Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
563 lines
17 KiB
563 lines
17 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include <precomp.hpp> |
|
#include <opencv2/objdetect/objdetect.hpp> |
|
#include <opencv2/core/core.hpp> |
|
|
|
#include <vector> |
|
#include <string> |
|
#include <iostream> |
|
#include <cstdio> |
|
#include <stdarg.h> |
|
|
|
// used for noisy printfs |
|
// #define WITH_DEBUG_OUT |
|
|
|
#if defined WITH_DEBUG_OUT |
|
# define dprintf(format, ...) \ |
|
do { printf(format, ##__VA_ARGS__); } while (0) |
|
#else |
|
# define dprintf(format, ...) |
|
#endif |
|
|
|
namespace { |
|
|
|
struct Octave |
|
{ |
|
int index; |
|
float scale; |
|
int stages; |
|
cv::Size size; |
|
int shrinkage; |
|
|
|
static const char *const SC_OCT_SCALE; |
|
static const char *const SC_OCT_STAGES; |
|
static const char *const SC_OCT_SHRINKAGE; |
|
|
|
Octave(const int i, cv::Size origObjSize, const cv::FileNode& fn) |
|
: index(i), scale((float)fn[SC_OCT_SCALE]), stages((int)fn[SC_OCT_STAGES]), |
|
size(cvRound(origObjSize.width * scale), cvRound(origObjSize.height * scale)), |
|
shrinkage((int)fn[SC_OCT_SHRINKAGE]) |
|
{} |
|
}; |
|
|
|
const char *const Octave::SC_OCT_SCALE = "scale"; |
|
const char *const Octave::SC_OCT_STAGES = "stageNum"; |
|
const char *const Octave::SC_OCT_SHRINKAGE = "shrinkingFactor"; |
|
|
|
struct Weak |
|
{ |
|
float threshold; |
|
|
|
static const char *const SC_STAGE_THRESHOLD; |
|
|
|
Weak(){} |
|
Weak(const cv::FileNode& fn) : threshold((float)fn[SC_STAGE_THRESHOLD]){} |
|
}; |
|
|
|
const char *const Weak::SC_STAGE_THRESHOLD = "stageThreshold"; |
|
|
|
struct Node |
|
{ |
|
int feature; |
|
float threshold; |
|
|
|
Node(){} |
|
Node(const int offset, cv::FileNodeIterator& fIt) |
|
: feature((int)(*(fIt +=2)++) + offset), threshold((float)(*(fIt++))){} |
|
}; |
|
|
|
struct Feature |
|
{ |
|
int channel; |
|
cv::Rect rect; |
|
float rarea; |
|
|
|
static const char * const SC_F_CHANNEL; |
|
static const char * const SC_F_RECT; |
|
|
|
Feature() {} |
|
Feature(const cv::FileNode& fn) : channel((int)fn[SC_F_CHANNEL]) |
|
{ |
|
cv::FileNode rn = fn[SC_F_RECT]; |
|
cv::FileNodeIterator r_it = rn.end(); |
|
rect = cv::Rect(*(--r_it), *(--r_it), *(--r_it), *(--r_it)); |
|
|
|
// 1 / area |
|
rarea = 1.f / ((rect.width - rect.x) * (rect.height - rect.y)); |
|
} |
|
}; |
|
|
|
const char * const Feature::SC_F_CHANNEL = "channel"; |
|
const char * const Feature::SC_F_RECT = "rect"; |
|
|
|
struct CascadeIntrinsics |
|
{ |
|
static const float lambda = 1.099f, a = 0.89f; |
|
|
|
static float getFor(bool isUp, float scaling) |
|
{ |
|
if (fabs(scaling - 1.f) < FLT_EPSILON) |
|
return 1.f; |
|
|
|
// according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool's and Dallal's papers |
|
static const float A[2][2] = |
|
{ //channel <= 6, otherwise |
|
{ 0.89f, 1.f}, // down |
|
{ 1.00f, 1.f} // up |
|
}; |
|
|
|
static const float B[2][2] = |
|
{ //channel <= 6, otherwise |
|
{ 1.099f / log(2), 2.f}, // down |
|
{ 0.f, 2.f} // up |
|
}; |
|
|
|
float a = A[(int)(scaling >= 1)][(int)(isUp)]; |
|
float b = B[(int)(scaling >= 1)][(int)(isUp)]; |
|
|
|
dprintf("scaling: %f %f %f %f\n", scaling, a, b, a * pow(scaling, b)); |
|
return a * pow(scaling, b); |
|
} |
|
}; |
|
|
|
struct Level |
|
{ |
|
const Octave* octave; |
|
|
|
float origScale; |
|
float relScale; |
|
int scaleshift; |
|
|
|
cv::Size workRect; |
|
cv::Size objSize; |
|
|
|
enum { R_SHIFT = 1 << 15 }; |
|
|
|
float scaling[2]; |
|
typedef cv::SoftCascade::Detection detection_t; |
|
|
|
Level(const Octave& oct, const float scale, const int shrinkage, const int w, const int h) |
|
: octave(&oct), origScale(scale), relScale(scale / oct.scale), |
|
workRect(cv::Size(cvRound(w / (float)shrinkage),cvRound(h / (float)shrinkage))), |
|
objSize(cv::Size(cvRound(oct.size.width * relScale), cvRound(oct.size.height * relScale))) |
|
{ |
|
scaling[0] = CascadeIntrinsics::getFor(false, relScale) / (relScale * relScale); |
|
scaling[1] = CascadeIntrinsics::getFor(true, relScale) / (relScale * relScale); |
|
scaleshift = relScale * (1 << 16); |
|
} |
|
|
|
void addDetection(const int x, const int y, float confidence, std::vector<detection_t>& detections) const |
|
{ |
|
int shrinkage = (*octave).shrinkage; |
|
cv::Rect rect(cvRound(x * shrinkage), cvRound(y * shrinkage), objSize.width, objSize.height); |
|
|
|
detections.push_back(detection_t(rect, confidence)); |
|
} |
|
|
|
float rescale(cv::Rect& scaledRect, const float threshold, int idx) const |
|
{ |
|
// rescale |
|
scaledRect.x = (scaleshift * scaledRect.x + R_SHIFT) >> 16; |
|
scaledRect.y = (scaleshift * scaledRect.y + R_SHIFT) >> 16; |
|
scaledRect.width = (scaleshift * scaledRect.width + R_SHIFT) >> 16; |
|
scaledRect.height = (scaleshift * scaledRect.height + R_SHIFT) >> 16; |
|
|
|
float sarea = (scaledRect.width - scaledRect.x) * (scaledRect.height - scaledRect.y); |
|
|
|
// compensation areas rounding |
|
return (sarea == 0.0f)? threshold : (threshold * scaling[idx] * sarea); |
|
} |
|
}; |
|
|
|
struct ChannelStorage |
|
{ |
|
std::vector<cv::Mat> hog; |
|
int shrinkage; |
|
int offset; |
|
int step; |
|
|
|
enum {HOG_BINS = 6, HOG_LUV_BINS = 10}; |
|
|
|
ChannelStorage() {} |
|
ChannelStorage(const cv::Mat& colored, int shr) : shrinkage(shr) |
|
{ |
|
hog.clear(); |
|
cv::IntegralChannels ints(shr); |
|
|
|
// convert to grey |
|
cv::Mat grey; |
|
cv::cvtColor(colored, grey, CV_BGR2GRAY); |
|
|
|
ints.createHogBins(grey, hog, 6); |
|
ints.createLuvBins(colored, hog); |
|
|
|
step = hog[0].cols; |
|
} |
|
|
|
float get(const int channel, const cv::Rect& area) const |
|
{ |
|
// CV_Assert(channel < HOG_LUV_BINS); |
|
const cv::Mat& m = hog[channel]; |
|
int *ptr = ((int*)(m.data)) + offset; |
|
|
|
int a = ptr[area.y * step + area.x]; |
|
int b = ptr[area.y * step + area.width]; |
|
int c = ptr[area.height * step + area.width]; |
|
int d = ptr[area.height * step + area.x]; |
|
|
|
return (a - b + c - d); |
|
} |
|
}; |
|
|
|
} |
|
|
|
struct cv::SoftCascade::Filds |
|
{ |
|
float minScale; |
|
float maxScale; |
|
|
|
int origObjWidth; |
|
int origObjHeight; |
|
|
|
int shrinkage; |
|
|
|
std::vector<Octave> octaves; |
|
std::vector<Weak> stages; |
|
std::vector<Node> nodes; |
|
std::vector<float> leaves; |
|
std::vector<Feature> features; |
|
|
|
std::vector<Level> levels; |
|
|
|
cv::Size frameSize; |
|
|
|
enum { BOOST = 0 }; |
|
|
|
typedef std::vector<Octave>::iterator octIt_t; |
|
|
|
void detectAt(const int dx, const int dy, const Level& level, const ChannelStorage& storage, |
|
std::vector<Detection>& detections) const |
|
{ |
|
dprintf("detect at: %d %d\n", dx, dy); |
|
|
|
float detectionScore = 0.f; |
|
|
|
const Octave& octave = *(level.octave); |
|
int stBegin = octave.index * octave.stages, stEnd = stBegin + 1024;//octave.stages; |
|
|
|
dprintf(" octave stages: %d to %d index %d %f level %f\n", |
|
stBegin, stEnd, octave.index, octave.scale, level.origScale); |
|
|
|
int st = stBegin; |
|
for(; st < stEnd; ++st) |
|
{ |
|
|
|
dprintf("index: %d\n", st); |
|
|
|
const Weak& stage = stages[st]; |
|
{ |
|
int nId = st * 3; |
|
|
|
// work with root node |
|
const Node& node = nodes[nId]; |
|
const Feature& feature = features[node.feature]; |
|
cv::Rect scaledRect(feature.rect); |
|
|
|
float threshold = level.rescale(scaledRect, node.threshold,(int)(feature.channel > 6)) * feature.rarea; |
|
|
|
float sum = storage.get(feature.channel, scaledRect); |
|
|
|
dprintf("root feature %d %f\n",feature.channel, sum); |
|
|
|
int next = (sum >= threshold)? 2 : 1; |
|
|
|
dprintf("go: %d (%f >= %f)\n\n" ,next, sum, threshold); |
|
|
|
// leaves |
|
const Node& leaf = nodes[nId + next]; |
|
const Feature& fLeaf = features[leaf.feature]; |
|
|
|
scaledRect = fLeaf.rect; |
|
threshold = level.rescale(scaledRect, leaf.threshold, (int)(fLeaf.channel > 6)) * fLeaf.rarea; |
|
|
|
sum = storage.get(fLeaf.channel, scaledRect); |
|
|
|
int lShift = (next - 1) * 2 + ((sum >= threshold) ? 1 : 0); |
|
float impact = leaves[(st * 4) + lShift]; |
|
|
|
dprintf("decided: %d (%f >= %f) %d %f\n\n" ,next, sum, threshold, lShift, impact); |
|
|
|
detectionScore += impact; |
|
} |
|
|
|
dprintf("extracted stage:\n"); |
|
dprintf("ct %f\n", stage.threshold); |
|
dprintf("computed score %f\n\n", detectionScore); |
|
|
|
#if defined WITH_DEBUG_OUT |
|
if (st - stBegin > 50 ) break; |
|
#endif |
|
|
|
if (detectionScore <= stage.threshold) return; |
|
} |
|
|
|
dprintf("x %d y %d: %d\n", dx, dy, st - stBegin); |
|
dprintf(" got %d\n", st); |
|
|
|
level.addDetection(dx, dy, detectionScore, detections); |
|
} |
|
|
|
octIt_t fitOctave(const float& logFactor) |
|
{ |
|
float minAbsLog = FLT_MAX; |
|
octIt_t res = octaves.begin(); |
|
for (octIt_t oct = octaves.begin(); oct < octaves.end(); ++oct) |
|
{ |
|
const Octave& octave =*oct; |
|
float logOctave = log(octave.scale); |
|
float logAbsScale = fabs(logFactor - logOctave); |
|
|
|
if(logAbsScale < minAbsLog) |
|
{ |
|
res = oct; |
|
minAbsLog = logAbsScale; |
|
} |
|
} |
|
return res; |
|
} |
|
|
|
// compute levels of full pyramid |
|
void calcLevels(const cv::Size& curr, int scales) |
|
{ |
|
if (frameSize == curr) return; |
|
frameSize = curr; |
|
|
|
CV_Assert(scales > 1); |
|
levels.clear(); |
|
float logFactor = (log(maxScale) - log(minScale)) / (scales -1); |
|
|
|
float scale = minScale; |
|
for (int sc = 0; sc < scales; ++sc) |
|
{ |
|
int width = std::max(0.0f, frameSize.width - (origObjWidth * scale)); |
|
int height = std::max(0.0f, frameSize.height - (origObjHeight * scale)); |
|
|
|
float logScale = log(scale); |
|
octIt_t fit = fitOctave(logScale); |
|
|
|
|
|
Level level(*fit, scale, shrinkage, width, height); |
|
|
|
if (!width || !height) |
|
break; |
|
else |
|
levels.push_back(level); |
|
|
|
if (fabs(scale - maxScale) < FLT_EPSILON) break; |
|
scale = std::min(maxScale, expf(log(scale) + logFactor)); |
|
|
|
std::cout << "level " << sc << " scale " |
|
<< levels[sc].origScale |
|
<< " octeve " |
|
<< levels[sc].octave->scale |
|
<< " " |
|
<< levels[sc].relScale |
|
<< " [" << levels[sc].objSize.width |
|
<< " " << levels[sc].objSize.height << "] [" |
|
<< levels[sc].workRect.width << " " << levels[sc].workRect.height << "]" << std::endl; |
|
} |
|
} |
|
|
|
bool fill(const FileNode &root, const float mins, const float maxs) |
|
{ |
|
minScale = mins; |
|
maxScale = maxs; |
|
|
|
// cascade properties |
|
static const char *const SC_STAGE_TYPE = "stageType"; |
|
static const char *const SC_BOOST = "BOOST"; |
|
|
|
static const char *const SC_FEATURE_TYPE = "featureType"; |
|
static const char *const SC_ICF = "ICF"; |
|
|
|
static const char *const SC_ORIG_W = "width"; |
|
static const char *const SC_ORIG_H = "height"; |
|
|
|
static const char *const SC_OCTAVES = "octaves"; |
|
static const char *const SC_STAGES = "stages"; |
|
static const char *const SC_FEATURES = "features"; |
|
|
|
static const char *const SC_WEEK = "weakClassifiers"; |
|
static const char *const SC_INTERNAL = "internalNodes"; |
|
static const char *const SC_LEAF = "leafValues"; |
|
|
|
|
|
// only Ada Boost supported |
|
std::string stageTypeStr = (string)root[SC_STAGE_TYPE]; |
|
CV_Assert(stageTypeStr == SC_BOOST); |
|
|
|
// only HOG-like integral channel features cupported |
|
string featureTypeStr = (string)root[SC_FEATURE_TYPE]; |
|
CV_Assert(featureTypeStr == SC_ICF); |
|
|
|
origObjWidth = (int)root[SC_ORIG_W]; |
|
origObjHeight = (int)root[SC_ORIG_H]; |
|
|
|
// for each octave (~ one cascade in classic OpenCV xml) |
|
FileNode fn = root[SC_OCTAVES]; |
|
if (fn.empty()) return false; |
|
|
|
// octaves.reserve(noctaves); |
|
FileNodeIterator it = fn.begin(), it_end = fn.end(); |
|
int feature_offset = 0; |
|
int octIndex = 0; |
|
for (; it != it_end; ++it) |
|
{ |
|
FileNode fns = *it; |
|
Octave octave(octIndex, cv::Size(origObjWidth, origObjHeight), fns); |
|
CV_Assert(octave.stages > 0); |
|
octaves.push_back(octave); |
|
|
|
FileNode ffs = fns[SC_FEATURES]; |
|
if (ffs.empty()) return false; |
|
|
|
fns = fns[SC_STAGES]; |
|
if (fn.empty()) return false; |
|
|
|
// for each stage (~ decision tree with H = 2) |
|
FileNodeIterator st = fns.begin(), st_end = fns.end(); |
|
for (; st != st_end; ++st ) |
|
{ |
|
fns = *st; |
|
stages.push_back(Weak(fns)); |
|
|
|
fns = fns[SC_WEEK]; |
|
FileNodeIterator ftr = fns.begin(), ft_end = fns.end(); |
|
for (; ftr != ft_end; ++ftr) |
|
{ |
|
fns = (*ftr)[SC_INTERNAL]; |
|
FileNodeIterator inIt = fns.begin(), inIt_end = fns.end(); |
|
for (; inIt != inIt_end;) |
|
nodes.push_back(Node(feature_offset, inIt)); |
|
|
|
fns = (*ftr)[SC_LEAF]; |
|
inIt = fns.begin(), inIt_end = fns.end(); |
|
for (; inIt != inIt_end; ++inIt) |
|
leaves.push_back((float)(*inIt)); |
|
} |
|
} |
|
|
|
st = ffs.begin(), st_end = ffs.end(); |
|
for (; st != st_end; ++st ) |
|
features.push_back(Feature(*st)); |
|
|
|
feature_offset += octave.stages * 3; |
|
++octIndex; |
|
} |
|
|
|
shrinkage = octaves[0].shrinkage; |
|
return true; |
|
} |
|
}; |
|
|
|
cv::SoftCascade::SoftCascade(const float mins, const float maxs, const int nsc) |
|
: filds(0), minScale(mins), maxScale(maxs), scales(nsc) {} |
|
|
|
cv::SoftCascade::SoftCascade(const cv::FileStorage& fs) : filds(0) |
|
{ |
|
read(fs); |
|
} |
|
cv::SoftCascade::~SoftCascade() |
|
{ |
|
delete filds; |
|
} |
|
|
|
bool cv::SoftCascade::read( const cv::FileStorage& fs) |
|
{ |
|
if (!fs.isOpened()) return false; |
|
|
|
if (filds) |
|
delete filds; |
|
filds = 0; |
|
|
|
filds = new Filds; |
|
Filds& flds = *filds; |
|
if (!flds.fill(fs.getFirstTopLevelNode(), minScale, maxScale)) return false; |
|
// flds.calcLevels(FRAME_WIDTH, FRAME_HEIGHT, scales); |
|
|
|
return true; |
|
} |
|
|
|
void cv::SoftCascade::detectMultiScale(const Mat& image, const std::vector<cv::Rect>& /*rois*/, |
|
std::vector<Detection>& objects, const int /*rejectfactor*/) const |
|
{ |
|
// only color images are supperted |
|
CV_Assert(image.type() == CV_8UC3); |
|
|
|
// only this window size allowed |
|
CV_Assert(image.cols == 640 && image.rows == 480); |
|
|
|
Filds& fld = *filds; |
|
fld.calcLevels(image.size(), scales); |
|
|
|
objects.clear(); |
|
|
|
// create integrals |
|
ChannelStorage storage(image, fld.shrinkage); |
|
|
|
typedef std::vector<Level>::const_iterator lIt; |
|
for (lIt it = fld.levels.begin(); it != fld.levels.end(); ++it) |
|
{ |
|
const Level& level = *it; |
|
|
|
for (int dy = 0; dy < level.workRect.height; ++dy) |
|
{ |
|
for (int dx = 0; dx < level.workRect.width; ++dx) |
|
{ |
|
storage.offset = dy * storage.step + dx; |
|
fld.detectAt(dx, dy, level, storage, objects); |
|
} |
|
} |
|
} |
|
} |