Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

207 lines
8.8 KiB

from types import SimpleNamespace
from .image_handler import ImageHandler
from .feature_detector import FeatureDetector
from .feature_matcher import FeatureMatcher
from .subsetter import Subsetter
from .camera_estimator import CameraEstimator
from .camera_adjuster import CameraAdjuster
from .camera_wave_corrector import WaveCorrector
from .warper import Warper
from .panorama_estimation import estimate_final_panorama_dimensions
from .exposure_error_compensator import ExposureErrorCompensator
from .seam_finder import SeamFinder
from .blender import Blender
from .timelapser import Timelapser
from .stitching_error import StitchingError
class Stitcher:
DEFAULT_SETTINGS = {
"medium_megapix": ImageHandler.DEFAULT_MEDIUM_MEGAPIX,
"detector": FeatureDetector.DEFAULT_DETECTOR,
"nfeatures": 500,
"matcher_type": FeatureMatcher.DEFAULT_MATCHER,
"range_width": FeatureMatcher.DEFAULT_RANGE_WIDTH,
"try_use_gpu": False,
"match_conf": None,
"confidence_threshold": Subsetter.DEFAULT_CONFIDENCE_THRESHOLD,
"matches_graph_dot_file": Subsetter.DEFAULT_MATCHES_GRAPH_DOT_FILE,
"estimator": CameraEstimator.DEFAULT_CAMERA_ESTIMATOR,
"adjuster": CameraAdjuster.DEFAULT_CAMERA_ADJUSTER,
"refinement_mask": CameraAdjuster.DEFAULT_REFINEMENT_MASK,
"wave_correct_kind": WaveCorrector.DEFAULT_WAVE_CORRECTION,
"warper_type": Warper.DEFAULT_WARP_TYPE,
"low_megapix": ImageHandler.DEFAULT_LOW_MEGAPIX,
"compensator": ExposureErrorCompensator.DEFAULT_COMPENSATOR,
"nr_feeds": ExposureErrorCompensator.DEFAULT_NR_FEEDS,
"block_size": ExposureErrorCompensator.DEFAULT_BLOCK_SIZE,
"finder": SeamFinder.DEFAULT_SEAM_FINDER,
"final_megapix": ImageHandler.DEFAULT_FINAL_MEGAPIX,
"blender_type": Blender.DEFAULT_BLENDER,
"blend_strength": Blender.DEFAULT_BLEND_STRENGTH,
"timelapse": Timelapser.DEFAULT_TIMELAPSE}
def __init__(self, **kwargs):
self.initialize_stitcher(**kwargs)
def initialize_stitcher(self, **kwargs):
self.settings = Stitcher.DEFAULT_SETTINGS.copy()
self.validate_kwargs(kwargs)
self.settings.update(kwargs)
args = SimpleNamespace(**self.settings)
self.img_handler = ImageHandler(args.medium_megapix,
args.low_megapix,
args.final_megapix)
self.detector = \
FeatureDetector(args.detector, nfeatures=args.nfeatures)
match_conf = \
FeatureMatcher.get_match_conf(args.match_conf, args.detector)
self.matcher = FeatureMatcher(args.matcher_type, args.range_width,
try_use_gpu=args.try_use_gpu,
match_conf=match_conf)
self.subsetter = \
Subsetter(args.confidence_threshold, args.matches_graph_dot_file)
self.camera_estimator = CameraEstimator(args.estimator)
self.camera_adjuster = \
CameraAdjuster(args.adjuster, args.refinement_mask)
self.wave_corrector = WaveCorrector(args.wave_correct_kind)
self.warper = Warper(args.warper_type)
self.compensator = \
ExposureErrorCompensator(args.compensator, args.nr_feeds,
args.block_size)
self.seam_finder = SeamFinder(args.finder)
self.blender = Blender(args.blender_type, args.blend_strength)
self.timelapser = Timelapser(args.timelapse)
def stitch(self, img_names):
self.initialize_registration(img_names)
imgs = self.resize_medium_resolution()
features = self.find_features(imgs)
matches = self.match_features(features)
imgs, features, matches = self.subset(imgs, features, matches)
cameras = self.estimate_camera_parameters(features, matches)
cameras = self.refine_camera_parameters(features, matches, cameras)
cameras = self.perform_wave_correction(cameras)
panorama_scale, panorama_corners, panorama_sizes = \
self.estimate_final_panorama_dimensions(cameras)
self.initialize_composition(panorama_corners, panorama_sizes)
imgs = self.resize_low_resolution(imgs)
imgs = self.warp_low_resolution_images(imgs, cameras, panorama_scale)
self.estimate_exposure_errors(imgs)
seam_masks = self.find_seam_masks(imgs)
imgs = self.resize_final_resolution()
imgs = self.warp_final_resolution_images(imgs, cameras, panorama_scale)
imgs = self.compensate_exposure_errors(imgs)
seam_masks = self.resize_seam_masks(seam_masks)
self.blend_images(imgs, seam_masks)
return self.create_final_panorama()
def initialize_registration(self, img_names):
self.img_handler.set_img_names(img_names)
def resize_medium_resolution(self):
return list(self.img_handler.resize_to_medium_resolution())
def find_features(self, imgs):
return [self.detector.detect_features(img) for img in imgs]
def match_features(self, features):
return self.matcher.match_features(features)
def subset(self, imgs, features, matches):
names, sizes, imgs, features, matches = \
self.subsetter.subset(self.img_handler.img_names,
self.img_handler.img_sizes,
imgs, features, matches)
self.img_handler.img_names, self.img_handler.img_sizes = names, sizes
return imgs, features, matches
def estimate_camera_parameters(self, features, matches):
return self.camera_estimator.estimate(features, matches)
def refine_camera_parameters(self, features, matches, cameras):
return self.camera_adjuster.adjust(features, matches, cameras)
def perform_wave_correction(self, cameras):
return self.wave_corrector.correct(cameras)
def estimate_final_panorama_dimensions(self, cameras):
return estimate_final_panorama_dimensions(cameras, self.warper,
self.img_handler)
def initialize_composition(self, corners, sizes):
if self.timelapser.do_timelapse:
self.timelapser.initialize(corners, sizes)
else:
self.blender.prepare(corners, sizes)
def resize_low_resolution(self, imgs=None):
return list(self.img_handler.resize_to_low_resolution(imgs))
def warp_low_resolution_images(self, imgs, cameras, final_scale):
camera_aspect = self.img_handler.get_medium_to_low_ratio()
scale = final_scale * self.img_handler.get_final_to_low_ratio()
return list(self.warp_images(imgs, cameras, scale, camera_aspect))
def warp_final_resolution_images(self, imgs, cameras, scale):
camera_aspect = self.img_handler.get_medium_to_final_ratio()
return self.warp_images(imgs, cameras, scale, camera_aspect)
def warp_images(self, imgs, cameras, scale, aspect=1):
self._masks = []
self._corners = []
for img_warped, mask_warped, corner in \
self.warper.warp_images_and_image_masks(
imgs, cameras, scale, aspect
):
self._masks.append(mask_warped)
self._corners.append(corner)
yield img_warped
def estimate_exposure_errors(self, imgs):
self.compensator.feed(self._corners, imgs, self._masks)
def find_seam_masks(self, imgs):
return self.seam_finder.find(imgs, self._corners, self._masks)
def resize_final_resolution(self):
return self.img_handler.resize_to_final_resolution()
def compensate_exposure_errors(self, imgs):
for idx, img in enumerate(imgs):
yield self.compensator.apply(idx, self._corners[idx],
img, self._masks[idx])
def resize_seam_masks(self, seam_masks):
for idx, seam_mask in enumerate(seam_masks):
yield SeamFinder.resize(seam_mask, self._masks[idx])
def blend_images(self, imgs, masks):
for idx, (img, mask) in enumerate(zip(imgs, masks)):
if self.timelapser.do_timelapse:
self.timelapser.process_and_save_frame(
self.img_handler.img_names[idx], img, self._corners[idx]
)
else:
self.blender.feed(img, mask, self._corners[idx])
def create_final_panorama(self):
if not self.timelapser.do_timelapse:
return self.blender.blend()
@staticmethod
def validate_kwargs(kwargs):
for arg in kwargs:
if arg not in Stitcher.DEFAULT_SETTINGS:
raise StitchingError("Invalid Argument: " + arg)
def collect_garbage(self):
del self.img_handler.img_names, self.img_handler.img_sizes,
del self._corners, self._masks