mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1107 lines
41 KiB
1107 lines
41 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
// |
|
// Copyright (C) 2020 Intel Corporation |
|
|
|
#include "../test_precomp.hpp" |
|
|
|
#ifdef HAVE_ONNX |
|
|
|
#include <stdexcept> |
|
#include <codecvt> // wstring_convert |
|
|
|
#include <onnxruntime_cxx_api.h> |
|
#include <ade/util/iota_range.hpp> |
|
#include <ade/util/algorithm.hpp> |
|
#include <opencv2/gapi/own/convert.hpp> |
|
#include <opencv2/gapi/infer/onnx.hpp> |
|
|
|
namespace { |
|
class TestMediaBGR final: public cv::MediaFrame::IAdapter { |
|
cv::Mat m_mat; |
|
using Cb = cv::MediaFrame::View::Callback; |
|
Cb m_cb; |
|
|
|
public: |
|
explicit TestMediaBGR(cv::Mat m, Cb cb = [](){}) |
|
: m_mat(m), m_cb(cb) { |
|
} |
|
cv::GFrameDesc meta() const override { |
|
return cv::GFrameDesc{cv::MediaFormat::BGR, cv::Size(m_mat.cols, m_mat.rows)}; |
|
} |
|
cv::MediaFrame::View access(cv::MediaFrame::Access) override { |
|
cv::MediaFrame::View::Ptrs pp = { m_mat.ptr(), nullptr, nullptr, nullptr }; |
|
cv::MediaFrame::View::Strides ss = { m_mat.step, 0u, 0u, 0u }; |
|
return cv::MediaFrame::View(std::move(pp), std::move(ss), Cb{m_cb}); |
|
} |
|
}; |
|
|
|
class TestMediaNV12 final: public cv::MediaFrame::IAdapter { |
|
cv::Mat m_y; |
|
cv::Mat m_uv; |
|
public: |
|
TestMediaNV12(cv::Mat y, cv::Mat uv) : m_y(y), m_uv(uv) { |
|
} |
|
cv::GFrameDesc meta() const override { |
|
return cv::GFrameDesc{cv::MediaFormat::NV12, cv::Size(m_y.cols, m_y.rows)}; |
|
} |
|
cv::MediaFrame::View access(cv::MediaFrame::Access) override { |
|
cv::MediaFrame::View::Ptrs pp = { |
|
m_y.ptr(), m_uv.ptr(), nullptr, nullptr |
|
}; |
|
cv::MediaFrame::View::Strides ss = { |
|
m_y.step, m_uv.step, 0u, 0u |
|
}; |
|
return cv::MediaFrame::View(std::move(pp), std::move(ss)); |
|
} |
|
}; |
|
struct ONNXInitPath { |
|
ONNXInitPath() { |
|
const char* env_path = getenv("OPENCV_GAPI_ONNX_MODEL_PATH"); |
|
if (env_path) { |
|
cvtest::addDataSearchPath(env_path); |
|
} |
|
} |
|
}; |
|
static ONNXInitPath g_init_path; |
|
|
|
cv::Mat initMatrixRandU(const int type, const cv::Size& sz_in) { |
|
const cv::Mat in_mat = cv::Mat(sz_in, type); |
|
|
|
if (CV_MAT_DEPTH(type) < CV_32F) { |
|
cv::randu(in_mat, cv::Scalar::all(0), cv::Scalar::all(255)); |
|
} else { |
|
const int fscale = 256; // avoid bits near ULP, generate stable test input |
|
cv::Mat in_mat32s(in_mat.size(), CV_MAKE_TYPE(CV_32S, CV_MAT_CN(type))); |
|
cv::randu(in_mat32s, cv::Scalar::all(0), cv::Scalar::all(255 * fscale)); |
|
in_mat32s.convertTo(in_mat, type, 1.0f / fscale, 0); |
|
} |
|
return in_mat; |
|
} |
|
} // anonymous namespace |
|
namespace opencv_test |
|
{ |
|
namespace { |
|
|
|
// FIXME: taken from the DNN module |
|
void normAssert(cv::InputArray& ref, cv::InputArray& test, |
|
const char *comment /*= ""*/, |
|
const double l1 = 0.00001, const double lInf = 0.0001) { |
|
const double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total(); |
|
EXPECT_LE(normL1, l1) << comment; |
|
|
|
const double normInf = cvtest::norm(ref, test, cv::NORM_INF); |
|
EXPECT_LE(normInf, lInf) << comment; |
|
} |
|
|
|
inline std::string findModel(const std::string &model_name) { |
|
return findDataFile("vision/" + model_name + ".onnx", false); |
|
} |
|
|
|
inline void toCHW(const cv::Mat& src, cv::Mat& dst) { |
|
dst.create(cv::Size(src.cols, src.rows * src.channels()), CV_32F); |
|
std::vector<cv::Mat> planes; |
|
for (int i = 0; i < src.channels(); ++i) { |
|
planes.push_back(dst.rowRange(i * src.rows, (i + 1) * src.rows)); |
|
} |
|
cv::split(src, planes); |
|
} |
|
|
|
inline int toCV(ONNXTensorElementDataType prec) { |
|
switch (prec) { |
|
case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8: return CV_8U; |
|
case ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT: return CV_32F; |
|
case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32: return CV_32S; |
|
case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64: return CV_32S; |
|
default: GAPI_Error("Unsupported data type"); |
|
} |
|
return -1; |
|
} |
|
|
|
void copyFromONNX(Ort::Value &v, cv::Mat& mat) { |
|
const auto info = v.GetTensorTypeAndShapeInfo(); |
|
const auto prec = info.GetElementType(); |
|
const auto shape = info.GetShape(); |
|
const std::vector<int> dims(shape.begin(), shape.end()); |
|
mat.create(dims, toCV(prec)); |
|
switch (prec) { |
|
#define HANDLE(E,T) \ |
|
case E: std::copy_n(v.GetTensorMutableData<T>(), \ |
|
mat.total(), \ |
|
reinterpret_cast<T*>(mat.data)); \ |
|
break; |
|
HANDLE(ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8, uint8_t); |
|
HANDLE(ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT, float); |
|
HANDLE(ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32, int); |
|
#undef HANDLE |
|
case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64: { |
|
const auto o_ptr = v.GetTensorMutableData<int64_t>(); |
|
const auto g_ptr = reinterpret_cast<int*>(mat.data); |
|
std::transform(o_ptr, o_ptr + mat.total(), g_ptr, |
|
[](int64_t el) { return static_cast<int>(el); }); |
|
break; |
|
} |
|
default: GAPI_Error("ONNX. Unsupported data type"); |
|
} |
|
} |
|
|
|
inline std::vector<int64_t> toORT(const cv::MatSize &sz) { |
|
return cv::to_own<int64_t>(sz); |
|
} |
|
|
|
inline std::vector<const char*> getCharNames(const std::vector<std::string>& names) { |
|
std::vector<const char*> out_ptrs; |
|
out_ptrs.reserve(names.size()); |
|
ade::util::transform(names, std::back_inserter(out_ptrs), |
|
[](const std::string& name) { return name.c_str(); }); |
|
return out_ptrs; |
|
} |
|
|
|
template<typename T> |
|
void copyToOut(const cv::Mat& onnx_out, const T end_mark, cv::Mat& gapi_out) { |
|
// This function is part of some remap__ function. |
|
// You can set graph output size (gapi_out) larger than real out from ONNX |
|
// so you have to add something for separate correct data and garbage. |
|
// For example, end of data can be marked with -1 (for positive values) |
|
// or you can put size of correct data at first/last element of output matrix. |
|
const size_t size = std::min(onnx_out.total(), gapi_out.total()); |
|
std::copy(onnx_out.begin<T>(), |
|
onnx_out.begin<T>() + size, |
|
gapi_out.begin<T>()); |
|
if (gapi_out.total() > onnx_out.total()) { |
|
T* gptr = gapi_out.ptr<T>(); |
|
gptr[size] = end_mark; |
|
} |
|
} |
|
|
|
void remapYolo(const std::unordered_map<std::string, cv::Mat> &onnx, |
|
std::unordered_map<std::string, cv::Mat> &gapi) { |
|
GAPI_Assert(onnx.size() == 1u); |
|
GAPI_Assert(gapi.size() == 1u); |
|
// Result from Run method |
|
const cv::Mat& in = onnx.begin()->second; |
|
GAPI_Assert(in.depth() == CV_32F); |
|
// Configured output |
|
cv::Mat& out = gapi.begin()->second; |
|
// Simple copy |
|
copyToOut<float>(in, -1.f, out); |
|
} |
|
|
|
void remapYoloV3(const std::unordered_map<std::string, cv::Mat> &onnx, |
|
std::unordered_map<std::string, cv::Mat> &gapi) { |
|
// Simple copy for outputs |
|
const cv::Mat& in_boxes = onnx.at("yolonms_layer_1/ExpandDims_1:0"); |
|
const cv::Mat& in_scores = onnx.at("yolonms_layer_1/ExpandDims_3:0"); |
|
const cv::Mat& in_indices = onnx.at("yolonms_layer_1/concat_2:0"); |
|
GAPI_Assert(in_boxes.depth() == CV_32F); |
|
GAPI_Assert(in_scores.depth() == CV_32F); |
|
GAPI_Assert(in_indices.depth() == CV_32S); |
|
|
|
cv::Mat& out_boxes = gapi.at("out1"); |
|
cv::Mat& out_scores = gapi.at("out2"); |
|
cv::Mat& out_indices = gapi.at("out3"); |
|
|
|
copyToOut<float>(in_boxes, -1.f, out_boxes); |
|
copyToOut<float>(in_scores, -1.f, out_scores); |
|
copyToOut<int>(in_indices, -1, out_indices); |
|
} |
|
|
|
void remapToIESSDOut(const std::vector<cv::Mat> &detections, |
|
cv::Mat &ssd_output) { |
|
GAPI_Assert(detections.size() == 4u); |
|
for (const auto &det_el : detections) { |
|
GAPI_Assert(det_el.depth() == CV_32F); |
|
GAPI_Assert(!det_el.empty()); |
|
} |
|
|
|
// SSD-MobilenetV1 structure check |
|
ASSERT_EQ(1u, detections[0].total()); |
|
ASSERT_EQ(detections[2].total(), detections[0].total() * 100); |
|
ASSERT_EQ(detections[2].total(), detections[3].total()); |
|
ASSERT_EQ((detections[2].total() * 4), detections[1].total()); |
|
|
|
const int num_objects = static_cast<int>(detections[0].ptr<float>()[0]); |
|
GAPI_Assert(num_objects <= (ssd_output.size[2] - 1)); |
|
const float *in_boxes = detections[1].ptr<float>(); |
|
const float *in_scores = detections[2].ptr<float>(); |
|
const float *in_classes = detections[3].ptr<float>(); |
|
float *ptr = ssd_output.ptr<float>(); |
|
|
|
for (int i = 0; i < num_objects; ++i) { |
|
ptr[0] = 0.f; // "image_id" |
|
ptr[1] = in_classes[i]; // "label" |
|
ptr[2] = in_scores[i]; // "confidence" |
|
ptr[3] = in_boxes[4 * i + 1]; // left |
|
ptr[4] = in_boxes[4 * i + 0]; // top |
|
ptr[5] = in_boxes[4 * i + 3]; // right |
|
ptr[6] = in_boxes[4 * i + 2]; // bottom |
|
|
|
ptr += 7; |
|
in_boxes += 4; |
|
} |
|
|
|
if (num_objects < ssd_output.size[2] - 1) { |
|
// put a -1 mark at the end of output blob if there is space left |
|
ptr[0] = -1.f; |
|
} |
|
} |
|
|
|
void remapSSDPorts(const std::unordered_map<std::string, cv::Mat> &onnx, |
|
std::unordered_map<std::string, cv::Mat> &gapi) { |
|
// Assemble ONNX-processed outputs back to a single 1x1x200x7 blob |
|
// to preserve compatibility with OpenVINO-based SSD pipeline |
|
const cv::Mat &num_detections = onnx.at("num_detections:0"); |
|
const cv::Mat &detection_boxes = onnx.at("detection_boxes:0"); |
|
const cv::Mat &detection_scores = onnx.at("detection_scores:0"); |
|
const cv::Mat &detection_classes = onnx.at("detection_classes:0"); |
|
cv::Mat &ssd_output = gapi.at("detection_output"); |
|
remapToIESSDOut({num_detections, detection_boxes, detection_scores, detection_classes}, ssd_output); |
|
} |
|
|
|
void reallocSSDPort(const std::unordered_map<std::string, cv::Mat> &/*onnx*/, |
|
std::unordered_map<std::string, cv::Mat> &gapi) { |
|
gapi["detection_boxes"].create(1000, 3000, CV_32FC3); |
|
} |
|
|
|
void remapRCNNPortsC(const std::unordered_map<std::string, cv::Mat> &onnx, |
|
std::unordered_map<std::string, cv::Mat> &gapi) { |
|
// Simple copy for outputs |
|
const cv::Mat& in_boxes = onnx.at("6379"); |
|
const cv::Mat& in_labels = onnx.at("6381"); |
|
const cv::Mat& in_scores = onnx.at("6383"); |
|
|
|
GAPI_Assert(in_boxes.depth() == CV_32F); |
|
GAPI_Assert(in_labels.depth() == CV_32S); |
|
GAPI_Assert(in_scores.depth() == CV_32F); |
|
|
|
cv::Mat& out_boxes = gapi.at("out1"); |
|
cv::Mat& out_labels = gapi.at("out2"); |
|
cv::Mat& out_scores = gapi.at("out3"); |
|
|
|
copyToOut<float>(in_boxes, -1.f, out_boxes); |
|
copyToOut<int>(in_labels, -1, out_labels); |
|
copyToOut<float>(in_scores, -1.f, out_scores); |
|
} |
|
|
|
void remapRCNNPortsDO(const std::unordered_map<std::string, cv::Mat> &onnx, |
|
std::unordered_map<std::string, cv::Mat> &gapi) { |
|
// Simple copy for outputs |
|
const cv::Mat& in_boxes = onnx.at("6379"); |
|
const cv::Mat& in_scores = onnx.at("6383"); |
|
GAPI_Assert(in_boxes.depth() == CV_32F); |
|
GAPI_Assert(in_scores.depth() == CV_32F); |
|
cv::Mat& out_boxes = gapi.at("out1"); |
|
cv::Mat& out_scores = gapi.at("out2"); |
|
|
|
copyToOut<float>(in_boxes, -1.f, out_boxes); |
|
copyToOut<float>(in_scores, -1.f, out_scores); |
|
} |
|
|
|
class ONNXtest : public ::testing::Test { |
|
public: |
|
std::string model_path; |
|
size_t num_in, num_out; |
|
std::vector<cv::Mat> out_gapi; |
|
std::vector<cv::Mat> out_onnx; |
|
cv::Mat in_mat; |
|
|
|
ONNXtest() { |
|
env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "test"); |
|
memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault); |
|
out_gapi.resize(1); |
|
} |
|
|
|
template<typename T> |
|
void infer(const std::vector<cv::Mat>& ins, |
|
std::vector<cv::Mat>& outs, |
|
std::vector<std::string>&& custom_out_names = {}) { |
|
// Prepare session |
|
#ifndef _WIN32 |
|
session = Ort::Session(env, model_path.c_str(), session_options); |
|
#else |
|
std::wstring_convert<std::codecvt_utf8<wchar_t>, wchar_t> converter; |
|
std::wstring w_model_path = converter.from_bytes(model_path.c_str()); |
|
session = Ort::Session(env, w_model_path.c_str(), session_options); |
|
#endif |
|
num_in = session.GetInputCount(); |
|
num_out = session.GetOutputCount(); |
|
GAPI_Assert(num_in == ins.size()); |
|
in_node_names.clear(); |
|
out_node_names.clear(); |
|
// Inputs Run params |
|
std::vector<Ort::Value> in_tensors; |
|
for(size_t i = 0; i < num_in; ++i) { |
|
char* in_node_name_p = session.GetInputName(i, allocator); |
|
in_node_names.emplace_back(in_node_name_p); |
|
allocator.Free(in_node_name_p); |
|
in_node_dims = toORT(ins[i].size); |
|
in_tensors.emplace_back(Ort::Value::CreateTensor<T>(memory_info, |
|
const_cast<T*>(ins[i].ptr<T>()), |
|
ins[i].total(), |
|
in_node_dims.data(), |
|
in_node_dims.size())); |
|
} |
|
// Outputs Run params |
|
if (custom_out_names.empty()) { |
|
for(size_t i = 0; i < num_out; ++i) { |
|
char* out_node_name_p = session.GetOutputName(i, allocator); |
|
out_node_names.emplace_back(out_node_name_p); |
|
allocator.Free(out_node_name_p); |
|
} |
|
} else { |
|
out_node_names = std::move(custom_out_names); |
|
} |
|
// Input/output order by names |
|
const auto in_run_names = getCharNames(in_node_names); |
|
const auto out_run_names = getCharNames(out_node_names); |
|
num_out = out_run_names.size(); |
|
// Run |
|
auto result = session.Run(Ort::RunOptions{nullptr}, |
|
in_run_names.data(), |
|
&in_tensors.front(), |
|
num_in, |
|
out_run_names.data(), |
|
num_out); |
|
// Copy outputs |
|
GAPI_Assert(result.size() == num_out); |
|
for (size_t i = 0; i < num_out; ++i) { |
|
const auto info = result[i].GetTensorTypeAndShapeInfo(); |
|
const auto shape = info.GetShape(); |
|
const auto type = toCV(info.GetElementType()); |
|
const std::vector<int> dims(shape.begin(), shape.end()); |
|
outs.emplace_back(dims, type); |
|
copyFromONNX(result[i], outs.back()); |
|
} |
|
} |
|
// One input/output overload |
|
template<typename T> |
|
void infer(const cv::Mat& in, cv::Mat& out) { |
|
std::vector<cv::Mat> result; |
|
infer<T>(std::vector<cv::Mat>{in}, result); |
|
GAPI_Assert(result.size() == 1u); |
|
out = result.front(); |
|
} |
|
// One input overload |
|
template<typename T> |
|
void infer(const cv::Mat& in, |
|
std::vector<cv::Mat>& outs, |
|
std::vector<std::string>&& custom_out_names = {}) { |
|
infer<T>(std::vector<cv::Mat>{in}, outs, std::move(custom_out_names)); |
|
} |
|
|
|
void validate() { |
|
GAPI_Assert(!out_gapi.empty() && !out_onnx.empty()); |
|
ASSERT_EQ(out_gapi.size(), out_onnx.size()); |
|
const auto size = out_gapi.size(); |
|
for (size_t i = 0; i < size; ++i) { |
|
normAssert(out_onnx[i], out_gapi[i], "Test outputs"); |
|
} |
|
} |
|
|
|
void useModel(const std::string& model_name) { |
|
model_path = findModel(model_name); |
|
} |
|
private: |
|
Ort::Env env{nullptr}; |
|
Ort::MemoryInfo memory_info{nullptr}; |
|
Ort::AllocatorWithDefaultOptions allocator; |
|
Ort::SessionOptions session_options; |
|
Ort::Session session{nullptr}; |
|
|
|
std::vector<int64_t> in_node_dims; |
|
std::vector<std::string> in_node_names; |
|
std::vector<std::string> out_node_names; |
|
}; |
|
|
|
class ONNXClassification : public ONNXtest { |
|
public: |
|
const cv::Scalar mean = { 0.485, 0.456, 0.406 }; |
|
const cv::Scalar std = { 0.229, 0.224, 0.225 }; |
|
|
|
// Rois for InferList, InferList2 |
|
const std::vector<cv::Rect> rois = { |
|
cv::Rect(cv::Point{ 0, 0}, cv::Size{80, 120}), |
|
cv::Rect(cv::Point{50, 100}, cv::Size{250, 360}) |
|
}; |
|
|
|
void preprocess(const cv::Mat& src, cv::Mat& dst) { |
|
const int new_h = 224; |
|
const int new_w = 224; |
|
cv::Mat tmp, cvt, rsz; |
|
cv::resize(src, rsz, cv::Size(new_w, new_h)); |
|
rsz.convertTo(cvt, CV_32F, 1.f / 255); |
|
tmp = (cvt - mean) / std; |
|
toCHW(tmp, dst); |
|
dst = dst.reshape(1, {1, 3, new_h, new_w}); |
|
} |
|
}; |
|
|
|
class ONNXMediaFrame : public ONNXClassification { |
|
public: |
|
const std::vector<cv::Rect> rois = { |
|
cv::Rect(cv::Point{ 0, 0}, cv::Size{80, 120}), |
|
cv::Rect(cv::Point{50, 100}, cv::Size{250, 360}), |
|
cv::Rect(cv::Point{70, 10}, cv::Size{20, 260}), |
|
cv::Rect(cv::Point{5, 15}, cv::Size{200, 160}), |
|
}; |
|
const cv::Size sz{640, 480}; |
|
const cv::Mat m_in_y = initMatrixRandU(CV_8UC1, sz); |
|
const cv::Mat m_in_uv = initMatrixRandU(CV_8UC2, sz / 2); |
|
}; |
|
|
|
class ONNXGRayScale : public ONNXtest { |
|
public: |
|
void preprocess(const cv::Mat& src, cv::Mat& dst) { |
|
const int new_h = 64; |
|
const int new_w = 64; |
|
cv::Mat cvc, rsz, cvt; |
|
cv::cvtColor(src, cvc, cv::COLOR_BGR2GRAY); |
|
cv::resize(cvc, rsz, cv::Size(new_w, new_h)); |
|
rsz.convertTo(cvt, CV_32F); |
|
toCHW(cvt, dst); |
|
dst = dst.reshape(1, {1, 1, new_h, new_w}); |
|
} |
|
}; |
|
|
|
class ONNXWithRemap : public ONNXtest { |
|
private: |
|
size_t step_by_outs = 0; |
|
public: |
|
// This function checks each next cv::Mat in out_gapi vector for next call. |
|
// end_mark is edge of correct data |
|
template <typename T> |
|
void validate(const T end_mark) { |
|
GAPI_Assert(!out_gapi.empty() && !out_onnx.empty()); |
|
ASSERT_EQ(out_gapi.size(), out_onnx.size()); |
|
GAPI_Assert(step_by_outs < out_gapi.size()); |
|
const T* op = out_onnx.at(step_by_outs).ptr<T>(); |
|
const T* gp = out_gapi.at(step_by_outs).ptr<T>(); |
|
// Checking that graph output larger than onnx output |
|
const auto out_size = std::min(out_onnx.at(step_by_outs).total(), out_gapi.at(step_by_outs).total()); |
|
GAPI_Assert(out_size != 0u); |
|
for (size_t d_idx = 0; d_idx < out_size; ++d_idx) { |
|
if (gp[d_idx] == end_mark) break; |
|
ASSERT_EQ(op[d_idx], gp[d_idx]); |
|
} |
|
++step_by_outs; |
|
} |
|
}; |
|
|
|
class ONNXRCNN : public ONNXWithRemap { |
|
private: |
|
const cv::Scalar rcnn_mean = { 102.9801, 115.9465, 122.7717 }; |
|
const float range_max = 1333; |
|
const float range_min = 800; |
|
public: |
|
void preprocess(const cv::Mat& src, cv::Mat& dst) { |
|
cv::Mat rsz, cvt, chw, mn; |
|
const auto get_ratio = [&](const int dim) -> float { |
|
return ((dim > range_max) || (dim < range_min)) |
|
? dim > range_max |
|
? range_max / dim |
|
: range_min / dim |
|
: 1.f; |
|
}; |
|
const auto ratio_h = get_ratio(src.rows); |
|
const auto ratio_w = get_ratio(src.cols); |
|
const auto new_h = static_cast<int>(ratio_h * src.rows); |
|
const auto new_w = static_cast<int>(ratio_w * src.cols); |
|
cv::resize(src, rsz, cv::Size(new_w, new_h)); |
|
rsz.convertTo(cvt, CV_32F, 1.f); |
|
toCHW(cvt, chw); |
|
mn = chw - rcnn_mean; |
|
const int padded_h = std::ceil(new_h / 32.f) * 32; |
|
const int padded_w = std::ceil(new_w / 32.f) * 32; |
|
cv::Mat pad_im(cv::Size(padded_w, 3 * padded_h), CV_32F, 0.f); |
|
pad_im(cv::Rect(0, 0, mn.cols, mn.rows)) += mn; |
|
dst = pad_im.reshape(1, {3, padded_h, padded_w}); |
|
} |
|
}; |
|
|
|
class ONNXYoloV3 : public ONNXWithRemap { |
|
public: |
|
std::vector<cv::Mat> ins; |
|
|
|
void constructYoloInputs(const cv::Mat& src) { |
|
const int yolo_in_h = 416; |
|
const int yolo_in_w = 416; |
|
cv::Mat yolov3_input, shape, prep_mat; |
|
cv::resize(src, yolov3_input, cv::Size(yolo_in_w, yolo_in_h)); |
|
shape.create(cv::Size(2, 1), CV_32F); |
|
float* ptr = shape.ptr<float>(); |
|
ptr[0] = src.cols; |
|
ptr[1] = src.rows; |
|
preprocess(yolov3_input, prep_mat); |
|
ins = {prep_mat, shape}; |
|
} |
|
|
|
private: |
|
void preprocess(const cv::Mat& src, cv::Mat& dst) { |
|
cv::Mat cvt; |
|
src.convertTo(cvt, CV_32F, 1.f / 255.f); |
|
toCHW(cvt, dst); |
|
dst = dst.reshape(1, {1, 3, 416, 416}); |
|
} |
|
}; |
|
} // anonymous namespace |
|
|
|
TEST_F(ONNXClassification, Infer) |
|
{ |
|
useModel("classification/squeezenet/model/squeezenet1.0-9"); |
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); |
|
// ONNX_API code |
|
cv::Mat processed_mat; |
|
preprocess(in_mat, processed_mat); |
|
infer<float>(processed_mat, out_onnx); |
|
// G_API code |
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet"); |
|
cv::GMat in; |
|
cv::GMat out = cv::gapi::infer<SqueezNet>(in); |
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out)); |
|
// NOTE: We have to normalize U8 tensor |
|
// so cfgMeanStd() is here |
|
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std }); |
|
comp.apply(cv::gin(in_mat), |
|
cv::gout(out_gapi.front()), |
|
cv::compile_args(cv::gapi::networks(net))); |
|
// Validate |
|
validate(); |
|
} |
|
|
|
TEST_F(ONNXClassification, InferTensor) |
|
{ |
|
useModel("classification/squeezenet/model/squeezenet1.0-9"); |
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); |
|
// Create tensor |
|
cv::Mat tensor; |
|
preprocess(in_mat, tensor); |
|
// ONNX_API code |
|
infer<float>(tensor, out_onnx); |
|
// G_API code |
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet"); |
|
cv::GMat in; |
|
cv::GMat out = cv::gapi::infer<SqueezNet>(in); |
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out)); |
|
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }; |
|
comp.apply(cv::gin(tensor), |
|
cv::gout(out_gapi.front()), |
|
cv::compile_args(cv::gapi::networks(net))); |
|
// Validate |
|
validate(); |
|
} |
|
|
|
TEST_F(ONNXClassification, InferROI) |
|
{ |
|
useModel("classification/squeezenet/model/squeezenet1.0-9"); |
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); |
|
const auto ROI = rois.at(0); |
|
// ONNX_API code |
|
cv::Mat roi_mat; |
|
preprocess(in_mat(ROI), roi_mat); |
|
infer<float>(roi_mat, out_onnx); |
|
// G_API code |
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet"); |
|
cv::GMat in; |
|
cv::GOpaque<cv::Rect> rect; |
|
cv::GMat out = cv::gapi::infer<SqueezNet>(rect, in); |
|
cv::GComputation comp(cv::GIn(in, rect), cv::GOut(out)); |
|
// NOTE: We have to normalize U8 tensor |
|
// so cfgMeanStd() is here |
|
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std }); |
|
comp.apply(cv::gin(in_mat, ROI), |
|
cv::gout(out_gapi.front()), |
|
cv::compile_args(cv::gapi::networks(net))); |
|
// Validate |
|
validate(); |
|
} |
|
|
|
TEST_F(ONNXClassification, InferROIList) |
|
{ |
|
useModel("classification/squeezenet/model/squeezenet1.0-9"); |
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); |
|
// ONNX_API code |
|
for (size_t i = 0; i < rois.size(); ++i) { |
|
cv::Mat roi_mat; |
|
preprocess(in_mat(rois[i]), roi_mat); |
|
infer<float>(roi_mat, out_onnx); |
|
} |
|
// G_API code |
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet"); |
|
cv::GMat in; |
|
cv::GArray<cv::Rect> rr; |
|
cv::GArray<cv::GMat> out = cv::gapi::infer<SqueezNet>(rr, in); |
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out)); |
|
// NOTE: We have to normalize U8 tensor |
|
// so cfgMeanStd() is here |
|
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std }); |
|
comp.apply(cv::gin(in_mat, rois), |
|
cv::gout(out_gapi), |
|
cv::compile_args(cv::gapi::networks(net))); |
|
// Validate |
|
validate(); |
|
} |
|
|
|
TEST_F(ONNXClassification, Infer2ROIList) |
|
{ |
|
useModel("classification/squeezenet/model/squeezenet1.0-9"); |
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); |
|
// ONNX_API code |
|
for (size_t i = 0; i < rois.size(); ++i) { |
|
cv::Mat roi_mat; |
|
preprocess(in_mat(rois[i]), roi_mat); |
|
infer<float>(roi_mat, out_onnx); |
|
} |
|
// G_API code |
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet"); |
|
cv::GMat in; |
|
cv::GArray<cv::Rect> rr; |
|
cv::GArray<cv::GMat> out = cv::gapi::infer2<SqueezNet>(in, rr); |
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out)); |
|
// NOTE: We have to normalize U8 tensor |
|
// so cfgMeanStd() is here |
|
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std }); |
|
comp.apply(cv::gin(in_mat, rois), |
|
cv::gout(out_gapi), |
|
cv::compile_args(cv::gapi::networks(net))); |
|
// Validate |
|
validate(); |
|
} |
|
|
|
TEST_F(ONNXWithRemap, InferDynamicInputTensor) |
|
{ |
|
useModel("object_detection_segmentation/tiny-yolov2/model/tinyyolov2-8"); |
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); |
|
// Create tensor |
|
cv::Mat cvt, rsz, tensor; |
|
cv::resize(in_mat, rsz, cv::Size{416, 416}); |
|
rsz.convertTo(cvt, CV_32F, 1.f / 255.f); |
|
toCHW(cvt, tensor); |
|
tensor = tensor.reshape(1, {1, 3, 416, 416}); |
|
// ONNX_API code |
|
infer<float>(tensor, out_onnx); |
|
// G_API code |
|
G_API_NET(YoloNet, <cv::GMat(cv::GMat)>, "YoloNet"); |
|
cv::GMat in; |
|
cv::GMat out = cv::gapi::infer<YoloNet>(in); |
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out)); |
|
auto net = cv::gapi::onnx::Params<YoloNet>{ model_path } |
|
.cfgPostProc({cv::GMatDesc{CV_32F, {1, 125, 13, 13}}}, remapYolo) |
|
.cfgOutputLayers({"out"}); |
|
comp.apply(cv::gin(tensor), |
|
cv::gout(out_gapi.front()), |
|
cv::compile_args(cv::gapi::networks(net))); |
|
// Validate |
|
validate<float>(-1.f); |
|
} |
|
|
|
TEST_F(ONNXGRayScale, InferImage) |
|
{ |
|
useModel("body_analysis/emotion_ferplus/model/emotion-ferplus-8"); |
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); |
|
// ONNX_API code |
|
cv::Mat prep_mat; |
|
preprocess(in_mat, prep_mat); |
|
infer<float>(prep_mat, out_onnx); |
|
// G_API code |
|
G_API_NET(EmotionNet, <cv::GMat(cv::GMat)>, "emotion-ferplus"); |
|
cv::GMat in; |
|
cv::GMat out = cv::gapi::infer<EmotionNet>(in); |
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out)); |
|
auto net = cv::gapi::onnx::Params<EmotionNet> { model_path } |
|
.cfgNormalize({ false }); // model accepts 0..255 range in FP32; |
|
comp.apply(cv::gin(in_mat), |
|
cv::gout(out_gapi.front()), |
|
cv::compile_args(cv::gapi::networks(net))); |
|
// Validate |
|
validate(); |
|
} |
|
|
|
TEST_F(ONNXWithRemap, InferMultiOutput) |
|
{ |
|
useModel("object_detection_segmentation/ssd-mobilenetv1/model/ssd_mobilenet_v1_10"); |
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); |
|
// ONNX_API code |
|
const auto prep_mat = in_mat.reshape(1, {1, in_mat.rows, in_mat.cols, in_mat.channels()}); |
|
infer<uint8_t>(prep_mat, out_onnx); |
|
cv::Mat onnx_conv_out({1, 1, 200, 7}, CV_32F); |
|
remapToIESSDOut({out_onnx[3], out_onnx[0], out_onnx[2], out_onnx[1]}, onnx_conv_out); |
|
out_onnx.clear(); |
|
out_onnx.push_back(onnx_conv_out); |
|
// G_API code |
|
G_API_NET(MobileNet, <cv::GMat(cv::GMat)>, "ssd_mobilenet"); |
|
cv::GMat in; |
|
cv::GMat out = cv::gapi::infer<MobileNet>(in); |
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out)); |
|
auto net = cv::gapi::onnx::Params<MobileNet>{ model_path } |
|
.cfgOutputLayers({"detection_output"}) |
|
.cfgPostProc({cv::GMatDesc{CV_32F, {1, 1, 200, 7}}}, remapSSDPorts); |
|
comp.apply(cv::gin(in_mat), |
|
cv::gout(out_gapi.front()), |
|
cv::compile_args(cv::gapi::networks(net))); |
|
// Validate |
|
validate<float>(-1.f); |
|
} |
|
|
|
TEST_F(ONNXMediaFrame, InferBGR) |
|
{ |
|
useModel("classification/squeezenet/model/squeezenet1.0-9"); |
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); |
|
// ONNX_API code |
|
cv::Mat processed_mat; |
|
preprocess(in_mat, processed_mat); |
|
infer<float>(processed_mat, out_onnx); |
|
// G_API code |
|
auto frame = MediaFrame::Create<TestMediaBGR>(in_mat); |
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet"); |
|
cv::GFrame in; |
|
cv::GMat out = cv::gapi::infer<SqueezNet>(in); |
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out)); |
|
// NOTE: We have to normalize U8 tensor |
|
// so cfgMeanStd() is here |
|
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std }); |
|
comp.apply(cv::gin(frame), |
|
cv::gout(out_gapi.front()), |
|
cv::compile_args(cv::gapi::networks(net))); |
|
// Validate |
|
validate(); |
|
} |
|
|
|
TEST_F(ONNXMediaFrame, InferYUV) |
|
{ |
|
useModel("classification/squeezenet/model/squeezenet1.0-9"); |
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); |
|
const auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv); |
|
// ONNX_API code |
|
cv::Mat pp; |
|
cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12); |
|
cv::Mat processed_mat; |
|
preprocess(pp, processed_mat); |
|
infer<float>(processed_mat, out_onnx); |
|
// G_API code |
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet"); |
|
cv::GFrame in; |
|
cv::GMat out = cv::gapi::infer<SqueezNet>(in); |
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out)); |
|
// NOTE: We have to normalize U8 tensor |
|
// so cfgMeanStd() is here |
|
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std }); |
|
comp.apply(cv::gin(frame), |
|
cv::gout(out_gapi.front()), |
|
cv::compile_args(cv::gapi::networks(net))); |
|
// Validate |
|
validate(); |
|
} |
|
|
|
TEST_F(ONNXMediaFrame, InferROIBGR) |
|
{ |
|
useModel("classification/squeezenet/model/squeezenet1.0-9"); |
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); |
|
auto frame = MediaFrame::Create<TestMediaBGR>(in_mat); |
|
// ONNX_API code |
|
cv::Mat roi_mat; |
|
preprocess(in_mat(rois.front()), roi_mat); |
|
infer<float>(roi_mat, out_onnx); |
|
// G_API code |
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet"); |
|
cv::GFrame in; |
|
cv::GOpaque<cv::Rect> rect; |
|
cv::GMat out = cv::gapi::infer<SqueezNet>(rect, in); |
|
cv::GComputation comp(cv::GIn(in, rect), cv::GOut(out)); |
|
// NOTE: We have to normalize U8 tensor |
|
// so cfgMeanStd() is here |
|
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std }); |
|
comp.apply(cv::gin(frame, rois.front()), |
|
cv::gout(out_gapi.front()), |
|
cv::compile_args(cv::gapi::networks(net))); |
|
// Validate |
|
validate(); |
|
} |
|
|
|
TEST_F(ONNXMediaFrame, InferROIYUV) |
|
{ |
|
useModel("classification/squeezenet/model/squeezenet1.0-9"); |
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); |
|
const auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv); |
|
// ONNX_API code |
|
cv::Mat pp; |
|
cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12); |
|
cv::Mat roi_mat; |
|
preprocess(pp(rois.front()), roi_mat); |
|
infer<float>(roi_mat, out_onnx); |
|
// G_API code |
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet"); |
|
cv::GFrame in; |
|
cv::GOpaque<cv::Rect> rect; |
|
cv::GMat out = cv::gapi::infer<SqueezNet>(rect, in); |
|
cv::GComputation comp(cv::GIn(in, rect), cv::GOut(out)); |
|
// NOTE: We have to normalize U8 tensor |
|
// so cfgMeanStd() is here |
|
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std }); |
|
comp.apply(cv::gin(frame, rois.front()), |
|
cv::gout(out_gapi.front()), |
|
cv::compile_args(cv::gapi::networks(net))); |
|
// Validate |
|
validate(); |
|
} |
|
|
|
TEST_F(ONNXMediaFrame, InferListBGR) |
|
{ |
|
useModel("classification/squeezenet/model/squeezenet1.0-9"); |
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); |
|
const auto frame = MediaFrame::Create<TestMediaBGR>(in_mat); |
|
// ONNX_API code |
|
for (size_t i = 0; i < rois.size(); ++i) { |
|
cv::Mat roi_mat; |
|
preprocess(in_mat(rois[i]), roi_mat); |
|
infer<float>(roi_mat, out_onnx); |
|
} |
|
// G_API code |
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet"); |
|
cv::GFrame in; |
|
cv::GArray<cv::Rect> rr; |
|
cv::GArray<cv::GMat> out = cv::gapi::infer<SqueezNet>(rr, in); |
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out)); |
|
// NOTE: We have to normalize U8 tensor |
|
// so cfgMeanStd() is here |
|
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std }); |
|
comp.apply(cv::gin(frame, rois), |
|
cv::gout(out_gapi), |
|
cv::compile_args(cv::gapi::networks(net))); |
|
// Validate |
|
validate(); |
|
} |
|
|
|
TEST_F(ONNXMediaFrame, InferListYUV) |
|
{ |
|
useModel("classification/squeezenet/model/squeezenet1.0-9"); |
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); |
|
const auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv); |
|
// ONNX_API code |
|
cv::Mat pp; |
|
cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12); |
|
for (size_t i = 0; i < rois.size(); ++i) { |
|
cv::Mat roi_mat; |
|
preprocess(pp(rois[i]), roi_mat); |
|
infer<float>(roi_mat, out_onnx); |
|
} |
|
// G_API code |
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet"); |
|
cv::GFrame in; |
|
cv::GArray<cv::Rect> rr; |
|
cv::GArray<cv::GMat> out = cv::gapi::infer<SqueezNet>(rr, in); |
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out)); |
|
// NOTE: We have to normalize U8 tensor |
|
// so cfgMeanStd() is here |
|
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std }); |
|
comp.apply(cv::gin(frame, rois), |
|
cv::gout(out_gapi), |
|
cv::compile_args(cv::gapi::networks(net))); |
|
// Validate |
|
validate(); |
|
} |
|
TEST_F(ONNXRCNN, InferWithDisabledOut) |
|
{ |
|
useModel("object_detection_segmentation/faster-rcnn/model/FasterRCNN-10"); |
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); |
|
cv::Mat pp; |
|
preprocess(in_mat, pp); |
|
// ONNX_API code |
|
infer<float>(pp, out_onnx, {"6379", "6383"}); |
|
// G_API code |
|
using FRCNNOUT = std::tuple<cv::GMat, cv::GMat>; |
|
G_API_NET(FasterRCNN, <FRCNNOUT(cv::GMat)>, "FasterRCNN"); |
|
auto net = cv::gapi::onnx::Params<FasterRCNN>{model_path} |
|
.cfgOutputLayers({"out1", "out2"}) |
|
.cfgPostProc({cv::GMatDesc{CV_32F, {7,4}}, |
|
cv::GMatDesc{CV_32F, {7}}}, remapRCNNPortsDO, {"6383", "6379"}); |
|
cv::GMat in, out1, out2; |
|
std::tie(out1, out2) = cv::gapi::infer<FasterRCNN>(in); |
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out1, out2)); |
|
out_gapi.resize(num_out); |
|
comp.apply(cv::gin(pp), |
|
cv::gout(out_gapi[0], out_gapi[1]), |
|
cv::compile_args(cv::gapi::networks(net))); |
|
// Validate |
|
validate<float>(-1.f); |
|
validate<float>(-1.f); |
|
} |
|
|
|
TEST_F(ONNXMediaFrame, InferList2BGR) |
|
{ |
|
useModel("classification/squeezenet/model/squeezenet1.0-9"); |
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); |
|
const auto frame = MediaFrame::Create<TestMediaBGR>(in_mat); |
|
// ONNX_API code |
|
for (size_t i = 0; i < rois.size(); ++i) { |
|
cv::Mat roi_mat; |
|
preprocess(in_mat(rois[i]), roi_mat); |
|
infer<float>(roi_mat, out_onnx); |
|
} |
|
// G_API code |
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet"); |
|
cv::GFrame in; |
|
cv::GArray<cv::Rect> rr; |
|
cv::GArray<cv::GMat> out = cv::gapi::infer2<SqueezNet>(in, rr); |
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out)); |
|
// NOTE: We have to normalize U8 tensor |
|
// so cfgMeanStd() is here |
|
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std }); |
|
comp.apply(cv::gin(frame, rois), |
|
cv::gout(out_gapi), |
|
cv::compile_args(cv::gapi::networks(net))); |
|
// Validate |
|
validate(); |
|
} |
|
|
|
TEST_F(ONNXMediaFrame, InferList2YUV) |
|
{ |
|
useModel("classification/squeezenet/model/squeezenet1.0-9"); |
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); |
|
const auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv); |
|
// ONNX_API code |
|
cv::Mat pp; |
|
cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12); |
|
for (size_t i = 0; i < rois.size(); ++i) { |
|
cv::Mat roi_mat; |
|
preprocess(pp(rois[i]), roi_mat); |
|
infer<float>(roi_mat, out_onnx); |
|
} |
|
// G_API code |
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet"); |
|
cv::GFrame in; |
|
cv::GArray<cv::Rect> rr; |
|
cv::GArray<cv::GMat> out = cv::gapi::infer2<SqueezNet>(in, rr); |
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out)); |
|
// NOTE: We have to normalize U8 tensor |
|
// so cfgMeanStd() is here |
|
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std }); |
|
comp.apply(cv::gin(frame, rois), |
|
cv::gout(out_gapi), |
|
cv::compile_args(cv::gapi::networks(net))); |
|
// Validate |
|
validate(); |
|
} |
|
|
|
TEST_F(ONNXYoloV3, InferConstInput) |
|
{ |
|
useModel("object_detection_segmentation/yolov3/model/yolov3-10"); |
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); |
|
constructYoloInputs(in_mat); |
|
// ONNX_API code |
|
infer<float>(ins, out_onnx); |
|
// G_API code |
|
using OUT = std::tuple<cv::GMat, cv::GMat, cv::GMat>; |
|
G_API_NET(YoloNet, <OUT(cv::GMat)>, "yolov3"); |
|
auto net = cv::gapi::onnx::Params<YoloNet>{model_path} |
|
.constInput("image_shape", ins[1]) |
|
.cfgInputLayers({"input_1"}) |
|
.cfgOutputLayers({"out1", "out2", "out3"}) |
|
.cfgPostProc({cv::GMatDesc{CV_32F, {1, 10000, 4}}, |
|
cv::GMatDesc{CV_32F, {1, 80, 10000}}, |
|
cv::GMatDesc{CV_32S, {5, 3}}}, remapYoloV3); |
|
cv::GMat in, out1, out2, out3; |
|
std::tie(out1, out2, out3) = cv::gapi::infer<YoloNet>(in); |
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out1, out2, out3)); |
|
out_gapi.resize(num_out); |
|
comp.apply(cv::gin(ins[0]), |
|
cv::gout(out_gapi[0], out_gapi[1], out_gapi[2]), |
|
cv::compile_args(cv::gapi::networks(net))); |
|
// Validate |
|
validate<float>(-1.f); |
|
validate<float>(-1.f); |
|
validate<int>(-1); |
|
} |
|
|
|
TEST_F(ONNXYoloV3, InferBSConstInput) |
|
{ |
|
// This test checks the case when a const input is used |
|
// and all input layer names are specified. |
|
// Const input has the advantage. It is expected behavior. |
|
useModel("object_detection_segmentation/yolov3/model/yolov3-10"); |
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); |
|
constructYoloInputs(in_mat); |
|
// Tensor with incorrect image size |
|
// is used for check case when InputLayers and constInput have same names |
|
cv::Mat bad_shape; |
|
bad_shape.create(cv::Size(2, 1), CV_32F); |
|
float* ptr = bad_shape.ptr<float>(); |
|
ptr[0] = 590; |
|
ptr[1] = 12; |
|
// ONNX_API code |
|
infer<float>(ins, out_onnx); |
|
// G_API code |
|
using OUT = std::tuple<cv::GMat, cv::GMat, cv::GMat>; |
|
G_API_NET(YoloNet, <OUT(cv::GMat, cv::GMat)>, "yolov3"); |
|
auto net = cv::gapi::onnx::Params<YoloNet>{model_path} |
|
// Data from const input will be used to infer |
|
.constInput("image_shape", ins[1]) |
|
// image_shape - const_input has same name |
|
.cfgInputLayers({"input_1", "image_shape"}) |
|
.cfgOutputLayers({"out1", "out2", "out3"}) |
|
.cfgPostProc({cv::GMatDesc{CV_32F, {1, 10000, 4}}, |
|
cv::GMatDesc{CV_32F, {1, 80, 10000}}, |
|
cv::GMatDesc{CV_32S, {5, 3}}}, remapYoloV3); |
|
cv::GMat in1, in2, out1, out2, out3; |
|
std::tie(out1, out2, out3) = cv::gapi::infer<YoloNet>(in1, in2); |
|
cv::GComputation comp(cv::GIn(in1, in2), cv::GOut(out1, out2, out3)); |
|
out_gapi.resize(num_out); |
|
comp.apply(cv::gin(ins[0], bad_shape), |
|
cv::gout(out_gapi[0], out_gapi[1], out_gapi[2]), |
|
cv::compile_args(cv::gapi::networks(net))); |
|
// Validate |
|
validate<float>(-1.f); |
|
validate<float>(-1.f); |
|
validate<int>(-1); |
|
} |
|
|
|
TEST_F(ONNXRCNN, ConversionInt64to32) |
|
{ |
|
useModel("object_detection_segmentation/faster-rcnn/model/FasterRCNN-10"); |
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); |
|
cv::Mat dst; |
|
preprocess(in_mat, dst); |
|
// ONNX_API code |
|
infer<float>(dst, out_onnx); |
|
// G_API code |
|
using FRCNNOUT = std::tuple<cv::GMat,cv::GMat,cv::GMat>; |
|
G_API_NET(FasterRCNN, <FRCNNOUT(cv::GMat)>, "FasterRCNN"); |
|
auto net = cv::gapi::onnx::Params<FasterRCNN>{model_path} |
|
.cfgOutputLayers({"out1", "out2", "out3"}) |
|
.cfgPostProc({cv::GMatDesc{CV_32F, {7,4}}, |
|
cv::GMatDesc{CV_32S, {7}}, |
|
cv::GMatDesc{CV_32F, {7}}}, remapRCNNPortsC); |
|
cv::GMat in, out1, out2, out3; |
|
std::tie(out1, out2, out3) = cv::gapi::infer<FasterRCNN>(in); |
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out1, out2, out3)); |
|
out_gapi.resize(num_out); |
|
comp.apply(cv::gin(dst), |
|
cv::gout(out_gapi[0], out_gapi[1], out_gapi[2]), |
|
cv::compile_args(cv::gapi::networks(net))); |
|
// Validate |
|
validate<float>(-1.f); |
|
validate<int>(-1); |
|
validate<float>(-1.f); |
|
} |
|
|
|
TEST_F(ONNXWithRemap, InferOutReallocation) |
|
{ |
|
useModel("object_detection_segmentation/ssd-mobilenetv1/model/ssd_mobilenet_v1_10"); |
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); |
|
// G_API code |
|
G_API_NET(MobileNet, <cv::GMat(cv::GMat)>, "ssd_mobilenet"); |
|
auto net = cv::gapi::onnx::Params<MobileNet>{model_path} |
|
.cfgOutputLayers({"detection_boxes"}) |
|
.cfgPostProc({cv::GMatDesc{CV_32F, {1,100,4}}}, reallocSSDPort); |
|
cv::GMat in; |
|
cv::GMat out1; |
|
out1 = cv::gapi::infer<MobileNet>(in); |
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out1)); |
|
EXPECT_THROW(comp.apply(cv::gin(in_mat), |
|
cv::gout(out_gapi[0]), |
|
cv::compile_args(cv::gapi::networks(net))), std::exception); |
|
} |
|
|
|
} // namespace opencv_test |
|
|
|
#endif // HAVE_ONNX
|
|
|