
int j = 0; |
|
#if CV_SIMD128 |
|
if (haveSIMD) |
|
{ |
|
const v_int32x4 v_low = v_setall_s32(low); |
|
const v_int8x16 v_one = v_setall_s8(1); |
|
|
|
for (; j <= src.cols - 32; j += 32) |
|
{ |
|
v_int32x4 v_m1 = v_load_aligned((const int*)(_mag_a + j)); |
|
v_int32x4 v_m2 = v_load_aligned((const int*)(_mag_a + j + 4)); |
|
v_int32x4 v_m3 = v_load_aligned((const int*)(_mag_a + j + 8)); |
|
v_int32x4 v_m4 = v_load_aligned((const int*)(_mag_a + j + 12)); |
|
|
|
v_int32x4 v_cmp1 = v_m1 > v_low; |
|
v_int32x4 v_cmp2 = v_m2 > v_low; |
|
v_int32x4 v_cmp3 = v_m3 > v_low; |
|
v_int32x4 v_cmp4 = v_m4 > v_low; |
|
|
|
v_m1 = v_load_aligned((const int*)(_mag_a + j + 16)); |
|
v_m2 = v_load_aligned((const int*)(_mag_a + j + 20)); |
|
v_m3 = v_load_aligned((const int*)(_mag_a + j + 24)); |
|
v_m4 = v_load_aligned((const int*)(_mag_a + j + 28)); |
|
|
|
v_store_aligned((signed char*)(_pmap + j), v_one); |
|
v_store_aligned((signed char*)(_pmap + j + 16), v_one); |
|
|
|
v_int16x8 v_cmp80 = v_pack(v_cmp1, v_cmp2); |
|
v_int16x8 v_cmp81 = v_pack(v_cmp3, v_cmp4); |
|
|
|
v_cmp1 = v_m1 > v_low; |
|
v_cmp2 = v_m2 > v_low; |
|
v_cmp3 = v_m3 > v_low; |
|
v_cmp4 = v_m4 > v_low; |
|
|
|
v_int8x16 v_cmp = v_pack(v_cmp80, v_cmp81); |
|
|
|
v_cmp80 = v_pack(v_cmp1, v_cmp2); |
|
v_cmp81 = v_pack(v_cmp3, v_cmp4); |
|
|
|
unsigned int mask = v_signmask(v_cmp); |
|
|
|
v_cmp = v_pack(v_cmp80, v_cmp81); |
|
mask |= v_signmask(v_cmp) << 16; |
|
|
|
if (mask) |
|
{ |
|
int k = j; |
|
|
|
do |
|
{ |
|
int l = trailingZeros32(mask); |
|
k += l; |
|
mask >>= l; |
|
|
|
int m = _mag_a[k]; |
|
short xs = _dx[k]; |
|
short ys = _dy[k]; |
|
int x = (int)std::abs(xs); |
|
int y = (int)std::abs(ys) << 15; |
|
|
|
int tg22x = x * TG22; |
|
|
|
if (y < tg22x) |
|
{ |
|
if (m > _mag_a[k - 1] && m >= _mag_a[k + 1]) |
|
{ |
|
CANNY_CHECK_SIMD(m, high, (_pmap+k), stack); |
|
} |
|
} |
|
else |
|
{ |
|
int tg67x = tg22x + (x << 16); |
|
if (y > tg67x) |
|
{ |
|
if (m > _mag_p[k] && m >= _mag_n[k]) |
|
{ |
|
CANNY_CHECK_SIMD(m, high, (_pmap+k), stack); |
|
} |
|
} |
|
else |
|
{ |
|
int s = (xs ^ ys) < 0 ? -1 : 1; |
|
if(m > _mag_p[k - s] && m > _mag_n[k + s]) |
|
{ |
|
CANNY_CHECK_SIMD(m, high, (_pmap+k), stack); |
|
} |
|
} |
|
} |
|
++k; |
|
} while((mask >>= 1)); |
|
} |
|
} |
|
|
|
if (j <= src.cols - 16) |
|
{ |
|
v_int32x4 v_m1 = v_load_aligned((const int*)(_mag_a + j)); |
|
v_int32x4 v_m2 = v_load_aligned((const int*)(_mag_a + j + 4)); |
|
v_int32x4 v_m3 = v_load_aligned((const int*)(_mag_a + j + 8)); |
|
v_int32x4 v_m4 = v_load_aligned((const int*)(_mag_a + j + 12)); |
|
|
|
v_store_aligned((signed char*)(_pmap + j), v_one); |
|
|
|
v_int32x4 v_cmp1 = v_m1 > v_low; |
|
v_int32x4 v_cmp2 = v_m2 > v_low; |
|
v_int32x4 v_cmp3 = v_m3 > v_low; |
|
v_int32x4 v_cmp4 = v_m4 > v_low; |
|
|
|
v_int16x8 v_cmp80 = v_pack(v_cmp1, v_cmp2); |
|
v_int16x8 v_cmp81 = v_pack(v_cmp3, v_cmp4); |
|
|
|
v_int8x16 v_cmp = v_pack(v_cmp80, v_cmp81); |
|
unsigned int mask = v_signmask(v_cmp); |
|
|
|
if (mask) |
|
{ |
|
int k = j; |
|
|
|
do |
|
{ |
|
int l = trailingZeros32(mask); |
|
k += l; |
|
mask >>= l; |
|
|
|
int m = _mag_a[k]; |
|
short xs = _dx[k]; |
|
short ys = _dy[k]; |
|
int x = (int)std::abs(xs); |
|
int y = (int)std::abs(ys) << 15; |
|
|
|
int tg22x = x * TG22; |
|
|
|
if (y < tg22x) |
|
{ |
|
if (m > _mag_a[k - 1] && m >= _mag_a[k + 1]) |
|
{ |
|
CANNY_CHECK_SIMD(m, high, (_pmap+k), stack); |
|
} |
|
} |
|
else |
|
{ |
|
int tg67x = tg22x + (x << 16); |
|
if (y > tg67x) |
|
{ |
|
if (m > _mag_p[k] && m >= _mag_n[k]) |
|
{ |
|
CANNY_CHECK_SIMD(m, high, (_pmap+k), stack); |
|
} |
|
} |
|
else |
|
{ |
|
int s = (xs ^ ys) < 0 ? -1 : 1; |
|
if(m > _mag_p[k - s] && m > _mag_n[k + s]) |
|
{ |
|
CANNY_CHECK_SIMD(m, high, (_pmap+k), stack); |
|
} |
|
} |
|
} |
|
++k; |
|
} while((mask >>= 1)); |
|
} |
|
j += 16; |
|
} |
|
} |
|
#endif |
|
for (; j < src.cols; j++) |
|
{ |
|
int m = _mag_a[j]; |
|
|
|
if (m > low) |
|
{ |
|
short xs = _dx[j]; |
|
short ys = _dy[j]; |
|
int x = (int)std::abs(xs); |
|
int y = (int)std::abs(ys) << 15; |
|
|
|
int tg22x = x * TG22; |
|
|
|
if (y < tg22x) |
|
{ |
|
if (m > _mag_a[j - 1] && m >= _mag_a[j + 1]) |
|
{ |
|
CANNY_CHECK(m, high, (_pmap+j), stack); |
|
} |
|
} |
|
else |
|
{ |
|
int tg67x = tg22x + (x << 16); |
|
if (y > tg67x) |
|
{ |
|
if (m > _mag_p[j] && m >= _mag_n[j]) |
|
{ |
|
CANNY_CHECK(m, high, (_pmap+j), stack); |
|
} |
|
} |
|
else |
|
{ |
|
int s = (xs ^ ys) < 0 ? -1 : 1; |
|
if(m > _mag_p[j - s] && m > _mag_n[j + s]) |
|
{ |
|
CANNY_CHECK(m, high, (_pmap+j), stack); |
|
} |
|
} |
|
} |
|
} |
|
_pmap[j] = 1; |
|
} |
|
} |
|
|
|
// Not for first row of first slice or last row of last slice |
|
uchar *pmapLower = (rowStart == 0) ? map.data : (map.data + (boundaries.start + 2) * mapstep); |
|
uint pmapDiff = (uint)(((rowEnd == src.rows) ? map.datalimit : (map.data + boundaries.end * mapstep)) - pmapLower); |
|
|
|
// now track the edges (hysteresis thresholding) |
|
CV_TRACE_REGION_NEXT("hysteresis"); |
|
while (!stack.empty()) |
|
{ |
|
uchar *m = stack.back(); |
|
stack.pop_back(); |
|
|
|
// Stops thresholding from expanding to other slices by sending pixels in the borders of each |
|
// slice in a queue to be serially processed later. |
|
if((unsigned)(m - pmapLower) < pmapDiff) |
|
{ |
|
if (!m[-mapstep-1]) CANNY_PUSH((m-mapstep-1), stack); |
|
if (!m[-mapstep]) CANNY_PUSH((m-mapstep), stack); |
|
if (!m[-mapstep+1]) CANNY_PUSH((m-mapstep+1), stack); |
|
if (!m[-1]) CANNY_PUSH((m-1), stack); |
|
if (!m[1]) CANNY_PUSH((m+1), stack); |
|
if (!m[mapstep-1]) CANNY_PUSH((m+mapstep-1), stack); |
|
if (!m[mapstep]) CANNY_PUSH((m+mapstep), stack); |
|
if (!m[mapstep+1]) CANNY_PUSH((m+mapstep+1), stack); |
|
} |
|
else |
|
{ |
|
borderPeaksLocal.push_back(m); |
|
ptrdiff_t mapstep2 = m < pmapLower ? mapstep : -mapstep; |
|
|
|
if (!m[-1]) CANNY_PUSH((m-1), stack); |
|
if (!m[1]) CANNY_PUSH((m+1), stack); |
|
if (!m[mapstep2-1]) CANNY_PUSH((m+mapstep2-1), stack); |
|
if (!m[mapstep2]) CANNY_PUSH((m+mapstep2), stack); |
|
if (!m[mapstep2+1]) CANNY_PUSH((m+mapstep2+1), stack); |
|
} |
|
} |
|
|
|
if(!borderPeaksLocal.empty()) |
|
{ |
|
AutoLock lock(mutex); |
|
_borderPeaksParallel.insert(_borderPeaksParallel.end(), borderPeaksLocal.begin(), borderPeaksLocal.end()); |
|
} |
|
} |
|
|
|
private: |
|
const Mat &src, &src2; |
|
Mat ↦ |
|
std::deque<uchar*> &_borderPeaksParallel; |
|
int low, high, aperture_size; |
|
bool L2gradient, needGradient; |
|
ptrdiff_t mapstep; |
|
int cn; |
|
#if CV_SIMD128 |
|
bool haveSIMD; |
|
#endif |
|
mutable Mutex mutex; |
|
}; |
|
|
|
class finalPass : public ParallelLoopBody |
|
{ |
|
|
|
public: |
|
finalPass(const Mat &_map, Mat &_dst) : |
|
map(_map), dst(_dst) |
|
{ |
|
dst = _dst; |
|
#if CV_SIMD128 |
|
haveSIMD = hasSIMD128(); |
|
#endif |
|
} |
|
|
|
~finalPass() {} |
|
|
|
void operator()(const Range &boundaries) const CV_OVERRIDE |
|
{ |
|
// the final pass, form the final image |
|
for (int i = boundaries.start; i < boundaries.end; i++) |
|
{ |
|
int j = 0; |
|
uchar *pdst = dst.ptr<uchar>(i); |
|
const uchar *pmap = map.ptr<uchar>(i + 1); |
|
#if CV_SIMD128 |
|
if(haveSIMD) |
|
pmap += CV_MALLOC_SIMD128; |
|
else |
|
#endif |
|
pmap += 1; |
|
#if CV_SIMD128 |
|
if(haveSIMD) { |
|
const v_uint8x16 v_zero = v_setzero_u8(); |
|
const v_uint8x16 v_ff = ~v_zero; |
|
const v_uint8x16 v_two(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2); |
|
|
|
for (; j <= dst.cols - 16; j += 16) |
|
{ |
|
v_uint8x16 v_pmap = v_load_aligned((const unsigned char*)(pmap + j)); |
|
v_pmap = v_select(v_pmap == v_two, v_ff, v_zero); |
|
v_store((pdst + j), v_pmap); |
|
} |
|
|
|
if (j <= dst.cols - 8) |
|
{ |
|
v_uint8x16 v_pmap = v_load_low((const unsigned char*)(pmap + j)); |
|
v_pmap = v_select(v_pmap == v_two, v_ff, v_zero); |
|
v_store_low((pdst + j), v_pmap); |
|
j += 8; |
|
} |
|
} |
|
#endif |
|
for (; j < dst.cols; j++) |
|
{ |
|
pdst[j] = (uchar)-(pmap[j] >> 1); |
|
} |
|
} |
|
} |
|
|
|
private: |
|
const Mat ↦ |
|
Mat &dst; |
|
#if CV_SIMD128 |
|
bool haveSIMD; |
|
#endif |
|
|
|
finalPass(const finalPass&); // = delete |
|
finalPass& operator=(const finalPass&); // = delete |
|
}; |
|
|
|
#ifdef HAVE_OPENVX |
|
namespace ovx { |
|
template <> inline bool skipSmallImages<VX_KERNEL_CANNY_EDGE_DETECTOR>(int w, int h) { return w*h < 640 * 480; } |
|
} |
|
static bool openvx_canny(const Mat& src, Mat& dst, int loVal, int hiVal, int kSize, bool useL2) |
|
{ |
|
using namespace ivx; |
|
|
|
Context context = ovx::getOpenVXContext(); |
|
try |
|
{ |
|
Image _src = Image::createFromHandle( |
|
context, |
|
Image::matTypeToFormat(src.type()), |
|
Image::createAddressing(src), |
|
src.data ); |
|
Image _dst = Image::createFromHandle( |
|
context, |
|
Image::matTypeToFormat(dst.type()), |
|
Image::createAddressing(dst), |
|
dst.data ); |
|
Threshold threshold = Threshold::createRange(context, VX_TYPE_UINT8, saturate_cast<uchar>(loVal), saturate_cast<uchar>(hiVal)); |
|
|
|
#if 0 |
|
// the code below is disabled because vxuCannyEdgeDetector() |
|
// ignores context attribute VX_CONTEXT_IMMEDIATE_BORDER |
|
|
|
// FIXME: may fail in multithread case |
|
border_t prevBorder = context.immediateBorder(); |
|
context.setImmediateBorder(VX_BORDER_REPLICATE); |
|
IVX_CHECK_STATUS( vxuCannyEdgeDetector(context, _src, threshold, kSize, (useL2 ? VX_NORM_L2 : VX_NORM_L1), _dst) ); |
|
context.setImmediateBorder(prevBorder); |
|
#else |
|
// alternative code without vxuCannyEdgeDetector() |
|
Graph graph = Graph::create(context); |
|
ivx::Node node = ivx::Node(vxCannyEdgeDetectorNode(graph, _src, threshold, kSize, (useL2 ? VX_NORM_L2 : VX_NORM_L1), _dst) ); |
|
node.setBorder(VX_BORDER_REPLICATE); |
|
graph.verify(); |
|
graph.process(); |
|
#endif |
|
|
|
#ifdef VX_VERSION_1_1 |
|
_src.swapHandle(); |
|
_dst.swapHandle(); |
|
#endif |
|
} |
|
catch(const WrapperError& e) |
|
{ |
|
VX_DbgThrow(e.what()); |
|
} |
|
catch(const RuntimeError& e) |
|
{ |
|
VX_DbgThrow(e.what()); |
|
} |
|
|
|
return true; |
|
} |
|
#endif // HAVE_OPENVX |
|
|
|
void Canny( InputArray _src, OutputArray _dst, |
|
double low_thresh, double high_thresh, |
|
int aperture_size, bool L2gradient ) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
CV_Assert( _src.depth() == CV_8U ); |
|
|
|
const Size size = _src.size(); |
|
|
|
// we don't support inplace parameters in case with RGB/BGR src |
|
CV_Assert((_dst.getObj() != _src.getObj() || _src.type() == CV_8UC1) && "Inplace parameters are not supported"); |
|
|
|
_dst.create(size, CV_8U); |
|
|
|
if (!L2gradient && (aperture_size & CV_CANNY_L2_GRADIENT) == CV_CANNY_L2_GRADIENT) |
|
{ |
|
// backward compatibility |
|
aperture_size &= ~CV_CANNY_L2_GRADIENT; |
|
L2gradient = true; |
|
} |
|
|
|
if ((aperture_size & 1) == 0 || (aperture_size != -1 && (aperture_size < 3 || aperture_size > 7))) |
|
CV_Error(CV_StsBadFlag, "Aperture size should be odd between 3 and 7"); |
|
|
|
if (aperture_size == 7) |
|
{ |
|
low_thresh = low_thresh / 16.0; |
|
high_thresh = high_thresh / 16.0; |
|
} |
|
|
|
if (low_thresh > high_thresh) |
|
std::swap(low_thresh, high_thresh); |
|
|
|
CV_OCL_RUN(_dst.isUMat() && (_src.channels() == 1 || _src.channels() == 3), |
|
ocl_Canny<false>(_src, UMat(), UMat(), _dst, (float)low_thresh, (float)high_thresh, aperture_size, L2gradient, _src.channels(), size)) |
|
|
|
Mat src0 = _src.getMat(), dst = _dst.getMat(); |
|
Mat src(src0.size(), src0.type(), src0.data, src0.step); |
|
|
|
CALL_HAL(canny, cv_hal_canny, src.data, src.step, dst.data, dst.step, src.cols, src.rows, src.channels(), |
|
low_thresh, high_thresh, aperture_size, L2gradient); |
|
|
|
CV_OVX_RUN( |
|
false && /* disabling due to accuracy issues */ |
|
src.type() == CV_8UC1 && |
|
!src.isSubmatrix() && |
|
src.cols >= aperture_size && |
|
src.rows >= aperture_size && |
|
!ovx::skipSmallImages<VX_KERNEL_CANNY_EDGE_DETECTOR>(src.cols, src.rows), |
|
openvx_canny( |
|
src, |
|
dst, |
|
cvFloor(low_thresh), |
|
cvFloor(high_thresh), |
|
aperture_size, |
|
L2gradient ) ) |
|
|
|
CV_IPP_RUN_FAST(ipp_Canny(src, Mat(), Mat(), dst, (float)low_thresh, (float)high_thresh, L2gradient, aperture_size)) |
|
|
|
if (L2gradient) |
|
{ |
|
low_thresh = std::min(32767.0, low_thresh); |
|
high_thresh = std::min(32767.0, high_thresh); |
|
|
|
if (low_thresh > 0) low_thresh *= low_thresh; |
|
if (high_thresh > 0) high_thresh *= high_thresh; |
|
} |
|
int low = cvFloor(low_thresh); |
|
int high = cvFloor(high_thresh); |
|
|
|
// If Scharr filter: aperture size is 3, ksize2 is 1 |
|
int ksize2 = aperture_size < 0 ? 1 : aperture_size / 2; |
|
// Minimum number of threads should be 1, maximum should not exceed number of CPU's, because of overhead |
|
int numOfThreads = std::max(1, std::min(getNumThreads(), getNumberOfCPUs())); |
|
// Make a fallback for pictures with too few rows. |
|
int grainSize = src.rows / numOfThreads; |
|
int minGrainSize = 2 * (ksize2 + 1); |
|
if (grainSize < minGrainSize) |
|
numOfThreads = std::max(1, src.rows / minGrainSize); |
|
|
|
Mat map; |
|
std::deque<uchar*> stack; |
|
|
|
parallel_for_(Range(0, src.rows), parallelCanny(src, map, stack, low, high, aperture_size, L2gradient), numOfThreads); |
|
|
|
CV_TRACE_REGION("global_hysteresis"); |
|
// now track the edges (hysteresis thresholding) |
|
ptrdiff_t mapstep = map.cols; |
|
|
|
while (!stack.empty()) |
|
{ |
|
uchar* m = stack.back(); |
|
stack.pop_back(); |
|
|
|
if (!m[-mapstep-1]) CANNY_PUSH((m-mapstep-1), stack); |
|
if (!m[-mapstep]) CANNY_PUSH((m-mapstep), stack); |
|
if (!m[-mapstep+1]) CANNY_PUSH((m-mapstep+1), stack); |
|
if (!m[-1]) CANNY_PUSH((m-1), stack); |
|
if (!m[1]) CANNY_PUSH((m+1), stack); |
|
if (!m[mapstep-1]) CANNY_PUSH((m+mapstep-1), stack); |
|
if (!m[mapstep]) CANNY_PUSH((m+mapstep), stack); |
|
if (!m[mapstep+1]) CANNY_PUSH((m+mapstep+1), stack); |
|
} |
|
|
|
CV_TRACE_REGION_NEXT("finalPass"); |
|
parallel_for_(Range(0, src.rows), finalPass(map, dst), src.total()/(double)(1<<16)); |
|
} |
|
|
|
void Canny( InputArray _dx, InputArray _dy, OutputArray _dst, |
|
double low_thresh, double high_thresh, |
|
bool L2gradient ) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
CV_Assert(_dx.dims() == 2); |
|
CV_Assert(_dx.type() == CV_16SC1 || _dx.type() == CV_16SC3); |
|
CV_Assert(_dy.type() == _dx.type()); |
|
CV_Assert(_dx.sameSize(_dy)); |
|
|
|
if (low_thresh > high_thresh) |
|
std::swap(low_thresh, high_thresh); |
|
|
|
const Size size = _dx.size(); |
|
|
|
CV_OCL_RUN(_dst.isUMat(), |
|
ocl_Canny<true>(UMat(), _dx.getUMat(), _dy.getUMat(), _dst, (float)low_thresh, (float)high_thresh, 0, L2gradient, _dx.channels(), size)) |
|
|
|
_dst.create(size, CV_8U); |
|
Mat dst = _dst.getMat(); |
|
|
|
Mat dx = _dx.getMat(); |
|
Mat dy = _dy.getMat(); |
|
|
|
CV_IPP_RUN_FAST(ipp_Canny(Mat(), dx, dy, dst, (float)low_thresh, (float)high_thresh, L2gradient, 0)) |
|
|
|
if (L2gradient) |
|
{ |
|
low_thresh = std::min(32767.0, low_thresh); |
|
high_thresh = std::min(32767.0, high_thresh); |
|
|
|
if (low_thresh > 0) low_thresh *= low_thresh; |
|
if (high_thresh > 0) high_thresh *= high_thresh; |
|
} |
|
|
|
int low = cvFloor(low_thresh); |
|
int high = cvFloor(high_thresh); |
|
|
|
std::deque<uchar*> stack; |
|
Mat map; |
|
|
|
// Minimum number of threads should be 1, maximum should not exceed number of CPU's, because of overhead |
|
int numOfThreads = std::max(1, std::min(getNumThreads(), getNumberOfCPUs())); |
|
if (dx.rows / numOfThreads < 3) |
|
numOfThreads = std::max(1, dx.rows / 3); |
|
|
|
parallel_for_(Range(0, dx.rows), parallelCanny(dx, dy, map, stack, low, high, L2gradient), numOfThreads); |
|
|
|
CV_TRACE_REGION("global_hysteresis") |
|
// now track the edges (hysteresis thresholding) |
|
ptrdiff_t mapstep = map.cols; |
|
|
|
while (!stack.empty()) |
|
{ |
|
uchar* m = stack.back(); |
|
stack.pop_back(); |
|
|
|
if (!m[-mapstep-1]) CANNY_PUSH((m-mapstep-1), stack); |
|
if (!m[-mapstep]) CANNY_PUSH((m-mapstep), stack); |
|
if (!m[-mapstep+1]) CANNY_PUSH((m-mapstep+1), stack); |
|
if (!m[-1]) CANNY_PUSH((m-1), stack); |
|
if (!m[1]) CANNY_PUSH((m+1), stack); |
|
if (!m[mapstep-1]) CANNY_PUSH((m+mapstep-1), stack); |
|
if (!m[mapstep]) CANNY_PUSH((m+mapstep), stack); |
|
if (!m[mapstep+1]) CANNY_PUSH((m+mapstep+1), stack); |
|
} |
|
|
|
CV_TRACE_REGION_NEXT("finalPass"); |
|
parallel_for_(Range(0, dx.rows), finalPass(map, dst), dx.total()/(double)(1<<16)); |
|
} |
|
|
|
} // namespace cv |
|
|
|
void cvCanny( const CvArr* image, CvArr* edges, double threshold1, |
|
double threshold2, int aperture_size ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(image), dst = cv::cvarrToMat(edges); |
|
CV_Assert( src.size == dst.size && src.depth() == CV_8U && dst.type() == CV_8U ); |
|
|
|
cv::Canny(src, dst, threshold1, threshold2, aperture_size & 255, |
|
(aperture_size & CV_CANNY_L2_GRADIENT) != 0); |
|
} |
|
|
|
/* End of file. */
|
|
|