Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

311 lines
11 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencv2/photo.hpp"
#include "opencv2/imgproc.hpp"
#include "hdr_common.hpp"
namespace cv
{
class CalibrateDebevecImpl CV_FINAL : public CalibrateDebevec
{
public:
CalibrateDebevecImpl(int _samples, float _lambda, bool _random) :
name("CalibrateDebevec"),
samples(_samples),
lambda(_lambda),
random(_random),
w(triangleWeights())
{
}
void process(InputArrayOfArrays src, OutputArray dst, InputArray _times) CV_OVERRIDE
{
CV_INSTRUMENT_REGION();
// check inputs
std::vector<Mat> images;
src.getMatVector(images);
Mat times = _times.getMat();
CV_Assert(images.size() == times.total());
checkImageDimensions(images);
CV_Assert(images[0].depth() == CV_8U);
CV_Assert(times.type() == CV_32FC1);
// create output
int channels = images[0].channels();
int CV_32FCC = CV_MAKETYPE(CV_32F, channels);
int rows = images[0].rows;
int cols = images[0].cols;
dst.create(LDR_SIZE, 1, CV_32FCC);
Mat result = dst.getMat();
// pick pixel locations (either random or in a rectangular grid)
std::vector<Point> points;
points.reserve(samples);
if(random) {
for(int i = 0; i < samples; i++) {
points.push_back(Point(rand() % cols, rand() % rows));
}
} else {
int x_points = static_cast<int>(sqrt(static_cast<double>(samples) * cols / rows));
CV_Assert(0 < x_points && x_points <= cols);
int y_points = samples / x_points;
CV_Assert(0 < y_points && y_points <= rows);
int step_x = cols / x_points;
int step_y = rows / y_points;
for(int i = 0, x = step_x / 2; i < x_points; i++, x += step_x) {
for(int j = 0, y = step_y / 2; j < y_points; j++, y += step_y) {
if( 0 <= x && x < cols && 0 <= y && y < rows ) {
points.push_back(Point(x, y));
}
}
}
// we can have slightly less grid points than specified
//samples = static_cast<int>(points.size());
}
// we need enough equations to ensure a sufficiently overdetermined system
// (maybe only as a warning)
//CV_Assert(points.size() * (images.size() - 1) >= LDR_SIZE);
// solve for imaging system response function, over each channel separately
std::vector<Mat> result_split(channels);
for(int ch = 0; ch < channels; ch++) {
// initialize system of linear equations
Mat A = Mat::zeros((int)points.size() * (int)images.size() + LDR_SIZE + 1,
LDR_SIZE + (int)points.size(), CV_32F);
Mat B = Mat::zeros(A.rows, 1, CV_32F);
// include the data-fitting equations
int k = 0;
for(size_t i = 0; i < points.size(); i++) {
for(size_t j = 0; j < images.size(); j++) {
// val = images[j].at<Vec3b>(points[i].y, points[i].x)[ch]
int val = images[j].ptr()[channels*(points[i].y * cols + points[i].x) + ch];
float wij = w.at<float>(val);
A.at<float>(k, val) = wij;
A.at<float>(k, LDR_SIZE + (int)i) = -wij;
B.at<float>(k, 0) = wij * log(times.at<float>((int)j));
k++;
}
}
// fix the curve by setting its middle value to 0
A.at<float>(k, LDR_SIZE / 2) = 1;
k++;
// include the smoothness equations
for(int i = 0; i < (LDR_SIZE - 2); i++) {
float wi = w.at<float>(i + 1);
A.at<float>(k, i) = lambda * wi;
A.at<float>(k, i + 1) = -2 * lambda * wi;
A.at<float>(k, i + 2) = lambda * wi;
k++;
}
// solve the overdetermined system using SVD (least-squares problem)
Mat solution;
solve(A, B, solution, DECOMP_SVD);
solution.rowRange(0, LDR_SIZE).copyTo(result_split[ch]);
}
// combine log-exposures and take its exponent
merge(result_split, result);
exp(result, result);
}
int getSamples() const CV_OVERRIDE { return samples; }
void setSamples(int val) CV_OVERRIDE { samples = val; }
float getLambda() const CV_OVERRIDE { return lambda; }
void setLambda(float val) CV_OVERRIDE { lambda = val; }
bool getRandom() const CV_OVERRIDE { return random; }
void setRandom(bool val) CV_OVERRIDE { random = val; }
void write(FileStorage& fs) const CV_OVERRIDE
{
writeFormat(fs);
fs << "name" << name
<< "samples" << samples
<< "lambda" << lambda
<< "random" << static_cast<int>(random);
}
void read(const FileNode& fn) CV_OVERRIDE
{
FileNode n = fn["name"];
CV_Assert(n.isString() && String(n) == name);
samples = fn["samples"];
lambda = fn["lambda"];
int random_val = fn["random"];
random = (random_val != 0);
}
protected:
String name; // calibration algorithm identifier
int samples; // number of pixel locations to sample
float lambda; // constant that determines the amount of smoothness
bool random; // whether to sample locations randomly or in a grid shape
Mat w; // weighting function for corresponding pixel values
};
Ptr<CalibrateDebevec> createCalibrateDebevec(int samples, float lambda, bool random)
{
return makePtr<CalibrateDebevecImpl>(samples, lambda, random);
}
class CalibrateRobertsonImpl CV_FINAL : public CalibrateRobertson
{
public:
CalibrateRobertsonImpl(int _max_iter, float _threshold) :
name("CalibrateRobertson"),
max_iter(_max_iter),
threshold(_threshold),
weight(RobertsonWeights())
{
}
void process(InputArrayOfArrays src, OutputArray dst, InputArray _times) CV_OVERRIDE
{
CV_INSTRUMENT_REGION();
std::vector<Mat> images;
src.getMatVector(images);
Mat times = _times.getMat();
CV_Assert(images.size() == times.total());
checkImageDimensions(images);
CV_Assert(images[0].depth() == CV_8U);
int channels = images[0].channels();
int CV_32FCC = CV_MAKETYPE(CV_32F, channels);
CV_Assert(channels >= 1 && channels <= 3);
dst.create(LDR_SIZE, 1, CV_32FCC);
Mat response = dst.getMat();
response = linearResponse(3) / (LDR_SIZE / 2.0f);
Mat card = Mat::zeros(LDR_SIZE, 1, CV_32FCC);
for(size_t i = 0; i < images.size(); i++) {
uchar *ptr = images[i].ptr();
for(size_t pos = 0; pos < images[i].total(); pos++) {
for(int c = 0; c < channels; c++, ptr++) {
card.at<Vec3f>(*ptr)[c] += 1;
}
}
}
card = 1.0 / card;
Ptr<MergeRobertson> merge = createMergeRobertson();
for(int iter = 0; iter < max_iter; iter++) {
radiance = Mat::zeros(images[0].size(), CV_32FCC);
merge->process(images, radiance, times, response);
Mat new_response = Mat::zeros(LDR_SIZE, 1, CV_32FC3);
for(size_t i = 0; i < images.size(); i++) {
uchar *ptr = images[i].ptr();
float* rad_ptr = radiance.ptr<float>();
for(size_t pos = 0; pos < images[i].total(); pos++) {
for(int c = 0; c < channels; c++, ptr++, rad_ptr++) {
new_response.at<Vec3f>(*ptr)[c] += times.at<float>((int)i) * *rad_ptr;
}
}
}
new_response = new_response.mul(card);
for(int c = 0; c < 3; c++) {
float middle = new_response.at<Vec3f>(LDR_SIZE / 2)[c];
for(int i = 0; i < LDR_SIZE; i++) {
new_response.at<Vec3f>(i)[c] /= middle;
}
}
float diff = static_cast<float>(sum(sum(abs(new_response - response)))[0] / channels);
new_response.copyTo(response);
if(diff < threshold) {
break;
}
}
}
int getMaxIter() const CV_OVERRIDE { return max_iter; }
void setMaxIter(int val) CV_OVERRIDE { max_iter = val; }
float getThreshold() const CV_OVERRIDE { return threshold; }
void setThreshold(float val) CV_OVERRIDE { threshold = val; }
Mat getRadiance() const CV_OVERRIDE { return radiance; }
void write(FileStorage& fs) const CV_OVERRIDE
{
writeFormat(fs);
fs << "name" << name
<< "max_iter" << max_iter
<< "threshold" << threshold;
}
void read(const FileNode& fn) CV_OVERRIDE
{
FileNode n = fn["name"];
CV_Assert(n.isString() && String(n) == name);
max_iter = fn["max_iter"];
threshold = fn["threshold"];
}
protected:
String name;
int max_iter;
float threshold;
Mat weight, radiance;
};
Ptr<CalibrateRobertson> createCalibrateRobertson(int max_iter, float threshold)
{
return makePtr<CalibrateRobertsonImpl>(max_iter, threshold);
}
}