Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

378 lines
18 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../precomp.hpp"
#include "../usac.hpp"
namespace cv { namespace usac {
////////////////////////////////// STANDARD TERMINATION ///////////////////////////////////////////
class StandardTerminationCriteriaImpl : public StandardTerminationCriteria {
private:
const double log_confidence;
const int points_size, sample_size, MAX_ITERATIONS;
public:
StandardTerminationCriteriaImpl (double confidence, int points_size_,
int sample_size_, int max_iterations_) :
log_confidence(log(1 - confidence)), points_size (points_size_),
sample_size (sample_size_), MAX_ITERATIONS(max_iterations_) {}
/*
* Get upper bound iterations for any sample number
* n is points size, w is inlier ratio, p is desired probability, k is expceted number of iterations.
* 1 - p = (1 - w^n)^k,
* k = log_(1-w^n) (1-p)
* k = ln (1-p) / ln (1-w^n)
*
* w^n is probability that all N points are inliers.
* (1 - w^n) is probability that at least one point of N is outlier.
* 1 - p = (1-w^n)^k is probability that in K steps of getting at least one outlier is 1% (5%).
*/
int update (const Mat &/*model*/, int inlier_number) override {
const double predicted_iters = log_confidence / log(1 - std::pow
(static_cast<double>(inlier_number) / points_size, sample_size));
// if inlier_prob == 1 then log(0) = -inf, predicted_iters == -0
// if inlier_prob == 0 then log(1) = 0 , predicted_iters == (+-) inf
if (! std::isinf(predicted_iters) && predicted_iters < MAX_ITERATIONS)
return static_cast<int>(predicted_iters);
return MAX_ITERATIONS;
}
Ptr<TerminationCriteria> clone () const override {
return makePtr<StandardTerminationCriteriaImpl>(1-exp(log_confidence), points_size,
sample_size, MAX_ITERATIONS);
}
};
Ptr<StandardTerminationCriteria> StandardTerminationCriteria::create(double confidence,
int points_size_, int sample_size_, int max_iterations_) {
return makePtr<StandardTerminationCriteriaImpl>(confidence, points_size_,
sample_size_, max_iterations_);
}
/////////////////////////////////////// SPRT TERMINATION //////////////////////////////////////////
class SPRTTerminationImpl : public SPRTTermination {
private:
const std::vector<SPRT_history> &sprt_histories;
const double log_eta_0;
const int points_size, sample_size, MAX_ITERATIONS;
public:
SPRTTerminationImpl (const std::vector<SPRT_history> &sprt_histories_, double confidence,
int points_size_, int sample_size_, int max_iterations_)
: sprt_histories (sprt_histories_), log_eta_0(log(1-confidence)),
points_size (points_size_), sample_size (sample_size_),MAX_ITERATIONS(max_iterations_){}
/*
* Termination criterion:
* l is number of tests
* n(l) = Product from i = 0 to l ( 1 - P_g (1 - A(i)^(-h(i)))^k(i) )
* log n(l) = sum from i = 0 to l k(i) * ( 1 - P_g (1 - A(i)^(-h(i))) )
*
* log (n0) - log (n(l-1))
* k(l) = ----------------------- (9)
* log (1 - P_g*A(l)^-1)
*
* A is decision threshold
* P_g is probability of good model.
* k(i) is number of samples verified by i-th sprt.
* n0 is typically set to 0.05
* this equation does not have to be evaluated before nR < n0
* nR = (1 - P_g)^k
*/
int update (const Mat &/*model*/, int inlier_size) override {
if (sprt_histories.empty())
return std::min(MAX_ITERATIONS, getStandardUpperBound(inlier_size));
const double epsilon = static_cast<double>(inlier_size) / points_size; // inlier probability
const double P_g = pow (epsilon, sample_size); // probability of good sample
double log_eta_lmin1 = 0;
int total_number_of_tested_samples = 0;
const int sprts_size_min1 = static_cast<int>(sprt_histories.size())-1;
if (sprts_size_min1 < 0) return getStandardUpperBound(inlier_size);
// compute log n(l-1), l is number of tests
for (int test = 0; test < sprts_size_min1; test++) {
log_eta_lmin1 += log (1 - P_g * (1 - pow (sprt_histories[test].A,
-computeExponentH(sprt_histories[test].epsilon, epsilon,sprt_histories[test].delta))))
* sprt_histories[test].tested_samples;
total_number_of_tested_samples += sprt_histories[test].tested_samples;
}
// Implementation note: since η > ηR the equation (9) does not have to be evaluated
// before ηR < η0 is satisfied.
if (std::pow(1 - P_g, total_number_of_tested_samples) < log_eta_0)
return std::min(MAX_ITERATIONS, getStandardUpperBound(inlier_size));
// use decision threshold A for last test (l-th)
const double predicted_iters_sprt = (log_eta_0 - log_eta_lmin1) /
log (1 - P_g * (1 - 1 / sprt_histories[sprts_size_min1].A)); // last A
if (std::isnan(predicted_iters_sprt) || std::isinf(predicted_iters_sprt))
return getStandardUpperBound(inlier_size);
if (predicted_iters_sprt < 0) return 0;
// compare with standard upper bound
if (predicted_iters_sprt < MAX_ITERATIONS)
return std::min(static_cast<int>(predicted_iters_sprt),
getStandardUpperBound(inlier_size));
return getStandardUpperBound(inlier_size);
}
Ptr<TerminationCriteria> clone () const override {
return makePtr<SPRTTerminationImpl>(sprt_histories, 1-exp(log_eta_0), points_size,
sample_size, MAX_ITERATIONS);
}
private:
inline int getStandardUpperBound(int inlier_size) const {
const double predicted_iters = log_eta_0 / log(1 - std::pow
(static_cast<double>(inlier_size) / points_size, sample_size));
return (! std::isinf(predicted_iters) && predicted_iters < MAX_ITERATIONS) ?
static_cast<int>(predicted_iters) : MAX_ITERATIONS;
}
/*
* h(i) must hold
*
* δ(i) 1 - δ(i)
* ε (-----)^h(i) + (1 - ε) (--------)^h(i) = 1
* ε(i) 1 - ε(i)
*
* ε * a^h + (1 - ε) * b^h = 1
* Has numerical solution.
*/
static double computeExponentH (double epsilon, double epsilon_new, double delta) {
const double a = log (delta / epsilon); // log likelihood ratio
const double b = log ((1 - delta) / (1 - epsilon));
const double x0 = log (1 / (1 - epsilon_new)) / b;
const double v0 = epsilon_new * exp (x0 * a);
const double x1 = log ((1 - 2*v0) / (1 - epsilon_new)) / b;
const double v1 = epsilon_new * exp (x1 * a) + (1 - epsilon_new) * exp(x1 * b);
const double h = x0 - (x0 - x1) / (1 + v0 - v1) * v0;
if (std::isnan(h))
// The equation always has solution for h = 0
// ε * a^0 + (1 - ε) * b^0 = 1
// ε + 1 - ε = 1 -> 1 = 1
return 0;
return h;
}
};
Ptr<SPRTTermination> SPRTTermination::create(const std::vector<SPRT_history> &sprt_histories_,
double confidence, int points_size_, int sample_size_, int max_iterations_) {
return makePtr<SPRTTerminationImpl>(sprt_histories_, confidence, points_size_, sample_size_,
max_iterations_);
}
///////////////////////////// PROGRESSIVE-NAPSAC-SPRT TERMINATION /////////////////////////////////
class SPRTPNapsacTerminationImpl : public SPRTPNapsacTermination {
private:
SPRTTerminationImpl sprt_termination;
const std::vector<SPRT_history> &sprt_histories;
const double relax_coef, log_confidence;
const int points_size, sample_size, MAX_ITERS;
public:
SPRTPNapsacTerminationImpl (const std::vector<SPRT_history> &sprt_histories_,
double confidence, int points_size_, int sample_size_,
int max_iterations_, double relax_coef_)
: sprt_termination (sprt_histories_, confidence, points_size_, sample_size_,
max_iterations_), sprt_histories (sprt_histories_),
relax_coef (relax_coef_), log_confidence(log(1-confidence)),
points_size (points_size_), sample_size (sample_size_),
MAX_ITERS (max_iterations_) {}
int update (const Mat &model, int inlier_number) override {
int predicted_iterations = sprt_termination.update(model, inlier_number);
const double inlier_prob = static_cast<double>(inlier_number) / points_size + relax_coef;
if (inlier_prob >= 1)
return 0;
const double predicted_iters = log_confidence / log(1 - std::pow(inlier_prob, sample_size));
if (! std::isinf(predicted_iters) && predicted_iters < predicted_iterations)
return static_cast<int>(predicted_iters);
return predicted_iterations;
}
Ptr<TerminationCriteria> clone () const override {
return makePtr<SPRTPNapsacTerminationImpl>(sprt_histories, 1-exp(log_confidence),
points_size, sample_size, MAX_ITERS, relax_coef);
}
};
Ptr<SPRTPNapsacTermination> SPRTPNapsacTermination::create(const std::vector<SPRT_history>&
sprt_histories_, double confidence, int points_size_, int sample_size_,
int max_iterations_, double relax_coef_) {
return makePtr<SPRTPNapsacTerminationImpl>(sprt_histories_, confidence, points_size_,
sample_size_, max_iterations_, relax_coef_);
}
////////////////////////////////////// PROSAC TERMINATION /////////////////////////////////////////
class ProsacTerminationCriteriaImpl : public ProsacTerminationCriteria {
private:
const double log_confidence, beta, non_randomness_phi, inlier_threshold;
const int MAX_ITERATIONS, points_size, min_termination_length, sample_size;
const Ptr<ProsacSampler> sampler;
std::vector<int> non_random_inliers;
const Ptr<Error> error;
public:
ProsacTerminationCriteriaImpl (const Ptr<Error> &error_, int points_size_,int sample_size_,
double confidence, int max_iterations, int min_termination_length_, double beta_,
double non_randomness_phi_, double inlier_threshold_) : log_confidence
(log(1-confidence)), beta(beta_), non_randomness_phi(non_randomness_phi_),
inlier_threshold(inlier_threshold_), MAX_ITERATIONS(max_iterations),
points_size (points_size_), min_termination_length (min_termination_length_),
sample_size(sample_size_), error (error_) { init(); }
ProsacTerminationCriteriaImpl (const Ptr<ProsacSampler> &sampler_,const Ptr<Error> &error_,
int points_size_, int sample_size_, double confidence, int max_iterations,
int min_termination_length_, double beta_, double non_randomness_phi_,
double inlier_threshold_) : log_confidence(log(1-confidence)), beta(beta_),
non_randomness_phi(non_randomness_phi_), inlier_threshold(inlier_threshold_),
MAX_ITERATIONS(max_iterations), points_size (points_size_),
min_termination_length (min_termination_length_), sample_size(sample_size_),
sampler(sampler_), error (error_) { init(); }
void init () {
// m is sample_size
// N is points_size
// non-randomness constraint
// The non-randomness requirement prevents PROSAC
// from selecting a solution supported by outliers that are
// by chance consistent with it. The constraint is typically
// checked ex-post in standard approaches [1]. The distribution
// of the cardinalities of sets of random ‘inliers’ is binomial
// i-th entry - inlier counts for termination up to i-th point (term length = i+1)
// ------------------------------------------------------------------------
// initialize the data structures that determine stopping
// see probabilities description below.
non_random_inliers = std::vector<int>(points_size, 0);
std::vector<double> pn_i_arr(points_size);
const double beta2compl_beta = beta / (1-beta);
const int step_n = 50, max_n = std::min(points_size, 1200);
for (int n = sample_size; n <= points_size; n+=step_n) {
if (n > max_n) {
// skip expensive calculation
break;
}
// P^R_n(i) = β^(i−m) (1−β)^(n−i+m) (n−m i−m). (7) i = m,...,N
// initial value for i = m = sample_size
// P^R_n(i=m) = β^(0) (1−β)^(n) (n-m 0) = (1-β)^(n)
// P^R_n(i=m+1) = β^(1) (1−β)^(n−1) (n−m 1) = P^R_n(i=m) * β / (1-β) * (n-m) / 1
// P^R_n(i=m+2) = β^(2) (1−β)^(n−2) (n−m 2) = P^R_n(i=m) * β^2 / (1-β)^2 * (n-m-1)(n-m) / 2
// So, for each i=m+1.., P^R_n(i+1) must be calculated as P^R_n(i) * β / (1-β) * (n-i+1) / (i-m)
pn_i_arr[sample_size-1] = std::pow(1-beta, n);
double pn_i = pn_i_arr[sample_size-1]; // prob of random inlier set of size i for subset size n
for (int i = sample_size+1; i <= n; i++) {
// use recurrent relation to fulfill remaining values
pn_i *= beta2compl_beta * static_cast<double>(n-i+1) / (i-sample_size);
// update
pn_i_arr[i-1] = pn_i;
}
// find minimum number of inliers satisfying the non-randomness constraint
// Imin n = min{j : n∑i=j P^R_n(i) < Ψ }. (8)
double acc = 0;
int i_min = sample_size; // there is always sample_size inliers
for (int i = n; i >= sample_size; i--) {
acc += pn_i_arr[i-1];
if (acc < non_randomness_phi) i_min = i;
else break;
}
non_random_inliers[n-1] = i_min;
}
// approximate values of binomial distribution
for (int n = sample_size; n <= points_size; n+=step_n) {
if (n-1+step_n >= max_n) {
// copy rest of the values
std::fill(&non_random_inliers[0]+n-1, &non_random_inliers[0]+points_size, non_random_inliers[n-1]);
break;
}
const int non_rand_n = non_random_inliers[n-1];
const double step = (double)(non_random_inliers[n-1+step_n] - non_rand_n) / (double)step_n;
for (int i = 0; i < step_n-1; i++)
non_random_inliers[n+i] = (int)(non_rand_n + (i+1)*step);
}
}
/*
* The PROSAC algorithm terminates if the number of inliers I_n*
* within the set U_n* satisfies the following conditions:
*
* • non-randomness – the probability that I_n* out of n* (termination_length)
* data points are by chance inliers to an arbitrary incorrect model
* is smaller than Ψ (typically set to 5%)
*
* • maximality – the probability that a solution with more than
* In* inliers in U_n* exists and was not found after k
* samples is smaller than η0 (typically set to 5%).
*/
int update (const Mat &model, int inliers_size) override {
int predicted_iterations = MAX_ITERATIONS;
/*
* The termination length n* is chosen to minimize k_n*(η0) subject to I_n* ≥ I_min n*;
* k_n*(η0) >= log(η0) / log(1 - (I_n* / n*)^m)
* g(k) <= n, I_n is number of inliers under termination length n.
*/
const auto &errors = error->getErrors(model);
// find number of inliers under g(k)
int num_inliers_under_termination_len = 0;
for (int pt = 0; pt < min_termination_length; pt++)
if (errors[pt] < inlier_threshold)
num_inliers_under_termination_len++;
for (int termination_len = min_termination_length; termination_len < points_size;termination_len++){
if (errors[termination_len /* = point*/] < inlier_threshold) {
num_inliers_under_termination_len++;
// non-random constraint must satisfy I_n* ≥ I_min n*.
if (num_inliers_under_termination_len < non_random_inliers[termination_len])
continue;
// add 1 to termination length since num_inliers_under_termination_len is updated
const double new_max_samples = log_confidence / log(1 -
std::pow(static_cast<double>(num_inliers_under_termination_len)
/ (termination_len+1), sample_size));
if (! std::isinf(new_max_samples) && predicted_iterations > new_max_samples) {
predicted_iterations = static_cast<int>(new_max_samples);
if (predicted_iterations == 0) break;
if (sampler != nullptr)
sampler->setTerminationLength(termination_len);
}
}
}
// compare also when termination length = points_size,
// so inliers under termination length is total number of inliers:
const double predicted_iters = log_confidence / log(1 - std::pow
(static_cast<double>(inliers_size) / points_size, sample_size));
if (! std::isinf(predicted_iters) && predicted_iters < predicted_iterations)
return static_cast<int>(predicted_iters);
return predicted_iterations;
}
Ptr<TerminationCriteria> clone () const override {
return makePtr<ProsacTerminationCriteriaImpl>(error->clone(),
points_size, sample_size, 1-exp(log_confidence), MAX_ITERATIONS,
min_termination_length, beta, non_randomness_phi, inlier_threshold);
}
};
Ptr<ProsacTerminationCriteria>
ProsacTerminationCriteria::create(const Ptr<ProsacSampler> &sampler, const Ptr<Error> &error,
int points_size_, int sample_size_, double confidence, int max_iterations,
int min_termination_length_, double beta, double non_randomness_phi, double inlier_thresh) {
return makePtr<ProsacTerminationCriteriaImpl> (sampler, error, points_size_, sample_size_,
confidence, max_iterations, min_termination_length_,
beta, non_randomness_phi, inlier_thresh);
}
}}