Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

219 lines
7.8 KiB

/*M ///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "../op_inf_engine.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#include <opencv2/dnn/all_layers.hpp>
#ifdef HAVE_OPENCL
#include "opencl_kernels_dnn.hpp"
#endif
namespace cv
{
namespace dnn
{
class ReorgLayerImpl CV_FINAL : public ReorgLayer
{
int reorgStride;
public:
ReorgLayerImpl(const LayerParams& params)
{
setParamsFrom(params);
reorgStride = params.get<int>("reorg_stride", 2);
CV_Assert(reorgStride > 0);
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE
{
CV_Assert(inputs.size() > 0);
outputs = std::vector<MatShape>(inputs.size(), shape(
inputs[0][0],
inputs[0][1] * reorgStride * reorgStride,
inputs[0][2] / reorgStride,
inputs[0][3] / reorgStride));
CV_Assert(outputs[0][0] > 0 && outputs[0][1] > 0 && outputs[0][2] > 0 && outputs[0][3] > 0);
CV_Assert(total(outputs[0]) == total(inputs[0]));
return false;
}
virtual void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
{
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
Mat inp = inputs[0];
Mat out = outputs[0];
int batchSize = inp.size[0];
LayerParams permParams;
if (batchSize == 1)
{
int order[] = {1, 3, 0, 2};
permParams.set("order", DictValue::arrayInt(&order[0], 4));
permuteInpShape.resize(4);
permuteInpShape[0] = inp.size[1] * inp.size[2] / (reorgStride * reorgStride); // (channels*height)/(r*r)
permuteInpShape[1] = reorgStride;
permuteInpShape[2] = inp.size[3]; // width
permuteInpShape[3] = reorgStride;
permuteOutShape.resize(4);
for (int i = 0; i < 4; ++i)
permuteOutShape[i] = permuteInpShape[order[i]];
}
else
{
int order[] = {0, 2, 4, 1, 3};
permParams.set("order", DictValue::arrayInt(&order[0], 5));
permuteInpShape.resize(5);
permuteInpShape[0] = batchSize;
permuteInpShape[1] = inp.size[1] * inp.size[2] / (reorgStride * reorgStride); // (channels*height)/(r*r)
permuteInpShape[2] = reorgStride;
permuteInpShape[3] = inp.size[3]; // width
permuteInpShape[4] = reorgStride;
permuteOutShape.resize(5);
for (int i = 0; i < 5; ++i)
permuteOutShape[i] = permuteInpShape[order[i]];
}
permute = PermuteLayer::create(permParams);
std::vector<Mat> permuteInputs(1, inp.reshape(1, permuteInpShape));
std::vector<Mat> permuteOutputs(1, out.reshape(1, permuteOutShape));
permute->finalize(permuteInputs, permuteOutputs);
}
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_INFERENCE_ENGINE;
}
#ifdef HAVE_OPENCL
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
inputs[0] = inputs[0].reshape(1, permuteInpShape.size(), &permuteInpShape[0]);
outputs[0] = outputs[0].reshape(1, permuteOutShape.size(), &permuteOutShape[0]);
permute->preferableTarget = preferableTarget;
permute->forward(inputs, outputs, internals);
return true;
}
#endif
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
forward_ocl(inputs_arr, outputs_arr, internals_arr))
if (inputs_arr.depth() == CV_16S)
{
forward_fallback(inputs_arr, outputs_arr, internals_arr);
return;
}
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
inputs[0] = inputs[0].reshape(1, permuteInpShape);
outputs[0] = outputs[0].reshape(1, permuteOutShape);
permute->forward(inputs, outputs, internals_arr);
}
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE
{
#ifdef HAVE_INF_ENGINE
InferenceEngine::LayerParams lp;
lp.name = name;
lp.type = "ReorgYolo";
lp.precision = InferenceEngine::Precision::FP32;
std::shared_ptr<InferenceEngine::CNNLayer> ieLayer(new InferenceEngine::CNNLayer(lp));
ieLayer->params["stride"] = format("%d", reorgStride);
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
#endif // HAVE_INF_ENGINE
return Ptr<BackendNode>();
}
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const CV_OVERRIDE
{
CV_UNUSED(outputs); // suppress unused variable warning
int64 flops = 0;
for(int i = 0; i < inputs.size(); i++)
{
flops += 21*total(inputs[i]);
}
return flops;
}
private:
Ptr<PermuteLayer> permute;
std::vector<int> permuteInpShape, permuteOutShape;
};
Ptr<ReorgLayer> ReorgLayer::create(const LayerParams& params)
{
return Ptr<ReorgLayer>(new ReorgLayerImpl(params));
}
} // namespace dnn
} // namespace cv