mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
336 lines
11 KiB
336 lines
11 KiB
/* |
|
* A Demo to OpenCV Implementation of SURF |
|
* Further Information Refer to "SURF: Speed-Up Robust Feature" |
|
* Author: Liu Liu |
|
* liuliu.1987+opencv@gmail.com |
|
*/ |
|
|
|
#include "opencv2/opencv_modules.hpp" |
|
#include <stdio.h> |
|
|
|
#ifndef HAVE_OPENCV_NONFREE |
|
|
|
int main(int, char**) |
|
{ |
|
printf("The sample requires nonfree module that is not available in your OpenCV distribution.\n"); |
|
return -1; |
|
} |
|
|
|
#else |
|
|
|
# include "opencv2/objdetect/objdetect.hpp" |
|
# include "opencv2/features2d/features2d.hpp" |
|
# include "opencv2/highgui/highgui.hpp" |
|
# include "opencv2/calib3d/calib3d.hpp" |
|
# include "opencv2/nonfree/nonfree.hpp" |
|
# include "opencv2/imgproc/imgproc_c.h" |
|
# include "opencv2/legacy/legacy.hpp" |
|
# include "opencv2/legacy/compat.hpp" |
|
|
|
# include <vector> |
|
|
|
using namespace std; |
|
static void help() |
|
{ |
|
printf( |
|
"This program demonstrated the use of the SURF Detector and Descriptor using\n" |
|
"either FLANN (fast approx nearst neighbor classification) or brute force matching\n" |
|
"on planar objects.\n" |
|
"Usage:\n" |
|
"./find_obj <object_filename> <scene_filename>, default is box.png and box_in_scene.png\n\n"); |
|
return; |
|
} |
|
|
|
// define whether to use approximate nearest-neighbor search |
|
#define USE_FLANN |
|
|
|
#ifdef USE_FLANN |
|
static void |
|
flannFindPairs( const CvSeq*, const CvSeq* objectDescriptors, |
|
const CvSeq*, const CvSeq* imageDescriptors, vector<int>& ptpairs ) |
|
{ |
|
int length = (int)(objectDescriptors->elem_size/sizeof(float)); |
|
|
|
cv::Mat m_object(objectDescriptors->total, length, CV_32F); |
|
cv::Mat m_image(imageDescriptors->total, length, CV_32F); |
|
|
|
|
|
// copy descriptors |
|
CvSeqReader obj_reader; |
|
float* obj_ptr = m_object.ptr<float>(0); |
|
cvStartReadSeq( objectDescriptors, &obj_reader ); |
|
for(int i = 0; i < objectDescriptors->total; i++ ) |
|
{ |
|
const float* descriptor = (const float*)obj_reader.ptr; |
|
CV_NEXT_SEQ_ELEM( obj_reader.seq->elem_size, obj_reader ); |
|
memcpy(obj_ptr, descriptor, length*sizeof(float)); |
|
obj_ptr += length; |
|
} |
|
CvSeqReader img_reader; |
|
float* img_ptr = m_image.ptr<float>(0); |
|
cvStartReadSeq( imageDescriptors, &img_reader ); |
|
for(int i = 0; i < imageDescriptors->total; i++ ) |
|
{ |
|
const float* descriptor = (const float*)img_reader.ptr; |
|
CV_NEXT_SEQ_ELEM( img_reader.seq->elem_size, img_reader ); |
|
memcpy(img_ptr, descriptor, length*sizeof(float)); |
|
img_ptr += length; |
|
} |
|
|
|
// find nearest neighbors using FLANN |
|
cv::Mat m_indices(objectDescriptors->total, 2, CV_32S); |
|
cv::Mat m_dists(objectDescriptors->total, 2, CV_32F); |
|
cv::flann::Index flann_index(m_image, cv::flann::KDTreeIndexParams(4)); // using 4 randomized kdtrees |
|
flann_index.knnSearch(m_object, m_indices, m_dists, 2, cv::flann::SearchParams(64) ); // maximum number of leafs checked |
|
|
|
int* indices_ptr = m_indices.ptr<int>(0); |
|
float* dists_ptr = m_dists.ptr<float>(0); |
|
for (int i=0;i<m_indices.rows;++i) { |
|
if (dists_ptr[2*i]<0.6*dists_ptr[2*i+1]) { |
|
ptpairs.push_back(i); |
|
ptpairs.push_back(indices_ptr[2*i]); |
|
} |
|
} |
|
} |
|
#else |
|
|
|
static double |
|
compareSURFDescriptors( const float* d1, const float* d2, double best, int length ) |
|
{ |
|
double total_cost = 0; |
|
assert( length % 4 == 0 ); |
|
for( int i = 0; i < length; i += 4 ) |
|
{ |
|
double t0 = d1[i ] - d2[i ]; |
|
double t1 = d1[i+1] - d2[i+1]; |
|
double t2 = d1[i+2] - d2[i+2]; |
|
double t3 = d1[i+3] - d2[i+3]; |
|
total_cost += t0*t0 + t1*t1 + t2*t2 + t3*t3; |
|
if( total_cost > best ) |
|
break; |
|
} |
|
return total_cost; |
|
} |
|
|
|
static int |
|
naiveNearestNeighbor( const float* vec, int laplacian, |
|
const CvSeq* model_keypoints, |
|
const CvSeq* model_descriptors ) |
|
{ |
|
int length = (int)(model_descriptors->elem_size/sizeof(float)); |
|
int i, neighbor = -1; |
|
double d, dist1 = 1e6, dist2 = 1e6; |
|
CvSeqReader reader, kreader; |
|
cvStartReadSeq( model_keypoints, &kreader, 0 ); |
|
cvStartReadSeq( model_descriptors, &reader, 0 ); |
|
|
|
for( i = 0; i < model_descriptors->total; i++ ) |
|
{ |
|
const CvSURFPoint* kp = (const CvSURFPoint*)kreader.ptr; |
|
const float* mvec = (const float*)reader.ptr; |
|
CV_NEXT_SEQ_ELEM( kreader.seq->elem_size, kreader ); |
|
CV_NEXT_SEQ_ELEM( reader.seq->elem_size, reader ); |
|
if( laplacian != kp->laplacian ) |
|
continue; |
|
d = compareSURFDescriptors( vec, mvec, dist2, length ); |
|
if( d < dist1 ) |
|
{ |
|
dist2 = dist1; |
|
dist1 = d; |
|
neighbor = i; |
|
} |
|
else if ( d < dist2 ) |
|
dist2 = d; |
|
} |
|
if ( dist1 < 0.6*dist2 ) |
|
return neighbor; |
|
return -1; |
|
} |
|
|
|
static void |
|
findPairs( const CvSeq* objectKeypoints, const CvSeq* objectDescriptors, |
|
const CvSeq* imageKeypoints, const CvSeq* imageDescriptors, vector<int>& ptpairs ) |
|
{ |
|
int i; |
|
CvSeqReader reader, kreader; |
|
cvStartReadSeq( objectKeypoints, &kreader ); |
|
cvStartReadSeq( objectDescriptors, &reader ); |
|
ptpairs.clear(); |
|
|
|
for( i = 0; i < objectDescriptors->total; i++ ) |
|
{ |
|
const CvSURFPoint* kp = (const CvSURFPoint*)kreader.ptr; |
|
const float* descriptor = (const float*)reader.ptr; |
|
CV_NEXT_SEQ_ELEM( kreader.seq->elem_size, kreader ); |
|
CV_NEXT_SEQ_ELEM( reader.seq->elem_size, reader ); |
|
int nearest_neighbor = naiveNearestNeighbor( descriptor, kp->laplacian, imageKeypoints, imageDescriptors ); |
|
if( nearest_neighbor >= 0 ) |
|
{ |
|
ptpairs.push_back(i); |
|
ptpairs.push_back(nearest_neighbor); |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
/* a rough implementation for object location */ |
|
static int |
|
locatePlanarObject( const CvSeq* objectKeypoints, const CvSeq* objectDescriptors, |
|
const CvSeq* imageKeypoints, const CvSeq* imageDescriptors, |
|
const CvPoint src_corners[4], CvPoint dst_corners[4] ) |
|
{ |
|
double h[9]; |
|
CvMat _h = cvMat(3, 3, CV_64F, h); |
|
vector<int> ptpairs; |
|
vector<CvPoint2D32f> pt1, pt2; |
|
CvMat _pt1, _pt2; |
|
int i, n; |
|
|
|
#ifdef USE_FLANN |
|
flannFindPairs( objectKeypoints, objectDescriptors, imageKeypoints, imageDescriptors, ptpairs ); |
|
#else |
|
findPairs( objectKeypoints, objectDescriptors, imageKeypoints, imageDescriptors, ptpairs ); |
|
#endif |
|
|
|
n = (int)(ptpairs.size()/2); |
|
if( n < 4 ) |
|
return 0; |
|
|
|
pt1.resize(n); |
|
pt2.resize(n); |
|
for( i = 0; i < n; i++ ) |
|
{ |
|
pt1[i] = ((CvSURFPoint*)cvGetSeqElem(objectKeypoints,ptpairs[i*2]))->pt; |
|
pt2[i] = ((CvSURFPoint*)cvGetSeqElem(imageKeypoints,ptpairs[i*2+1]))->pt; |
|
} |
|
|
|
_pt1 = cvMat(1, n, CV_32FC2, &pt1[0] ); |
|
_pt2 = cvMat(1, n, CV_32FC2, &pt2[0] ); |
|
if( !cvFindHomography( &_pt1, &_pt2, &_h, CV_RANSAC, 5 )) |
|
return 0; |
|
|
|
for( i = 0; i < 4; i++ ) |
|
{ |
|
double x = src_corners[i].x, y = src_corners[i].y; |
|
double Z = 1./(h[6]*x + h[7]*y + h[8]); |
|
double X = (h[0]*x + h[1]*y + h[2])*Z; |
|
double Y = (h[3]*x + h[4]*y + h[5])*Z; |
|
dst_corners[i] = cvPoint(cvRound(X), cvRound(Y)); |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
int main(int argc, char** argv) |
|
{ |
|
const char* object_filename = argc == 3 ? argv[1] : "box.png"; |
|
const char* scene_filename = argc == 3 ? argv[2] : "box_in_scene.png"; |
|
|
|
cv::initModule_nonfree(); |
|
help(); |
|
|
|
IplImage* object = cvLoadImage( object_filename, CV_LOAD_IMAGE_GRAYSCALE ); |
|
IplImage* image = cvLoadImage( scene_filename, CV_LOAD_IMAGE_GRAYSCALE ); |
|
if( !object || !image ) |
|
{ |
|
fprintf( stderr, "Can not load %s and/or %s\n", |
|
object_filename, scene_filename ); |
|
exit(-1); |
|
} |
|
|
|
CvMemStorage* storage = cvCreateMemStorage(0); |
|
|
|
cvNamedWindow("Object", 1); |
|
cvNamedWindow("Object Correspond", 1); |
|
|
|
static CvScalar colors[] = |
|
{ |
|
{{0,0,255}}, |
|
{{0,128,255}}, |
|
{{0,255,255}}, |
|
{{0,255,0}}, |
|
{{255,128,0}}, |
|
{{255,255,0}}, |
|
{{255,0,0}}, |
|
{{255,0,255}}, |
|
{{255,255,255}} |
|
}; |
|
|
|
IplImage* object_color = cvCreateImage(cvGetSize(object), 8, 3); |
|
cvCvtColor( object, object_color, CV_GRAY2BGR ); |
|
|
|
CvSeq* objectKeypoints = 0, *objectDescriptors = 0; |
|
CvSeq* imageKeypoints = 0, *imageDescriptors = 0; |
|
int i; |
|
CvSURFParams params = cvSURFParams(500, 1); |
|
|
|
double tt = (double)cvGetTickCount(); |
|
cvExtractSURF( object, 0, &objectKeypoints, &objectDescriptors, storage, params ); |
|
printf("Object Descriptors: %d\n", objectDescriptors->total); |
|
|
|
cvExtractSURF( image, 0, &imageKeypoints, &imageDescriptors, storage, params ); |
|
printf("Image Descriptors: %d\n", imageDescriptors->total); |
|
tt = (double)cvGetTickCount() - tt; |
|
|
|
printf( "Extraction time = %gms\n", tt/(cvGetTickFrequency()*1000.)); |
|
|
|
CvPoint src_corners[4] = {{0,0}, {object->width,0}, {object->width, object->height}, {0, object->height}}; |
|
CvPoint dst_corners[4]; |
|
IplImage* correspond = cvCreateImage( cvSize(image->width, object->height+image->height), 8, 1 ); |
|
cvSetImageROI( correspond, cvRect( 0, 0, object->width, object->height ) ); |
|
cvCopy( object, correspond ); |
|
cvSetImageROI( correspond, cvRect( 0, object->height, correspond->width, correspond->height ) ); |
|
cvCopy( image, correspond ); |
|
cvResetImageROI( correspond ); |
|
|
|
#ifdef USE_FLANN |
|
printf("Using approximate nearest neighbor search\n"); |
|
#endif |
|
|
|
if( locatePlanarObject( objectKeypoints, objectDescriptors, imageKeypoints, |
|
imageDescriptors, src_corners, dst_corners )) |
|
{ |
|
for( i = 0; i < 4; i++ ) |
|
{ |
|
CvPoint r1 = dst_corners[i%4]; |
|
CvPoint r2 = dst_corners[(i+1)%4]; |
|
cvLine( correspond, cvPoint(r1.x, r1.y+object->height ), |
|
cvPoint(r2.x, r2.y+object->height ), colors[8] ); |
|
} |
|
} |
|
vector<int> ptpairs; |
|
#ifdef USE_FLANN |
|
flannFindPairs( objectKeypoints, objectDescriptors, imageKeypoints, imageDescriptors, ptpairs ); |
|
#else |
|
findPairs( objectKeypoints, objectDescriptors, imageKeypoints, imageDescriptors, ptpairs ); |
|
#endif |
|
for( i = 0; i < (int)ptpairs.size(); i += 2 ) |
|
{ |
|
CvSURFPoint* r1 = (CvSURFPoint*)cvGetSeqElem( objectKeypoints, ptpairs[i] ); |
|
CvSURFPoint* r2 = (CvSURFPoint*)cvGetSeqElem( imageKeypoints, ptpairs[i+1] ); |
|
cvLine( correspond, cvPointFrom32f(r1->pt), |
|
cvPoint(cvRound(r2->pt.x), cvRound(r2->pt.y+object->height)), colors[8] ); |
|
} |
|
|
|
cvShowImage( "Object Correspond", correspond ); |
|
for( i = 0; i < objectKeypoints->total; i++ ) |
|
{ |
|
CvSURFPoint* r = (CvSURFPoint*)cvGetSeqElem( objectKeypoints, i ); |
|
CvPoint center; |
|
int radius; |
|
center.x = cvRound(r->pt.x); |
|
center.y = cvRound(r->pt.y); |
|
radius = cvRound(r->size*1.2/9.*2); |
|
cvCircle( object_color, center, radius, colors[0], 1, 8, 0 ); |
|
} |
|
cvShowImage( "Object", object_color ); |
|
|
|
cvWaitKey(0); |
|
|
|
cvDestroyWindow("Object"); |
|
cvDestroyWindow("Object Correspond"); |
|
|
|
return 0; |
|
} |
|
|
|
#endif
|
|
|