mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
456 lines
15 KiB
456 lines
15 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
////////////////////////////////////////// kmeans //////////////////////////////////////////// |
|
|
|
namespace cv |
|
{ |
|
|
|
static void generateRandomCenter(const std::vector<Vec2f>& box, float* center, RNG& rng) |
|
{ |
|
size_t j, dims = box.size(); |
|
float margin = 1.f/dims; |
|
for( j = 0; j < dims; j++ ) |
|
center[j] = ((float)rng*(1.f+margin*2.f)-margin)*(box[j][1] - box[j][0]) + box[j][0]; |
|
} |
|
|
|
class KMeansPPDistanceComputer : public ParallelLoopBody |
|
{ |
|
public: |
|
KMeansPPDistanceComputer( float *_tdist2, |
|
const float *_data, |
|
const float *_dist, |
|
int _dims, |
|
size_t _step, |
|
size_t _stepci ) |
|
: tdist2(_tdist2), |
|
data(_data), |
|
dist(_dist), |
|
dims(_dims), |
|
step(_step), |
|
stepci(_stepci) { } |
|
|
|
void operator()( const cv::Range& range ) const |
|
{ |
|
const int begin = range.start; |
|
const int end = range.end; |
|
|
|
for ( int i = begin; i<end; i++ ) |
|
{ |
|
tdist2[i] = std::min(normL2Sqr(data + step*i, data + stepci, dims), dist[i]); |
|
} |
|
} |
|
|
|
private: |
|
KMeansPPDistanceComputer& operator=(const KMeansPPDistanceComputer&); // to quiet MSVC |
|
|
|
float *tdist2; |
|
const float *data; |
|
const float *dist; |
|
const int dims; |
|
const size_t step; |
|
const size_t stepci; |
|
}; |
|
|
|
/* |
|
k-means center initialization using the following algorithm: |
|
Arthur & Vassilvitskii (2007) k-means++: The Advantages of Careful Seeding |
|
*/ |
|
static void generateCentersPP(const Mat& _data, Mat& _out_centers, |
|
int K, RNG& rng, int trials) |
|
{ |
|
int i, j, k, dims = _data.cols, N = _data.rows; |
|
const float* data = _data.ptr<float>(0); |
|
size_t step = _data.step/sizeof(data[0]); |
|
std::vector<int> _centers(K); |
|
int* centers = &_centers[0]; |
|
std::vector<float> _dist(N*3); |
|
float* dist = &_dist[0], *tdist = dist + N, *tdist2 = tdist + N; |
|
double sum0 = 0; |
|
|
|
centers[0] = (unsigned)rng % N; |
|
|
|
for( i = 0; i < N; i++ ) |
|
{ |
|
dist[i] = normL2Sqr(data + step*i, data + step*centers[0], dims); |
|
sum0 += dist[i]; |
|
} |
|
|
|
for( k = 1; k < K; k++ ) |
|
{ |
|
double bestSum = DBL_MAX; |
|
int bestCenter = -1; |
|
|
|
for( j = 0; j < trials; j++ ) |
|
{ |
|
double p = (double)rng*sum0, s = 0; |
|
for( i = 0; i < N-1; i++ ) |
|
if( (p -= dist[i]) <= 0 ) |
|
break; |
|
int ci = i; |
|
|
|
parallel_for_(Range(0, N), |
|
KMeansPPDistanceComputer(tdist2, data, dist, dims, step, step*ci)); |
|
for( i = 0; i < N; i++ ) |
|
{ |
|
s += tdist2[i]; |
|
} |
|
|
|
if( s < bestSum ) |
|
{ |
|
bestSum = s; |
|
bestCenter = ci; |
|
std::swap(tdist, tdist2); |
|
} |
|
} |
|
centers[k] = bestCenter; |
|
sum0 = bestSum; |
|
std::swap(dist, tdist); |
|
} |
|
|
|
for( k = 0; k < K; k++ ) |
|
{ |
|
const float* src = data + step*centers[k]; |
|
float* dst = _out_centers.ptr<float>(k); |
|
for( j = 0; j < dims; j++ ) |
|
dst[j] = src[j]; |
|
} |
|
} |
|
|
|
class KMeansDistanceComputer : public ParallelLoopBody |
|
{ |
|
public: |
|
KMeansDistanceComputer( double *_distances, |
|
int *_labels, |
|
const Mat& _data, |
|
const Mat& _centers ) |
|
: distances(_distances), |
|
labels(_labels), |
|
data(_data), |
|
centers(_centers) |
|
{ |
|
} |
|
|
|
void operator()( const Range& range ) const |
|
{ |
|
const int begin = range.start; |
|
const int end = range.end; |
|
const int K = centers.rows; |
|
const int dims = centers.cols; |
|
|
|
for( int i = begin; i<end; ++i) |
|
{ |
|
const float *sample = data.ptr<float>(i); |
|
int k_best = 0; |
|
double min_dist = DBL_MAX; |
|
|
|
for( int k = 0; k < K; k++ ) |
|
{ |
|
const float* center = centers.ptr<float>(k); |
|
const double dist = normL2Sqr(sample, center, dims); |
|
|
|
if( min_dist > dist ) |
|
{ |
|
min_dist = dist; |
|
k_best = k; |
|
} |
|
} |
|
|
|
distances[i] = min_dist; |
|
labels[i] = k_best; |
|
} |
|
} |
|
|
|
private: |
|
KMeansDistanceComputer& operator=(const KMeansDistanceComputer&); // to quiet MSVC |
|
|
|
double *distances; |
|
int *labels; |
|
const Mat& data; |
|
const Mat& centers; |
|
}; |
|
|
|
} |
|
|
|
double cv::kmeans( InputArray _data, int K, |
|
InputOutputArray _bestLabels, |
|
TermCriteria criteria, int attempts, |
|
int flags, OutputArray _centers ) |
|
{ |
|
const int SPP_TRIALS = 3; |
|
Mat data0 = _data.getMat(); |
|
bool isrow = data0.rows == 1; |
|
int N = isrow ? data0.cols : data0.rows; |
|
int dims = (isrow ? 1 : data0.cols)*data0.channels(); |
|
int type = data0.depth(); |
|
|
|
attempts = std::max(attempts, 1); |
|
CV_Assert( data0.dims <= 2 && type == CV_32F && K > 0 ); |
|
CV_Assert( N >= K ); |
|
|
|
Mat data(N, dims, CV_32F, data0.ptr(), isrow ? dims * sizeof(float) : static_cast<size_t>(data0.step)); |
|
|
|
_bestLabels.create(N, 1, CV_32S, -1, true); |
|
|
|
Mat _labels, best_labels = _bestLabels.getMat(); |
|
if( flags & CV_KMEANS_USE_INITIAL_LABELS ) |
|
{ |
|
CV_Assert( (best_labels.cols == 1 || best_labels.rows == 1) && |
|
best_labels.cols*best_labels.rows == N && |
|
best_labels.type() == CV_32S && |
|
best_labels.isContinuous()); |
|
best_labels.copyTo(_labels); |
|
} |
|
else |
|
{ |
|
if( !((best_labels.cols == 1 || best_labels.rows == 1) && |
|
best_labels.cols*best_labels.rows == N && |
|
best_labels.type() == CV_32S && |
|
best_labels.isContinuous())) |
|
best_labels.create(N, 1, CV_32S); |
|
_labels.create(best_labels.size(), best_labels.type()); |
|
} |
|
int* labels = _labels.ptr<int>(); |
|
|
|
Mat centers(K, dims, type), old_centers(K, dims, type), temp(1, dims, type); |
|
std::vector<int> counters(K); |
|
std::vector<Vec2f> _box(dims); |
|
Vec2f* box = &_box[0]; |
|
double best_compactness = DBL_MAX, compactness = 0; |
|
RNG& rng = theRNG(); |
|
int a, iter, i, j, k; |
|
|
|
if( criteria.type & TermCriteria::EPS ) |
|
criteria.epsilon = std::max(criteria.epsilon, 0.); |
|
else |
|
criteria.epsilon = FLT_EPSILON; |
|
criteria.epsilon *= criteria.epsilon; |
|
|
|
if( criteria.type & TermCriteria::COUNT ) |
|
criteria.maxCount = std::min(std::max(criteria.maxCount, 2), 100); |
|
else |
|
criteria.maxCount = 100; |
|
|
|
if( K == 1 ) |
|
{ |
|
attempts = 1; |
|
criteria.maxCount = 2; |
|
} |
|
|
|
const float* sample = data.ptr<float>(0); |
|
for( j = 0; j < dims; j++ ) |
|
box[j] = Vec2f(sample[j], sample[j]); |
|
|
|
for( i = 1; i < N; i++ ) |
|
{ |
|
sample = data.ptr<float>(i); |
|
for( j = 0; j < dims; j++ ) |
|
{ |
|
float v = sample[j]; |
|
box[j][0] = std::min(box[j][0], v); |
|
box[j][1] = std::max(box[j][1], v); |
|
} |
|
} |
|
|
|
for( a = 0; a < attempts; a++ ) |
|
{ |
|
double max_center_shift = DBL_MAX; |
|
for( iter = 0;; ) |
|
{ |
|
swap(centers, old_centers); |
|
|
|
if( iter == 0 && (a > 0 || !(flags & KMEANS_USE_INITIAL_LABELS)) ) |
|
{ |
|
if( flags & KMEANS_PP_CENTERS ) |
|
generateCentersPP(data, centers, K, rng, SPP_TRIALS); |
|
else |
|
{ |
|
for( k = 0; k < K; k++ ) |
|
generateRandomCenter(_box, centers.ptr<float>(k), rng); |
|
} |
|
} |
|
else |
|
{ |
|
if( iter == 0 && a == 0 && (flags & KMEANS_USE_INITIAL_LABELS) ) |
|
{ |
|
for( i = 0; i < N; i++ ) |
|
CV_Assert( (unsigned)labels[i] < (unsigned)K ); |
|
} |
|
|
|
// compute centers |
|
centers = Scalar(0); |
|
for( k = 0; k < K; k++ ) |
|
counters[k] = 0; |
|
|
|
for( i = 0; i < N; i++ ) |
|
{ |
|
sample = data.ptr<float>(i); |
|
k = labels[i]; |
|
float* center = centers.ptr<float>(k); |
|
j=0; |
|
#if CV_ENABLE_UNROLLED |
|
for(; j <= dims - 4; j += 4 ) |
|
{ |
|
float t0 = center[j] + sample[j]; |
|
float t1 = center[j+1] + sample[j+1]; |
|
|
|
center[j] = t0; |
|
center[j+1] = t1; |
|
|
|
t0 = center[j+2] + sample[j+2]; |
|
t1 = center[j+3] + sample[j+3]; |
|
|
|
center[j+2] = t0; |
|
center[j+3] = t1; |
|
} |
|
#endif |
|
for( ; j < dims; j++ ) |
|
center[j] += sample[j]; |
|
counters[k]++; |
|
} |
|
|
|
if( iter > 0 ) |
|
max_center_shift = 0; |
|
|
|
for( k = 0; k < K; k++ ) |
|
{ |
|
if( counters[k] != 0 ) |
|
continue; |
|
|
|
// if some cluster appeared to be empty then: |
|
// 1. find the biggest cluster |
|
// 2. find the farthest from the center point in the biggest cluster |
|
// 3. exclude the farthest point from the biggest cluster and form a new 1-point cluster. |
|
int max_k = 0; |
|
for( int k1 = 1; k1 < K; k1++ ) |
|
{ |
|
if( counters[max_k] < counters[k1] ) |
|
max_k = k1; |
|
} |
|
|
|
double max_dist = 0; |
|
int farthest_i = -1; |
|
float* new_center = centers.ptr<float>(k); |
|
float* old_center = centers.ptr<float>(max_k); |
|
float* _old_center = temp.ptr<float>(); // normalized |
|
float scale = 1.f/counters[max_k]; |
|
for( j = 0; j < dims; j++ ) |
|
_old_center[j] = old_center[j]*scale; |
|
|
|
for( i = 0; i < N; i++ ) |
|
{ |
|
if( labels[i] != max_k ) |
|
continue; |
|
sample = data.ptr<float>(i); |
|
double dist = normL2Sqr(sample, _old_center, dims); |
|
|
|
if( max_dist <= dist ) |
|
{ |
|
max_dist = dist; |
|
farthest_i = i; |
|
} |
|
} |
|
|
|
counters[max_k]--; |
|
counters[k]++; |
|
labels[farthest_i] = k; |
|
sample = data.ptr<float>(farthest_i); |
|
|
|
for( j = 0; j < dims; j++ ) |
|
{ |
|
old_center[j] -= sample[j]; |
|
new_center[j] += sample[j]; |
|
} |
|
} |
|
|
|
for( k = 0; k < K; k++ ) |
|
{ |
|
float* center = centers.ptr<float>(k); |
|
CV_Assert( counters[k] != 0 ); |
|
|
|
float scale = 1.f/counters[k]; |
|
for( j = 0; j < dims; j++ ) |
|
center[j] *= scale; |
|
|
|
if( iter > 0 ) |
|
{ |
|
double dist = 0; |
|
const float* old_center = old_centers.ptr<float>(k); |
|
for( j = 0; j < dims; j++ ) |
|
{ |
|
double t = center[j] - old_center[j]; |
|
dist += t*t; |
|
} |
|
max_center_shift = std::max(max_center_shift, dist); |
|
} |
|
} |
|
} |
|
|
|
if( ++iter == MAX(criteria.maxCount, 2) || max_center_shift <= criteria.epsilon ) |
|
break; |
|
|
|
// assign labels |
|
Mat dists(1, N, CV_64F); |
|
double* dist = dists.ptr<double>(0); |
|
parallel_for_(Range(0, N), |
|
KMeansDistanceComputer(dist, labels, data, centers)); |
|
compactness = 0; |
|
for( i = 0; i < N; i++ ) |
|
{ |
|
compactness += dist[i]; |
|
} |
|
} |
|
|
|
if( compactness < best_compactness ) |
|
{ |
|
best_compactness = compactness; |
|
if( _centers.needed() ) |
|
centers.copyTo(_centers); |
|
_labels.copyTo(best_labels); |
|
} |
|
} |
|
|
|
return best_compactness; |
|
}
|
|
|