mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
311 lines
11 KiB
311 lines
11 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "opencv2/photo.hpp" |
|
#include "opencv2/imgproc.hpp" |
|
#include "hdr_common.hpp" |
|
|
|
namespace cv |
|
{ |
|
|
|
class CalibrateDebevecImpl CV_FINAL : public CalibrateDebevec |
|
{ |
|
public: |
|
CalibrateDebevecImpl(int _samples, float _lambda, bool _random) : |
|
name("CalibrateDebevec"), |
|
samples(_samples), |
|
lambda(_lambda), |
|
random(_random), |
|
w(triangleWeights()) |
|
{ |
|
} |
|
|
|
void process(InputArrayOfArrays src, OutputArray dst, InputArray _times) CV_OVERRIDE |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
// check inputs |
|
std::vector<Mat> images; |
|
src.getMatVector(images); |
|
Mat times = _times.getMat(); |
|
|
|
CV_Assert(images.size() == times.total()); |
|
checkImageDimensions(images); |
|
CV_Assert(images[0].depth() == CV_8U); |
|
CV_Assert(times.type() == CV_32FC1); |
|
|
|
// create output |
|
int channels = images[0].channels(); |
|
int CV_32FCC = CV_MAKETYPE(CV_32F, channels); |
|
int rows = images[0].rows; |
|
int cols = images[0].cols; |
|
|
|
dst.create(LDR_SIZE, 1, CV_32FCC); |
|
Mat result = dst.getMat(); |
|
|
|
// pick pixel locations (either random or in a rectangular grid) |
|
std::vector<Point> points; |
|
points.reserve(samples); |
|
if(random) { |
|
for(int i = 0; i < samples; i++) { |
|
points.push_back(Point(rand() % cols, rand() % rows)); |
|
} |
|
} else { |
|
int x_points = static_cast<int>(sqrt(static_cast<double>(samples) * cols / rows)); |
|
CV_Assert(0 < x_points && x_points <= cols); |
|
int y_points = samples / x_points; |
|
CV_Assert(0 < y_points && y_points <= rows); |
|
int step_x = cols / x_points; |
|
int step_y = rows / y_points; |
|
for(int i = 0, x = step_x / 2; i < x_points; i++, x += step_x) { |
|
for(int j = 0, y = step_y / 2; j < y_points; j++, y += step_y) { |
|
if( 0 <= x && x < cols && 0 <= y && y < rows ) { |
|
points.push_back(Point(x, y)); |
|
} |
|
} |
|
} |
|
// we can have slightly less grid points than specified |
|
//samples = static_cast<int>(points.size()); |
|
} |
|
|
|
// we need enough equations to ensure a sufficiently overdetermined system |
|
// (maybe only as a warning) |
|
//CV_Assert(points.size() * (images.size() - 1) >= LDR_SIZE); |
|
|
|
// solve for imaging system response function, over each channel separately |
|
std::vector<Mat> result_split(channels); |
|
for(int ch = 0; ch < channels; ch++) { |
|
// initialize system of linear equations |
|
Mat A = Mat::zeros((int)points.size() * (int)images.size() + LDR_SIZE + 1, |
|
LDR_SIZE + (int)points.size(), CV_32F); |
|
Mat B = Mat::zeros(A.rows, 1, CV_32F); |
|
|
|
// include the data-fitting equations |
|
int k = 0; |
|
for(size_t i = 0; i < points.size(); i++) { |
|
for(size_t j = 0; j < images.size(); j++) { |
|
// val = images[j].at<Vec3b>(points[i].y, points[i].x)[ch] |
|
int val = images[j].ptr()[channels*(points[i].y * cols + points[i].x) + ch]; |
|
float wij = w.at<float>(val); |
|
A.at<float>(k, val) = wij; |
|
A.at<float>(k, LDR_SIZE + (int)i) = -wij; |
|
B.at<float>(k, 0) = wij * log(times.at<float>((int)j)); |
|
k++; |
|
} |
|
} |
|
|
|
// fix the curve by setting its middle value to 0 |
|
A.at<float>(k, LDR_SIZE / 2) = 1; |
|
k++; |
|
|
|
// include the smoothness equations |
|
for(int i = 0; i < (LDR_SIZE - 2); i++) { |
|
float wi = w.at<float>(i + 1); |
|
A.at<float>(k, i) = lambda * wi; |
|
A.at<float>(k, i + 1) = -2 * lambda * wi; |
|
A.at<float>(k, i + 2) = lambda * wi; |
|
k++; |
|
} |
|
|
|
// solve the overdetermined system using SVD (least-squares problem) |
|
Mat solution; |
|
solve(A, B, solution, DECOMP_SVD); |
|
solution.rowRange(0, LDR_SIZE).copyTo(result_split[ch]); |
|
} |
|
|
|
// combine log-exposures and take its exponent |
|
merge(result_split, result); |
|
exp(result, result); |
|
} |
|
|
|
int getSamples() const CV_OVERRIDE { return samples; } |
|
void setSamples(int val) CV_OVERRIDE { samples = val; } |
|
|
|
float getLambda() const CV_OVERRIDE { return lambda; } |
|
void setLambda(float val) CV_OVERRIDE { lambda = val; } |
|
|
|
bool getRandom() const CV_OVERRIDE { return random; } |
|
void setRandom(bool val) CV_OVERRIDE { random = val; } |
|
|
|
void write(FileStorage& fs) const CV_OVERRIDE |
|
{ |
|
writeFormat(fs); |
|
fs << "name" << name |
|
<< "samples" << samples |
|
<< "lambda" << lambda |
|
<< "random" << static_cast<int>(random); |
|
} |
|
|
|
void read(const FileNode& fn) CV_OVERRIDE |
|
{ |
|
FileNode n = fn["name"]; |
|
CV_Assert(n.isString() && String(n) == name); |
|
samples = fn["samples"]; |
|
lambda = fn["lambda"]; |
|
int random_val = fn["random"]; |
|
random = (random_val != 0); |
|
} |
|
|
|
protected: |
|
String name; // calibration algorithm identifier |
|
int samples; // number of pixel locations to sample |
|
float lambda; // constant that determines the amount of smoothness |
|
bool random; // whether to sample locations randomly or in a grid shape |
|
Mat w; // weighting function for corresponding pixel values |
|
}; |
|
|
|
Ptr<CalibrateDebevec> createCalibrateDebevec(int samples, float lambda, bool random) |
|
{ |
|
return makePtr<CalibrateDebevecImpl>(samples, lambda, random); |
|
} |
|
|
|
class CalibrateRobertsonImpl CV_FINAL : public CalibrateRobertson |
|
{ |
|
public: |
|
CalibrateRobertsonImpl(int _max_iter, float _threshold) : |
|
name("CalibrateRobertson"), |
|
max_iter(_max_iter), |
|
threshold(_threshold), |
|
weight(RobertsonWeights()) |
|
{ |
|
} |
|
|
|
void process(InputArrayOfArrays src, OutputArray dst, InputArray _times) CV_OVERRIDE |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
std::vector<Mat> images; |
|
src.getMatVector(images); |
|
Mat times = _times.getMat(); |
|
|
|
CV_Assert(images.size() == times.total()); |
|
checkImageDimensions(images); |
|
CV_Assert(images[0].depth() == CV_8U); |
|
|
|
int channels = images[0].channels(); |
|
int CV_32FCC = CV_MAKETYPE(CV_32F, channels); |
|
CV_Assert(channels >= 1 && channels <= 3); |
|
|
|
dst.create(LDR_SIZE, 1, CV_32FCC); |
|
Mat response = dst.getMat(); |
|
response = linearResponse(3) / (LDR_SIZE / 2.0f); |
|
|
|
Mat card = Mat::zeros(LDR_SIZE, 1, CV_32FCC); |
|
for(size_t i = 0; i < images.size(); i++) { |
|
uchar *ptr = images[i].ptr(); |
|
for(size_t pos = 0; pos < images[i].total(); pos++) { |
|
for(int c = 0; c < channels; c++, ptr++) { |
|
card.at<Vec3f>(*ptr)[c] += 1; |
|
} |
|
} |
|
} |
|
card = 1.0 / card; |
|
|
|
Ptr<MergeRobertson> merge = createMergeRobertson(); |
|
for(int iter = 0; iter < max_iter; iter++) { |
|
|
|
radiance = Mat::zeros(images[0].size(), CV_32FCC); |
|
merge->process(images, radiance, times, response); |
|
|
|
Mat new_response = Mat::zeros(LDR_SIZE, 1, CV_32FC3); |
|
for(size_t i = 0; i < images.size(); i++) { |
|
uchar *ptr = images[i].ptr(); |
|
float* rad_ptr = radiance.ptr<float>(); |
|
for(size_t pos = 0; pos < images[i].total(); pos++) { |
|
for(int c = 0; c < channels; c++, ptr++, rad_ptr++) { |
|
new_response.at<Vec3f>(*ptr)[c] += times.at<float>((int)i) * *rad_ptr; |
|
} |
|
} |
|
} |
|
new_response = new_response.mul(card); |
|
for(int c = 0; c < 3; c++) { |
|
float middle = new_response.at<Vec3f>(LDR_SIZE / 2)[c]; |
|
for(int i = 0; i < LDR_SIZE; i++) { |
|
new_response.at<Vec3f>(i)[c] /= middle; |
|
} |
|
} |
|
float diff = static_cast<float>(sum(sum(abs(new_response - response)))[0] / channels); |
|
new_response.copyTo(response); |
|
if(diff < threshold) { |
|
break; |
|
} |
|
} |
|
} |
|
|
|
int getMaxIter() const CV_OVERRIDE { return max_iter; } |
|
void setMaxIter(int val) CV_OVERRIDE { max_iter = val; } |
|
|
|
float getThreshold() const CV_OVERRIDE { return threshold; } |
|
void setThreshold(float val) CV_OVERRIDE { threshold = val; } |
|
|
|
Mat getRadiance() const CV_OVERRIDE { return radiance; } |
|
|
|
void write(FileStorage& fs) const CV_OVERRIDE |
|
{ |
|
writeFormat(fs); |
|
fs << "name" << name |
|
<< "max_iter" << max_iter |
|
<< "threshold" << threshold; |
|
} |
|
|
|
void read(const FileNode& fn) CV_OVERRIDE |
|
{ |
|
FileNode n = fn["name"]; |
|
CV_Assert(n.isString() && String(n) == name); |
|
max_iter = fn["max_iter"]; |
|
threshold = fn["threshold"]; |
|
} |
|
|
|
protected: |
|
String name; |
|
int max_iter; |
|
float threshold; |
|
Mat weight, radiance; |
|
}; |
|
|
|
Ptr<CalibrateRobertson> createCalibrateRobertson(int max_iter, float threshold) |
|
{ |
|
return makePtr<CalibrateRobertsonImpl>(max_iter, threshold); |
|
} |
|
|
|
}
|
|
|