mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
489 lines
21 KiB
489 lines
21 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifndef OPENCV_CUDAFEATURES2D_HPP |
|
#define OPENCV_CUDAFEATURES2D_HPP |
|
|
|
#ifndef __cplusplus |
|
# error cudafeatures2d.hpp header must be compiled as C++ |
|
#endif |
|
|
|
#include "opencv2/core/cuda.hpp" |
|
#include "opencv2/features2d.hpp" |
|
#include "opencv2/cudafilters.hpp" |
|
|
|
/** |
|
@addtogroup cuda |
|
@{ |
|
@defgroup cudafeatures2d Feature Detection and Description |
|
@} |
|
*/ |
|
|
|
namespace cv { namespace cuda { |
|
|
|
//! @addtogroup cudafeatures2d |
|
//! @{ |
|
|
|
// |
|
// DescriptorMatcher |
|
// |
|
|
|
/** @brief Abstract base class for matching keypoint descriptors. |
|
|
|
It has two groups of match methods: for matching descriptors of an image with another image or with |
|
an image set. |
|
*/ |
|
class CV_EXPORTS DescriptorMatcher : public cv::Algorithm |
|
{ |
|
public: |
|
// |
|
// Factories |
|
// |
|
|
|
/** @brief Brute-force descriptor matcher. |
|
|
|
For each descriptor in the first set, this matcher finds the closest descriptor in the second set |
|
by trying each one. This descriptor matcher supports masking permissible matches of descriptor |
|
sets. |
|
|
|
@param normType One of NORM_L1, NORM_L2, NORM_HAMMING. L1 and L2 norms are |
|
preferable choices for SIFT and SURF descriptors, NORM_HAMMING should be used with ORB, BRISK and |
|
BRIEF). |
|
*/ |
|
static Ptr<DescriptorMatcher> createBFMatcher(int normType = cv::NORM_L2); |
|
|
|
// |
|
// Utility |
|
// |
|
|
|
/** @brief Returns true if the descriptor matcher supports masking permissible matches. |
|
*/ |
|
virtual bool isMaskSupported() const = 0; |
|
|
|
// |
|
// Descriptor collection |
|
// |
|
|
|
/** @brief Adds descriptors to train a descriptor collection. |
|
|
|
If the collection is not empty, the new descriptors are added to existing train descriptors. |
|
|
|
@param descriptors Descriptors to add. Each descriptors[i] is a set of descriptors from the same |
|
train image. |
|
*/ |
|
virtual void add(const std::vector<GpuMat>& descriptors) = 0; |
|
|
|
/** @brief Returns a constant link to the train descriptor collection. |
|
*/ |
|
virtual const std::vector<GpuMat>& getTrainDescriptors() const = 0; |
|
|
|
/** @brief Clears the train descriptor collection. |
|
*/ |
|
virtual void clear() = 0; |
|
|
|
/** @brief Returns true if there are no train descriptors in the collection. |
|
*/ |
|
virtual bool empty() const = 0; |
|
|
|
/** @brief Trains a descriptor matcher. |
|
|
|
Trains a descriptor matcher (for example, the flann index). In all methods to match, the method |
|
train() is run every time before matching. |
|
*/ |
|
virtual void train() = 0; |
|
|
|
// |
|
// 1 to 1 match |
|
// |
|
|
|
/** @brief Finds the best match for each descriptor from a query set (blocking version). |
|
|
|
@param queryDescriptors Query set of descriptors. |
|
@param trainDescriptors Train set of descriptors. This set is not added to the train descriptors |
|
collection stored in the class object. |
|
@param matches Matches. If a query descriptor is masked out in mask , no match is added for this |
|
descriptor. So, matches size may be smaller than the query descriptors count. |
|
@param mask Mask specifying permissible matches between an input query and train matrices of |
|
descriptors. |
|
|
|
In the first variant of this method, the train descriptors are passed as an input argument. In the |
|
second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is |
|
used. Optional mask (or masks) can be passed to specify which query and training descriptors can be |
|
matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if |
|
mask.at\<uchar\>(i,j) is non-zero. |
|
*/ |
|
virtual void match(InputArray queryDescriptors, InputArray trainDescriptors, |
|
std::vector<DMatch>& matches, |
|
InputArray mask = noArray()) = 0; |
|
|
|
/** @overload |
|
*/ |
|
virtual void match(InputArray queryDescriptors, |
|
std::vector<DMatch>& matches, |
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>()) = 0; |
|
|
|
/** @brief Finds the best match for each descriptor from a query set (asynchronous version). |
|
|
|
@param queryDescriptors Query set of descriptors. |
|
@param trainDescriptors Train set of descriptors. This set is not added to the train descriptors |
|
collection stored in the class object. |
|
@param matches Matches array stored in GPU memory. Internal representation is not defined. |
|
Use DescriptorMatcher::matchConvert method to retrieve results in standard representation. |
|
@param mask Mask specifying permissible matches between an input query and train matrices of |
|
descriptors. |
|
@param stream CUDA stream. |
|
|
|
In the first variant of this method, the train descriptors are passed as an input argument. In the |
|
second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is |
|
used. Optional mask (or masks) can be passed to specify which query and training descriptors can be |
|
matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if |
|
mask.at\<uchar\>(i,j) is non-zero. |
|
*/ |
|
virtual void matchAsync(InputArray queryDescriptors, InputArray trainDescriptors, |
|
OutputArray matches, |
|
InputArray mask = noArray(), |
|
Stream& stream = Stream::Null()) = 0; |
|
|
|
/** @overload |
|
*/ |
|
virtual void matchAsync(InputArray queryDescriptors, |
|
OutputArray matches, |
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), |
|
Stream& stream = Stream::Null()) = 0; |
|
|
|
/** @brief Converts matches array from internal representation to standard matches vector. |
|
|
|
The method is supposed to be used with DescriptorMatcher::matchAsync to get final result. |
|
Call this method only after DescriptorMatcher::matchAsync is completed (ie. after synchronization). |
|
|
|
@param gpu_matches Matches, returned from DescriptorMatcher::matchAsync. |
|
@param matches Vector of DMatch objects. |
|
*/ |
|
virtual void matchConvert(InputArray gpu_matches, |
|
std::vector<DMatch>& matches) = 0; |
|
|
|
// |
|
// knn match |
|
// |
|
|
|
/** @brief Finds the k best matches for each descriptor from a query set (blocking version). |
|
|
|
@param queryDescriptors Query set of descriptors. |
|
@param trainDescriptors Train set of descriptors. This set is not added to the train descriptors |
|
collection stored in the class object. |
|
@param matches Matches. Each matches[i] is k or less matches for the same query descriptor. |
|
@param k Count of best matches found per each query descriptor or less if a query descriptor has |
|
less than k possible matches in total. |
|
@param mask Mask specifying permissible matches between an input query and train matrices of |
|
descriptors. |
|
@param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is |
|
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, |
|
the matches vector does not contain matches for fully masked-out query descriptors. |
|
|
|
These extended variants of DescriptorMatcher::match methods find several best matches for each query |
|
descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::match |
|
for the details about query and train descriptors. |
|
*/ |
|
virtual void knnMatch(InputArray queryDescriptors, InputArray trainDescriptors, |
|
std::vector<std::vector<DMatch> >& matches, |
|
int k, |
|
InputArray mask = noArray(), |
|
bool compactResult = false) = 0; |
|
|
|
/** @overload |
|
*/ |
|
virtual void knnMatch(InputArray queryDescriptors, |
|
std::vector<std::vector<DMatch> >& matches, |
|
int k, |
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), |
|
bool compactResult = false) = 0; |
|
|
|
/** @brief Finds the k best matches for each descriptor from a query set (asynchronous version). |
|
|
|
@param queryDescriptors Query set of descriptors. |
|
@param trainDescriptors Train set of descriptors. This set is not added to the train descriptors |
|
collection stored in the class object. |
|
@param matches Matches array stored in GPU memory. Internal representation is not defined. |
|
Use DescriptorMatcher::knnMatchConvert method to retrieve results in standard representation. |
|
@param k Count of best matches found per each query descriptor or less if a query descriptor has |
|
less than k possible matches in total. |
|
@param mask Mask specifying permissible matches between an input query and train matrices of |
|
descriptors. |
|
@param stream CUDA stream. |
|
|
|
These extended variants of DescriptorMatcher::matchAsync methods find several best matches for each query |
|
descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::matchAsync |
|
for the details about query and train descriptors. |
|
*/ |
|
virtual void knnMatchAsync(InputArray queryDescriptors, InputArray trainDescriptors, |
|
OutputArray matches, |
|
int k, |
|
InputArray mask = noArray(), |
|
Stream& stream = Stream::Null()) = 0; |
|
|
|
/** @overload |
|
*/ |
|
virtual void knnMatchAsync(InputArray queryDescriptors, |
|
OutputArray matches, |
|
int k, |
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), |
|
Stream& stream = Stream::Null()) = 0; |
|
|
|
/** @brief Converts matches array from internal representation to standard matches vector. |
|
|
|
The method is supposed to be used with DescriptorMatcher::knnMatchAsync to get final result. |
|
Call this method only after DescriptorMatcher::knnMatchAsync is completed (ie. after synchronization). |
|
|
|
@param gpu_matches Matches, returned from DescriptorMatcher::knnMatchAsync. |
|
@param matches Vector of DMatch objects. |
|
@param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is |
|
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, |
|
the matches vector does not contain matches for fully masked-out query descriptors. |
|
*/ |
|
virtual void knnMatchConvert(InputArray gpu_matches, |
|
std::vector< std::vector<DMatch> >& matches, |
|
bool compactResult = false) = 0; |
|
|
|
// |
|
// radius match |
|
// |
|
|
|
/** @brief For each query descriptor, finds the training descriptors not farther than the specified distance (blocking version). |
|
|
|
@param queryDescriptors Query set of descriptors. |
|
@param trainDescriptors Train set of descriptors. This set is not added to the train descriptors |
|
collection stored in the class object. |
|
@param matches Found matches. |
|
@param maxDistance Threshold for the distance between matched descriptors. Distance means here |
|
metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured |
|
in Pixels)! |
|
@param mask Mask specifying permissible matches between an input query and train matrices of |
|
descriptors. |
|
@param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is |
|
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, |
|
the matches vector does not contain matches for fully masked-out query descriptors. |
|
|
|
For each query descriptor, the methods find such training descriptors that the distance between the |
|
query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are |
|
returned in the distance increasing order. |
|
*/ |
|
virtual void radiusMatch(InputArray queryDescriptors, InputArray trainDescriptors, |
|
std::vector<std::vector<DMatch> >& matches, |
|
float maxDistance, |
|
InputArray mask = noArray(), |
|
bool compactResult = false) = 0; |
|
|
|
/** @overload |
|
*/ |
|
virtual void radiusMatch(InputArray queryDescriptors, |
|
std::vector<std::vector<DMatch> >& matches, |
|
float maxDistance, |
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), |
|
bool compactResult = false) = 0; |
|
|
|
/** @brief For each query descriptor, finds the training descriptors not farther than the specified distance (asynchronous version). |
|
|
|
@param queryDescriptors Query set of descriptors. |
|
@param trainDescriptors Train set of descriptors. This set is not added to the train descriptors |
|
collection stored in the class object. |
|
@param matches Matches array stored in GPU memory. Internal representation is not defined. |
|
Use DescriptorMatcher::radiusMatchConvert method to retrieve results in standard representation. |
|
@param maxDistance Threshold for the distance between matched descriptors. Distance means here |
|
metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured |
|
in Pixels)! |
|
@param mask Mask specifying permissible matches between an input query and train matrices of |
|
descriptors. |
|
@param stream CUDA stream. |
|
|
|
For each query descriptor, the methods find such training descriptors that the distance between the |
|
query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are |
|
returned in the distance increasing order. |
|
*/ |
|
virtual void radiusMatchAsync(InputArray queryDescriptors, InputArray trainDescriptors, |
|
OutputArray matches, |
|
float maxDistance, |
|
InputArray mask = noArray(), |
|
Stream& stream = Stream::Null()) = 0; |
|
|
|
/** @overload |
|
*/ |
|
virtual void radiusMatchAsync(InputArray queryDescriptors, |
|
OutputArray matches, |
|
float maxDistance, |
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), |
|
Stream& stream = Stream::Null()) = 0; |
|
|
|
/** @brief Converts matches array from internal representation to standard matches vector. |
|
|
|
The method is supposed to be used with DescriptorMatcher::radiusMatchAsync to get final result. |
|
Call this method only after DescriptorMatcher::radiusMatchAsync is completed (ie. after synchronization). |
|
|
|
@param gpu_matches Matches, returned from DescriptorMatcher::radiusMatchAsync. |
|
@param matches Vector of DMatch objects. |
|
@param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is |
|
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, |
|
the matches vector does not contain matches for fully masked-out query descriptors. |
|
*/ |
|
virtual void radiusMatchConvert(InputArray gpu_matches, |
|
std::vector< std::vector<DMatch> >& matches, |
|
bool compactResult = false) = 0; |
|
}; |
|
|
|
// |
|
// Feature2DAsync |
|
// |
|
|
|
/** @brief Abstract base class for CUDA asynchronous 2D image feature detectors and descriptor extractors. |
|
*/ |
|
class CV_EXPORTS Feature2DAsync |
|
{ |
|
public: |
|
virtual ~Feature2DAsync(); |
|
|
|
/** @brief Detects keypoints in an image. |
|
|
|
@param image Image. |
|
@param keypoints The detected keypoints. |
|
@param mask Mask specifying where to look for keypoints (optional). It must be a 8-bit integer |
|
matrix with non-zero values in the region of interest. |
|
@param stream CUDA stream. |
|
*/ |
|
virtual void detectAsync(InputArray image, |
|
OutputArray keypoints, |
|
InputArray mask = noArray(), |
|
Stream& stream = Stream::Null()); |
|
|
|
/** @brief Computes the descriptors for a set of keypoints detected in an image. |
|
|
|
@param image Image. |
|
@param keypoints Input collection of keypoints. |
|
@param descriptors Computed descriptors. Row j is the descriptor for j-th keypoint. |
|
@param stream CUDA stream. |
|
*/ |
|
virtual void computeAsync(InputArray image, |
|
OutputArray keypoints, |
|
OutputArray descriptors, |
|
Stream& stream = Stream::Null()); |
|
|
|
/** Detects keypoints and computes the descriptors. */ |
|
virtual void detectAndComputeAsync(InputArray image, |
|
InputArray mask, |
|
OutputArray keypoints, |
|
OutputArray descriptors, |
|
bool useProvidedKeypoints = false, |
|
Stream& stream = Stream::Null()); |
|
|
|
/** Converts keypoints array from internal representation to standard vector. */ |
|
virtual void convert(InputArray gpu_keypoints, |
|
std::vector<KeyPoint>& keypoints) = 0; |
|
}; |
|
|
|
// |
|
// FastFeatureDetector |
|
// |
|
|
|
/** @brief Wrapping class for feature detection using the FAST method. |
|
*/ |
|
class CV_EXPORTS FastFeatureDetector : public cv::FastFeatureDetector, public Feature2DAsync |
|
{ |
|
public: |
|
enum |
|
{ |
|
LOCATION_ROW = 0, |
|
RESPONSE_ROW, |
|
ROWS_COUNT, |
|
|
|
FEATURE_SIZE = 7 |
|
}; |
|
|
|
static Ptr<FastFeatureDetector> create(int threshold=10, |
|
bool nonmaxSuppression=true, |
|
int type=FastFeatureDetector::TYPE_9_16, |
|
int max_npoints = 5000); |
|
|
|
virtual void setMaxNumPoints(int max_npoints) = 0; |
|
virtual int getMaxNumPoints() const = 0; |
|
}; |
|
|
|
// |
|
// ORB |
|
// |
|
|
|
/** @brief Class implementing the ORB (*oriented BRIEF*) keypoint detector and descriptor extractor |
|
* |
|
* @sa cv::ORB |
|
*/ |
|
class CV_EXPORTS ORB : public cv::ORB, public Feature2DAsync |
|
{ |
|
public: |
|
enum |
|
{ |
|
X_ROW = 0, |
|
Y_ROW, |
|
RESPONSE_ROW, |
|
ANGLE_ROW, |
|
OCTAVE_ROW, |
|
SIZE_ROW, |
|
ROWS_COUNT |
|
}; |
|
|
|
static Ptr<ORB> create(int nfeatures=500, |
|
float scaleFactor=1.2f, |
|
int nlevels=8, |
|
int edgeThreshold=31, |
|
int firstLevel=0, |
|
int WTA_K=2, |
|
int scoreType=ORB::HARRIS_SCORE, |
|
int patchSize=31, |
|
int fastThreshold=20, |
|
bool blurForDescriptor=false); |
|
|
|
//! if true, image will be blurred before descriptors calculation |
|
virtual void setBlurForDescriptor(bool blurForDescriptor) = 0; |
|
virtual bool getBlurForDescriptor() const = 0; |
|
}; |
|
|
|
//! @} |
|
|
|
}} // namespace cv { namespace cuda { |
|
|
|
#endif /* OPENCV_CUDAFEATURES2D_HPP */
|
|
|