mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
388 lines
17 KiB
388 lines
17 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2009, Intel Corporation and others, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "opencv2/core/core_c.h" |
|
|
|
// cvCorrectMatches function is Copyright (C) 2009, Jostein Austvik Jacobsen. |
|
// cvTriangulatePoints function is derived from icvReconstructPointsFor3View, originally by Valery Mosyagin. |
|
|
|
// HZ, R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge Univ. Press, 2003. |
|
|
|
|
|
|
|
// This method is the same as icvReconstructPointsFor3View, with only a few numbers adjusted for two-view geometry |
|
static void |
|
icvTriangulatePoints(CvMat* projMatr1, CvMat* projMatr2, CvMat* projPoints1, CvMat* projPoints2, CvMat* points4D) |
|
{ |
|
if( projMatr1 == 0 || projMatr2 == 0 || |
|
projPoints1 == 0 || projPoints2 == 0 || |
|
points4D == 0) |
|
CV_Error( CV_StsNullPtr, "Some of parameters is a NULL pointer" ); |
|
|
|
if( !CV_IS_MAT(projMatr1) || !CV_IS_MAT(projMatr2) || |
|
!CV_IS_MAT(projPoints1) || !CV_IS_MAT(projPoints2) || |
|
!CV_IS_MAT(points4D) ) |
|
CV_Error( CV_StsUnsupportedFormat, "Input parameters must be matrices" ); |
|
|
|
int numPoints = projPoints1->cols; |
|
|
|
if( numPoints < 1 ) |
|
CV_Error( CV_StsOutOfRange, "Number of points must be more than zero" ); |
|
|
|
if( projPoints2->cols != numPoints || points4D->cols != numPoints ) |
|
CV_Error( CV_StsUnmatchedSizes, "Number of points must be the same" ); |
|
|
|
if( projPoints1->rows != 2 || projPoints2->rows != 2) |
|
CV_Error( CV_StsUnmatchedSizes, "Number of proj points coordinates must be == 2" ); |
|
|
|
if( points4D->rows != 4 ) |
|
CV_Error( CV_StsUnmatchedSizes, "Number of world points coordinates must be == 4" ); |
|
|
|
if( projMatr1->cols != 4 || projMatr1->rows != 3 || |
|
projMatr2->cols != 4 || projMatr2->rows != 3) |
|
CV_Error( CV_StsUnmatchedSizes, "Size of projection matrices must be 3x4" ); |
|
|
|
// preallocate SVD matrices on stack |
|
cv::Matx<double, 4, 4> matrA; |
|
cv::Matx<double, 4, 4> matrU; |
|
cv::Matx<double, 4, 1> matrW; |
|
cv::Matx<double, 4, 4> matrV; |
|
|
|
CvMat* projPoints[2] = {projPoints1, projPoints2}; |
|
CvMat* projMatrs[2] = {projMatr1, projMatr2}; |
|
|
|
/* Solve system for each point */ |
|
for( int i = 0; i < numPoints; i++ )/* For each point */ |
|
{ |
|
/* Fill matrix for current point */ |
|
for( int j = 0; j < 2; j++ )/* For each view */ |
|
{ |
|
double x,y; |
|
x = cvmGet(projPoints[j],0,i); |
|
y = cvmGet(projPoints[j],1,i); |
|
for( int k = 0; k < 4; k++ ) |
|
{ |
|
matrA(j*2+0, k) = x * cvmGet(projMatrs[j],2,k) - cvmGet(projMatrs[j],0,k); |
|
matrA(j*2+1, k) = y * cvmGet(projMatrs[j],2,k) - cvmGet(projMatrs[j],1,k); |
|
} |
|
} |
|
/* Solve system for current point */ |
|
cv::SVD::compute(matrA, matrW, matrU, matrV); |
|
|
|
/* Copy computed point */ |
|
cvmSet(points4D,0,i,matrV(3,0));/* X */ |
|
cvmSet(points4D,1,i,matrV(3,1));/* Y */ |
|
cvmSet(points4D,2,i,matrV(3,2));/* Z */ |
|
cvmSet(points4D,3,i,matrV(3,3));/* W */ |
|
} |
|
} |
|
|
|
|
|
/* |
|
* The Optimal Triangulation Method (see HZ for details) |
|
* For each given point correspondence points1[i] <-> points2[i], and a fundamental matrix F, |
|
* computes the corrected correspondences new_points1[i] <-> new_points2[i] that minimize the |
|
* geometric error d(points1[i],new_points1[i])^2 + d(points2[i],new_points2[i])^2 (where d(a,b) |
|
* is the geometric distance between points a and b) subject to the epipolar constraint |
|
* new_points2' * F * new_points1 = 0. |
|
* |
|
* F_ : 3x3 fundamental matrix |
|
* points1_ : 1xN matrix containing the first set of points |
|
* points2_ : 1xN matrix containing the second set of points |
|
* new_points1 : the optimized points1_. if this is NULL, the corrected points are placed back in points1_ |
|
* new_points2 : the optimized points2_. if this is NULL, the corrected points are placed back in points2_ |
|
*/ |
|
static void |
|
icvCorrectMatches(CvMat *F_, CvMat *points1_, CvMat *points2_, CvMat *new_points1, CvMat *new_points2) |
|
{ |
|
cv::Ptr<CvMat> tmp33; |
|
cv::Ptr<CvMat> tmp31, tmp31_2; |
|
cv::Ptr<CvMat> T1i, T2i; |
|
cv::Ptr<CvMat> R1, R2; |
|
cv::Ptr<CvMat> TFT, TFTt, RTFTR; |
|
cv::Ptr<CvMat> U, S, V; |
|
cv::Ptr<CvMat> e1, e2; |
|
cv::Ptr<CvMat> polynomial; |
|
cv::Ptr<CvMat> result; |
|
cv::Ptr<CvMat> points1, points2; |
|
cv::Ptr<CvMat> F; |
|
|
|
if (!CV_IS_MAT(F_) || !CV_IS_MAT(points1_) || !CV_IS_MAT(points2_) ) |
|
CV_Error( CV_StsUnsupportedFormat, "Input parameters must be matrices" ); |
|
if (!( F_->cols == 3 && F_->rows == 3)) |
|
CV_Error( CV_StsUnmatchedSizes, "The fundamental matrix must be a 3x3 matrix"); |
|
if (!(((F_->type & CV_MAT_TYPE_MASK) >> 3) == 0 )) |
|
CV_Error( CV_StsUnsupportedFormat, "The fundamental matrix must be a single-channel matrix" ); |
|
if (!(points1_->rows == 1 && points2_->rows == 1 && points1_->cols == points2_->cols)) |
|
CV_Error( CV_StsUnmatchedSizes, "The point-matrices must have one row, and an equal number of columns" ); |
|
if (((points1_->type & CV_MAT_TYPE_MASK) >> 3) != 1 ) |
|
CV_Error( CV_StsUnmatchedSizes, "The first set of points must contain two channels; one for x and one for y" ); |
|
if (((points2_->type & CV_MAT_TYPE_MASK) >> 3) != 1 ) |
|
CV_Error( CV_StsUnmatchedSizes, "The second set of points must contain two channels; one for x and one for y" ); |
|
if (new_points1 != NULL) { |
|
CV_Assert(CV_IS_MAT(new_points1)); |
|
if (new_points1->cols != points1_->cols || new_points1->rows != 1) |
|
CV_Error( CV_StsUnmatchedSizes, "The first output matrix must have the same dimensions as the input matrices" ); |
|
if (CV_MAT_CN(new_points1->type) != 2) |
|
CV_Error( CV_StsUnsupportedFormat, "The first output matrix must have two channels; one for x and one for y" ); |
|
} |
|
if (new_points2 != NULL) { |
|
CV_Assert(CV_IS_MAT(new_points2)); |
|
if (new_points2->cols != points2_->cols || new_points2->rows != 1) |
|
CV_Error( CV_StsUnmatchedSizes, "The second output matrix must have the same dimensions as the input matrices" ); |
|
if (CV_MAT_CN(new_points2->type) != 2) |
|
CV_Error( CV_StsUnsupportedFormat, "The second output matrix must have two channels; one for x and one for y" ); |
|
} |
|
|
|
// Make sure F uses double precision |
|
F.reset(cvCreateMat(3,3,CV_64FC1)); |
|
cvConvert(F_, F); |
|
|
|
// Make sure points1 uses double precision |
|
points1.reset(cvCreateMat(points1_->rows,points1_->cols,CV_64FC2)); |
|
cvConvert(points1_, points1); |
|
|
|
// Make sure points2 uses double precision |
|
points2.reset(cvCreateMat(points2_->rows,points2_->cols,CV_64FC2)); |
|
cvConvert(points2_, points2); |
|
|
|
tmp33.reset(cvCreateMat(3,3,CV_64FC1)); |
|
tmp31.reset(cvCreateMat(3,1,CV_64FC1)), tmp31_2.reset(cvCreateMat(3,1,CV_64FC1)); |
|
T1i.reset(cvCreateMat(3,3,CV_64FC1)), T2i.reset(cvCreateMat(3,3,CV_64FC1)); |
|
R1.reset(cvCreateMat(3,3,CV_64FC1)), R2.reset(cvCreateMat(3,3,CV_64FC1)); |
|
TFT.reset(cvCreateMat(3,3,CV_64FC1)), TFTt.reset(cvCreateMat(3,3,CV_64FC1)), RTFTR.reset(cvCreateMat(3,3,CV_64FC1)); |
|
U.reset(cvCreateMat(3,3,CV_64FC1)); |
|
S.reset(cvCreateMat(3,3,CV_64FC1)); |
|
V.reset(cvCreateMat(3,3,CV_64FC1)); |
|
e1.reset(cvCreateMat(3,1,CV_64FC1)), e2.reset(cvCreateMat(3,1,CV_64FC1)); |
|
|
|
double x1, y1, x2, y2; |
|
double scale; |
|
double f1, f2, a, b, c, d; |
|
polynomial.reset(cvCreateMat(1,7,CV_64FC1)); |
|
result.reset(cvCreateMat(1,6,CV_64FC2)); |
|
double t_min, s_val, t, s; |
|
for (int p = 0; p < points1->cols; ++p) { |
|
// Replace F by T2-t * F * T1-t |
|
x1 = points1->data.db[p*2]; |
|
y1 = points1->data.db[p*2+1]; |
|
x2 = points2->data.db[p*2]; |
|
y2 = points2->data.db[p*2+1]; |
|
|
|
cvSetZero(T1i); |
|
cvSetReal2D(T1i,0,0,1); |
|
cvSetReal2D(T1i,1,1,1); |
|
cvSetReal2D(T1i,2,2,1); |
|
cvSetReal2D(T1i,0,2,x1); |
|
cvSetReal2D(T1i,1,2,y1); |
|
cvSetZero(T2i); |
|
cvSetReal2D(T2i,0,0,1); |
|
cvSetReal2D(T2i,1,1,1); |
|
cvSetReal2D(T2i,2,2,1); |
|
cvSetReal2D(T2i,0,2,x2); |
|
cvSetReal2D(T2i,1,2,y2); |
|
cvGEMM(T2i,F,1,0,0,tmp33,CV_GEMM_A_T); |
|
cvSetZero(TFT); |
|
cvGEMM(tmp33,T1i,1,0,0,TFT); |
|
|
|
// Compute the right epipole e1 from F * e1 = 0 |
|
cvSetZero(U); |
|
cvSetZero(S); |
|
cvSetZero(V); |
|
cvSVD(TFT,S,U,V); |
|
scale = sqrt(cvGetReal2D(V,0,2)*cvGetReal2D(V,0,2) + cvGetReal2D(V,1,2)*cvGetReal2D(V,1,2)); |
|
cvSetReal2D(e1,0,0,cvGetReal2D(V,0,2)/scale); |
|
cvSetReal2D(e1,1,0,cvGetReal2D(V,1,2)/scale); |
|
cvSetReal2D(e1,2,0,cvGetReal2D(V,2,2)/scale); |
|
if (cvGetReal2D(e1,2,0) < 0) { |
|
cvSetReal2D(e1,0,0,-cvGetReal2D(e1,0,0)); |
|
cvSetReal2D(e1,1,0,-cvGetReal2D(e1,1,0)); |
|
cvSetReal2D(e1,2,0,-cvGetReal2D(e1,2,0)); |
|
} |
|
|
|
// Compute the left epipole e2 from e2' * F = 0 => F' * e2 = 0 |
|
cvSetZero(TFTt); |
|
cvTranspose(TFT, TFTt); |
|
cvSetZero(U); |
|
cvSetZero(S); |
|
cvSetZero(V); |
|
cvSVD(TFTt,S,U,V); |
|
cvSetZero(e2); |
|
scale = sqrt(cvGetReal2D(V,0,2)*cvGetReal2D(V,0,2) + cvGetReal2D(V,1,2)*cvGetReal2D(V,1,2)); |
|
cvSetReal2D(e2,0,0,cvGetReal2D(V,0,2)/scale); |
|
cvSetReal2D(e2,1,0,cvGetReal2D(V,1,2)/scale); |
|
cvSetReal2D(e2,2,0,cvGetReal2D(V,2,2)/scale); |
|
if (cvGetReal2D(e2,2,0) < 0) { |
|
cvSetReal2D(e2,0,0,-cvGetReal2D(e2,0,0)); |
|
cvSetReal2D(e2,1,0,-cvGetReal2D(e2,1,0)); |
|
cvSetReal2D(e2,2,0,-cvGetReal2D(e2,2,0)); |
|
} |
|
|
|
// Replace F by R2 * F * R1' |
|
cvSetZero(R1); |
|
cvSetReal2D(R1,0,0,cvGetReal2D(e1,0,0)); |
|
cvSetReal2D(R1,0,1,cvGetReal2D(e1,1,0)); |
|
cvSetReal2D(R1,1,0,-cvGetReal2D(e1,1,0)); |
|
cvSetReal2D(R1,1,1,cvGetReal2D(e1,0,0)); |
|
cvSetReal2D(R1,2,2,1); |
|
cvSetZero(R2); |
|
cvSetReal2D(R2,0,0,cvGetReal2D(e2,0,0)); |
|
cvSetReal2D(R2,0,1,cvGetReal2D(e2,1,0)); |
|
cvSetReal2D(R2,1,0,-cvGetReal2D(e2,1,0)); |
|
cvSetReal2D(R2,1,1,cvGetReal2D(e2,0,0)); |
|
cvSetReal2D(R2,2,2,1); |
|
cvGEMM(R2,TFT,1,0,0,tmp33); |
|
cvGEMM(tmp33,R1,1,0,0,RTFTR,CV_GEMM_B_T); |
|
|
|
// Set f1 = e1(3), f2 = e2(3), a = F22, b = F23, c = F32, d = F33 |
|
f1 = cvGetReal2D(e1,2,0); |
|
f2 = cvGetReal2D(e2,2,0); |
|
a = cvGetReal2D(RTFTR,1,1); |
|
b = cvGetReal2D(RTFTR,1,2); |
|
c = cvGetReal2D(RTFTR,2,1); |
|
d = cvGetReal2D(RTFTR,2,2); |
|
|
|
// Form the polynomial g(t) = k6*t^6 + k5*t^5 + k4*t^4 + k3*t^3 + k2*t^2 + k1*t + k0 |
|
// from f1, f2, a, b, c and d |
|
cvSetReal2D(polynomial,0,6,( +b*c*c*f1*f1*f1*f1*a-a*a*d*f1*f1*f1*f1*c )); |
|
cvSetReal2D(polynomial,0,5,( +f2*f2*f2*f2*c*c*c*c+2*a*a*f2*f2*c*c-a*a*d*d*f1*f1*f1*f1+b*b*c*c*f1*f1*f1*f1+a*a*a*a )); |
|
cvSetReal2D(polynomial,0,4,( +4*a*a*a*b+2*b*c*c*f1*f1*a+4*f2*f2*f2*f2*c*c*c*d+4*a*b*f2*f2*c*c+4*a*a*f2*f2*c*d-2*a*a*d*f1*f1*c-a*d*d*f1*f1*f1*f1*b+b*b*c*f1*f1*f1*f1*d )); |
|
cvSetReal2D(polynomial,0,3,( +6*a*a*b*b+6*f2*f2*f2*f2*c*c*d*d+2*b*b*f2*f2*c*c+2*a*a*f2*f2*d*d-2*a*a*d*d*f1*f1+2*b*b*c*c*f1*f1+8*a*b*f2*f2*c*d )); |
|
cvSetReal2D(polynomial,0,2,( +4*a*b*b*b+4*b*b*f2*f2*c*d+4*f2*f2*f2*f2*c*d*d*d-a*a*d*c+b*c*c*a+4*a*b*f2*f2*d*d-2*a*d*d*f1*f1*b+2*b*b*c*f1*f1*d )); |
|
cvSetReal2D(polynomial,0,1,( +f2*f2*f2*f2*d*d*d*d+b*b*b*b+2*b*b*f2*f2*d*d-a*a*d*d+b*b*c*c )); |
|
cvSetReal2D(polynomial,0,0,( -a*d*d*b+b*b*c*d )); |
|
|
|
// Solve g(t) for t to get 6 roots |
|
cvSetZero(result); |
|
cvSolvePoly(polynomial, result, 100, 20); |
|
|
|
// Evaluate the cost function s(t) at the real part of the 6 roots |
|
t_min = DBL_MAX; |
|
s_val = 1./(f1*f1) + (c*c)/(a*a+f2*f2*c*c); |
|
for (int ti = 0; ti < 6; ++ti) { |
|
t = result->data.db[2*ti]; |
|
s = (t*t)/(1 + f1*f1*t*t) + ((c*t + d)*(c*t + d))/((a*t + b)*(a*t + b) + f2*f2*(c*t + d)*(c*t + d)); |
|
if (s < s_val) { |
|
s_val = s; |
|
t_min = t; |
|
} |
|
} |
|
|
|
// find the optimal x1 and y1 as the points on l1 and l2 closest to the origin |
|
tmp31->data.db[0] = t_min*t_min*f1; |
|
tmp31->data.db[1] = t_min; |
|
tmp31->data.db[2] = t_min*t_min*f1*f1+1; |
|
tmp31->data.db[0] /= tmp31->data.db[2]; |
|
tmp31->data.db[1] /= tmp31->data.db[2]; |
|
tmp31->data.db[2] /= tmp31->data.db[2]; |
|
cvGEMM(T1i,R1,1,0,0,tmp33,CV_GEMM_B_T); |
|
cvGEMM(tmp33,tmp31,1,0,0,tmp31_2); |
|
x1 = tmp31_2->data.db[0]; |
|
y1 = tmp31_2->data.db[1]; |
|
|
|
tmp31->data.db[0] = f2*pow(c*t_min+d,2); |
|
tmp31->data.db[1] = -(a*t_min+b)*(c*t_min+d); |
|
tmp31->data.db[2] = f2*f2*pow(c*t_min+d,2) + pow(a*t_min+b,2); |
|
tmp31->data.db[0] /= tmp31->data.db[2]; |
|
tmp31->data.db[1] /= tmp31->data.db[2]; |
|
tmp31->data.db[2] /= tmp31->data.db[2]; |
|
cvGEMM(T2i,R2,1,0,0,tmp33,CV_GEMM_B_T); |
|
cvGEMM(tmp33,tmp31,1,0,0,tmp31_2); |
|
x2 = tmp31_2->data.db[0]; |
|
y2 = tmp31_2->data.db[1]; |
|
|
|
// Return the points in the matrix format that the user wants |
|
points1->data.db[p*2] = x1; |
|
points1->data.db[p*2+1] = y1; |
|
points2->data.db[p*2] = x2; |
|
points2->data.db[p*2+1] = y2; |
|
} |
|
|
|
if( new_points1 ) |
|
cvConvert( points1, new_points1 ); |
|
if( new_points2 ) |
|
cvConvert( points2, new_points2 ); |
|
} |
|
|
|
void cv::triangulatePoints( InputArray _projMatr1, InputArray _projMatr2, |
|
InputArray _projPoints1, InputArray _projPoints2, |
|
OutputArray _points4D ) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
Mat matr1 = _projMatr1.getMat(), matr2 = _projMatr2.getMat(); |
|
Mat points1 = _projPoints1.getMat(), points2 = _projPoints2.getMat(); |
|
|
|
if((points1.rows == 1 || points1.cols == 1) && points1.channels() == 2) |
|
points1 = points1.reshape(1, static_cast<int>(points1.total())).t(); |
|
|
|
if((points2.rows == 1 || points2.cols == 1) && points2.channels() == 2) |
|
points2 = points2.reshape(1, static_cast<int>(points2.total())).t(); |
|
|
|
CvMat cvMatr1 = cvMat(matr1), cvMatr2 = cvMat(matr2); |
|
CvMat cvPoints1 = cvMat(points1), cvPoints2 = cvMat(points2); |
|
|
|
_points4D.create(4, points1.cols, points1.type()); |
|
Mat cvPoints4D_ = _points4D.getMat(); |
|
CvMat cvPoints4D = cvMat(cvPoints4D_); |
|
|
|
icvTriangulatePoints(&cvMatr1, &cvMatr2, &cvPoints1, &cvPoints2, &cvPoints4D); |
|
} |
|
|
|
void cv::correctMatches( InputArray _F, InputArray _points1, InputArray _points2, |
|
OutputArray _newPoints1, OutputArray _newPoints2 ) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
Mat F = _F.getMat(); |
|
Mat points1 = _points1.getMat(), points2 = _points2.getMat(); |
|
|
|
CvMat cvPoints1 = cvMat(points1), cvPoints2 = cvMat(points2); |
|
CvMat cvF = cvMat(F); |
|
|
|
_newPoints1.create(points1.size(), points1.type()); |
|
_newPoints2.create(points2.size(), points2.type()); |
|
Mat cvNewPoints1_ = _newPoints1.getMat(), cvNewPoints2_ = _newPoints2.getMat(); |
|
CvMat cvNewPoints1 = cvMat(cvNewPoints1_), cvNewPoints2 = cvMat(cvNewPoints2_); |
|
|
|
icvCorrectMatches(&cvF, &cvPoints1, &cvPoints2, &cvNewPoints1, &cvNewPoints2); |
|
}
|
|
|