Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
219 lines
7.8 KiB
219 lines
7.8 KiB
/*M /////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Copyright (C) 2017, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "../precomp.hpp" |
|
#include "../op_inf_engine.hpp" |
|
#include <opencv2/dnn/shape_utils.hpp> |
|
#include <opencv2/dnn/all_layers.hpp> |
|
|
|
#ifdef HAVE_OPENCL |
|
#include "opencl_kernels_dnn.hpp" |
|
#endif |
|
|
|
namespace cv |
|
{ |
|
namespace dnn |
|
{ |
|
|
|
class ReorgLayerImpl CV_FINAL : public ReorgLayer |
|
{ |
|
int reorgStride; |
|
public: |
|
|
|
ReorgLayerImpl(const LayerParams& params) |
|
{ |
|
setParamsFrom(params); |
|
|
|
reorgStride = params.get<int>("reorg_stride", 2); |
|
CV_Assert(reorgStride > 0); |
|
} |
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs, |
|
const int requiredOutputs, |
|
std::vector<MatShape> &outputs, |
|
std::vector<MatShape> &internals) const CV_OVERRIDE |
|
{ |
|
CV_Assert(inputs.size() > 0); |
|
outputs = std::vector<MatShape>(inputs.size(), shape( |
|
inputs[0][0], |
|
inputs[0][1] * reorgStride * reorgStride, |
|
inputs[0][2] / reorgStride, |
|
inputs[0][3] / reorgStride)); |
|
|
|
CV_Assert(outputs[0][0] > 0 && outputs[0][1] > 0 && outputs[0][2] > 0 && outputs[0][3] > 0); |
|
CV_Assert(total(outputs[0]) == total(inputs[0])); |
|
|
|
return false; |
|
} |
|
|
|
virtual void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE |
|
{ |
|
std::vector<Mat> inputs, outputs; |
|
inputs_arr.getMatVector(inputs); |
|
outputs_arr.getMatVector(outputs); |
|
|
|
Mat inp = inputs[0]; |
|
Mat out = outputs[0]; |
|
int batchSize = inp.size[0]; |
|
|
|
LayerParams permParams; |
|
if (batchSize == 1) |
|
{ |
|
int order[] = {1, 3, 0, 2}; |
|
permParams.set("order", DictValue::arrayInt(&order[0], 4)); |
|
|
|
permuteInpShape.resize(4); |
|
permuteInpShape[0] = inp.size[1] * inp.size[2] / (reorgStride * reorgStride); // (channels*height)/(r*r) |
|
permuteInpShape[1] = reorgStride; |
|
permuteInpShape[2] = inp.size[3]; // width |
|
permuteInpShape[3] = reorgStride; |
|
|
|
permuteOutShape.resize(4); |
|
for (int i = 0; i < 4; ++i) |
|
permuteOutShape[i] = permuteInpShape[order[i]]; |
|
} |
|
else |
|
{ |
|
int order[] = {0, 2, 4, 1, 3}; |
|
permParams.set("order", DictValue::arrayInt(&order[0], 5)); |
|
|
|
permuteInpShape.resize(5); |
|
permuteInpShape[0] = batchSize; |
|
permuteInpShape[1] = inp.size[1] * inp.size[2] / (reorgStride * reorgStride); // (channels*height)/(r*r) |
|
permuteInpShape[2] = reorgStride; |
|
permuteInpShape[3] = inp.size[3]; // width |
|
permuteInpShape[4] = reorgStride; |
|
|
|
permuteOutShape.resize(5); |
|
for (int i = 0; i < 5; ++i) |
|
permuteOutShape[i] = permuteInpShape[order[i]]; |
|
} |
|
permute = PermuteLayer::create(permParams); |
|
std::vector<Mat> permuteInputs(1, inp.reshape(1, permuteInpShape)); |
|
std::vector<Mat> permuteOutputs(1, out.reshape(1, permuteOutShape)); |
|
permute->finalize(permuteInputs, permuteOutputs); |
|
} |
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE |
|
{ |
|
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_INFERENCE_ENGINE; |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals) |
|
{ |
|
std::vector<UMat> inputs; |
|
std::vector<UMat> outputs; |
|
|
|
inps.getUMatVector(inputs); |
|
outs.getUMatVector(outputs); |
|
|
|
inputs[0] = inputs[0].reshape(1, permuteInpShape.size(), &permuteInpShape[0]); |
|
outputs[0] = outputs[0].reshape(1, permuteOutShape.size(), &permuteOutShape[0]); |
|
permute->preferableTarget = preferableTarget; |
|
permute->forward(inputs, outputs, internals); |
|
return true; |
|
} |
|
#endif |
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
|
|
|
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget), |
|
forward_ocl(inputs_arr, outputs_arr, internals_arr)) |
|
|
|
if (inputs_arr.depth() == CV_16S) |
|
{ |
|
forward_fallback(inputs_arr, outputs_arr, internals_arr); |
|
return; |
|
} |
|
|
|
std::vector<Mat> inputs, outputs; |
|
inputs_arr.getMatVector(inputs); |
|
outputs_arr.getMatVector(outputs); |
|
|
|
inputs[0] = inputs[0].reshape(1, permuteInpShape); |
|
outputs[0] = outputs[0].reshape(1, permuteOutShape); |
|
permute->forward(inputs, outputs, internals_arr); |
|
} |
|
|
|
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE |
|
{ |
|
#ifdef HAVE_INF_ENGINE |
|
InferenceEngine::LayerParams lp; |
|
lp.name = name; |
|
lp.type = "ReorgYolo"; |
|
lp.precision = InferenceEngine::Precision::FP32; |
|
std::shared_ptr<InferenceEngine::CNNLayer> ieLayer(new InferenceEngine::CNNLayer(lp)); |
|
ieLayer->params["stride"] = format("%d", reorgStride); |
|
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer)); |
|
#endif // HAVE_INF_ENGINE |
|
return Ptr<BackendNode>(); |
|
} |
|
|
|
virtual int64 getFLOPS(const std::vector<MatShape> &inputs, |
|
const std::vector<MatShape> &outputs) const CV_OVERRIDE |
|
{ |
|
CV_UNUSED(outputs); // suppress unused variable warning |
|
|
|
int64 flops = 0; |
|
for(int i = 0; i < inputs.size(); i++) |
|
{ |
|
flops += 21*total(inputs[i]); |
|
} |
|
return flops; |
|
} |
|
|
|
private: |
|
Ptr<PermuteLayer> permute; |
|
std::vector<int> permuteInpShape, permuteOutShape; |
|
}; |
|
|
|
Ptr<ReorgLayer> ReorgLayer::create(const LayerParams& params) |
|
{ |
|
return Ptr<ReorgLayer>(new ReorgLayerImpl(params)); |
|
} |
|
|
|
} // namespace dnn |
|
} // namespace cv
|
|
|