mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2484 lines
66 KiB
2484 lines
66 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
#ifdef HAVE_CUDA |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Add_Array |
|
|
|
PARAM_TEST_CASE(Add_Array, cv::gpu::DeviceInfo, cv::Size, std::pair<MatDepth, MatDepth>, int, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
cv::Size size; |
|
std::pair<MatType, MatType> depth; |
|
int channels; |
|
bool useRoi; |
|
|
|
int stype; |
|
int dtype; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
depth = GET_PARAM(2); |
|
channels = GET_PARAM(3); |
|
useRoi = GET_PARAM(4); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
stype = CV_MAKE_TYPE(depth.first, channels); |
|
dtype = CV_MAKE_TYPE(depth.second, channels); |
|
} |
|
}; |
|
|
|
TEST_P(Add_Array, Accuracy) |
|
{ |
|
if (depth.first == CV_64F || depth.second == CV_64F) |
|
{ |
|
if (!devInfo.supports(cv::gpu::NATIVE_DOUBLE)) |
|
return; |
|
} |
|
|
|
cv::Mat mat1 = randomMat(size, stype); |
|
cv::Mat mat2 = randomMat(size, stype); |
|
cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0); |
|
|
|
cv::gpu::GpuMat dst = createMat(size, dtype, useRoi); |
|
dst.setTo(cv::Scalar::all(0)); |
|
cv::gpu::add(loadMat(mat1, useRoi), loadMat(mat2, useRoi), dst, channels == 1 ? loadMat(mask, useRoi) : cv::gpu::GpuMat(), depth.second); |
|
|
|
cv::Mat dst_gold(size, dtype, cv::Scalar::all(0)); |
|
cv::add(mat1, mat2, dst_gold, channels == 1 ? mask : cv::noArray(), depth.second); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, depth.first >= CV_32F || depth.second >= CV_32F ? 1e-4 : 0.0); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Core, Add_Array, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES, |
|
DEPTH_PAIRS, |
|
testing::Values(1, 2, 3, 4), |
|
WHOLE_SUBMAT)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Add_Scalar |
|
|
|
PARAM_TEST_CASE(Add_Scalar, cv::gpu::DeviceInfo, cv::Size, std::pair<MatDepth, MatDepth>, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
cv::Size size; |
|
std::pair<MatType, MatType> depth; |
|
bool useRoi; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
depth = GET_PARAM(2); |
|
useRoi = GET_PARAM(3); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
TEST_P(Add_Scalar, Accuracy) |
|
{ |
|
if (depth.first == CV_64F || depth.second == CV_64F) |
|
{ |
|
if (!devInfo.supports(cv::gpu::NATIVE_DOUBLE)) |
|
return; |
|
} |
|
|
|
cv::Mat mat = randomMat(size, depth.first); |
|
cv::Scalar val = randomScalar(0, 255); |
|
cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0); |
|
|
|
cv::gpu::GpuMat dst = createMat(size, depth.second, useRoi); |
|
dst.setTo(cv::Scalar::all(0)); |
|
cv::gpu::add(loadMat(mat, useRoi), val, dst, loadMat(mask, useRoi), depth.second); |
|
|
|
cv::Mat dst_gold(size, depth.second, cv::Scalar::all(0)); |
|
cv::add(mat, val, dst_gold, mask, depth.second); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, depth.first >= CV_32F || depth.second >= CV_32F ? 1e-4 : 0.0); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Core, Add_Scalar, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES, |
|
DEPTH_PAIRS, |
|
WHOLE_SUBMAT)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Subtract_Array |
|
|
|
PARAM_TEST_CASE(Subtract_Array, cv::gpu::DeviceInfo, cv::Size, std::pair<MatDepth, MatDepth>, int, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
cv::Size size; |
|
std::pair<MatType, MatType> depth; |
|
int channels; |
|
bool useRoi; |
|
|
|
int stype; |
|
int dtype; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
depth = GET_PARAM(2); |
|
channels = GET_PARAM(3); |
|
useRoi = GET_PARAM(4); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
stype = CV_MAKE_TYPE(depth.first, channels); |
|
dtype = CV_MAKE_TYPE(depth.second, channels); |
|
} |
|
}; |
|
|
|
TEST_P(Subtract_Array, Accuracy) |
|
{ |
|
if (depth.first == CV_64F || depth.second == CV_64F) |
|
{ |
|
if (!devInfo.supports(cv::gpu::NATIVE_DOUBLE)) |
|
return; |
|
} |
|
|
|
cv::Mat mat1 = randomMat(size, stype); |
|
cv::Mat mat2 = randomMat(size, stype); |
|
cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0); |
|
|
|
cv::gpu::GpuMat dst = createMat(size, dtype, useRoi); |
|
dst.setTo(cv::Scalar::all(0)); |
|
cv::gpu::subtract(loadMat(mat1, useRoi), loadMat(mat2, useRoi), dst, channels == 1 ? loadMat(mask, useRoi) : cv::gpu::GpuMat(), depth.second); |
|
|
|
cv::Mat dst_gold(size, dtype, cv::Scalar::all(0)); |
|
cv::subtract(mat1, mat2, dst_gold, channels == 1 ? mask : cv::noArray(), depth.second); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, depth.first >= CV_32F || depth.second >= CV_32F ? 1e-4 : 0.0); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Core, Subtract_Array, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES, |
|
DEPTH_PAIRS, |
|
testing::Values(1, 2, 3, 4), |
|
WHOLE_SUBMAT)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Subtract_Scalar |
|
|
|
PARAM_TEST_CASE(Subtract_Scalar, cv::gpu::DeviceInfo, cv::Size, std::pair<MatDepth, MatDepth>, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
cv::Size size; |
|
std::pair<MatType, MatType> depth; |
|
bool useRoi; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
depth = GET_PARAM(2); |
|
useRoi = GET_PARAM(3); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
TEST_P(Subtract_Scalar, Accuracy) |
|
{ |
|
if (depth.first == CV_64F || depth.second == CV_64F) |
|
{ |
|
if (!devInfo.supports(cv::gpu::NATIVE_DOUBLE)) |
|
return; |
|
} |
|
|
|
cv::Mat mat = randomMat(size, depth.first); |
|
cv::Scalar val = randomScalar(0, 255); |
|
cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0); |
|
|
|
cv::gpu::GpuMat dst = createMat(size, depth.second, useRoi); |
|
dst.setTo(cv::Scalar::all(0)); |
|
cv::gpu::subtract(loadMat(mat, useRoi), val, dst, loadMat(mask, useRoi), depth.second); |
|
|
|
cv::Mat dst_gold(size, depth.second, cv::Scalar::all(0)); |
|
cv::subtract(mat, val, dst_gold, mask, depth.second); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, depth.first >= CV_32F || depth.second >= CV_32F ? 1e-4 : 0.0); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Core, Subtract_Scalar, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES, |
|
DEPTH_PAIRS, |
|
WHOLE_SUBMAT)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Multiply_Array |
|
|
|
PARAM_TEST_CASE(Multiply_Array, cv::gpu::DeviceInfo, cv::Size, std::pair<MatDepth, MatDepth>, int, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
cv::Size size; |
|
std::pair<MatType, MatType> depth; |
|
int channels; |
|
bool useRoi; |
|
|
|
int stype; |
|
int dtype; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
depth = GET_PARAM(2); |
|
channels = GET_PARAM(3); |
|
useRoi = GET_PARAM(4); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
stype = CV_MAKE_TYPE(depth.first, channels); |
|
dtype = CV_MAKE_TYPE(depth.second, channels); |
|
} |
|
}; |
|
|
|
TEST_P(Multiply_Array, Accuracy) |
|
{ |
|
if (depth.first == CV_64F || depth.second == CV_64F) |
|
{ |
|
if (!devInfo.supports(cv::gpu::NATIVE_DOUBLE)) |
|
return; |
|
} |
|
|
|
cv::Mat mat1 = randomMat(size, stype); |
|
cv::Mat mat2 = randomMat(size, stype); |
|
double scale = randomDouble(0.0, 255.0); |
|
|
|
cv::gpu::GpuMat dst = createMat(size, dtype, useRoi); |
|
cv::gpu::multiply(loadMat(mat1, useRoi), loadMat(mat2, useRoi), dst, scale, depth.second); |
|
|
|
cv::Mat dst_gold; |
|
cv::multiply(mat1, mat2, dst_gold, scale, depth.second); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 1.0); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Core, Multiply_Array, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES, |
|
DEPTH_PAIRS, |
|
testing::Values(1, 2, 3, 4), |
|
WHOLE_SUBMAT)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Multiply_Array_Special_Case |
|
|
|
PARAM_TEST_CASE(Multiply_Array_Special_Case, cv::gpu::DeviceInfo, cv::Size, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
cv::Size size; |
|
bool useRoi; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
useRoi = GET_PARAM(2); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
TEST_P(Multiply_Array_Special_Case, _8UC4x_32FC1) |
|
{ |
|
cv::Mat mat1 = randomMat(size, CV_8UC4); |
|
cv::Mat mat2 = randomMat(size, CV_32FC1); |
|
|
|
cv::gpu::GpuMat dst = createMat(size, CV_8UC4, useRoi); |
|
cv::gpu::multiply(loadMat(mat1, useRoi), loadMat(mat2, useRoi), dst); |
|
|
|
cv::Mat h_dst(dst); |
|
|
|
for (int y = 0; y < h_dst.rows; ++y) |
|
{ |
|
const cv::Vec4b* mat1_row = mat1.ptr<cv::Vec4b>(y); |
|
const float* mat2_row = mat2.ptr<float>(y); |
|
const cv::Vec4b* dst_row = h_dst.ptr<cv::Vec4b>(y); |
|
|
|
for (int x = 0; x < h_dst.cols; ++x) |
|
{ |
|
cv::Vec4b val1 = mat1_row[x]; |
|
float val2 = mat2_row[x]; |
|
cv::Vec4b actual = dst_row[x]; |
|
|
|
cv::Vec4b gold; |
|
|
|
gold[0] = cv::saturate_cast<uchar>(val1[0] * val2); |
|
gold[1] = cv::saturate_cast<uchar>(val1[1] * val2); |
|
gold[2] = cv::saturate_cast<uchar>(val1[2] * val2); |
|
gold[3] = cv::saturate_cast<uchar>(val1[3] * val2); |
|
|
|
ASSERT_LE(std::abs(gold[0] - actual[0]), 1.0); |
|
ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); |
|
ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); |
|
ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); |
|
} |
|
} |
|
} |
|
|
|
TEST_P(Multiply_Array_Special_Case, _16SC4x_32FC1) |
|
{ |
|
cv::Mat mat1 = randomMat(size, CV_16SC4); |
|
cv::Mat mat2 = randomMat(size, CV_32FC1); |
|
|
|
cv::gpu::GpuMat dst = createMat(size, CV_16SC4, useRoi); |
|
cv::gpu::multiply(loadMat(mat1, useRoi), loadMat(mat2, useRoi), dst); |
|
|
|
cv::Mat h_dst(dst); |
|
|
|
for (int y = 0; y < h_dst.rows; ++y) |
|
{ |
|
const cv::Vec4s* mat1_row = mat1.ptr<cv::Vec4s>(y); |
|
const float* mat2_row = mat2.ptr<float>(y); |
|
const cv::Vec4s* dst_row = h_dst.ptr<cv::Vec4s>(y); |
|
|
|
for (int x = 0; x < h_dst.cols; ++x) |
|
{ |
|
cv::Vec4s val1 = mat1_row[x]; |
|
float val2 = mat2_row[x]; |
|
cv::Vec4s actual = dst_row[x]; |
|
|
|
cv::Vec4s gold; |
|
|
|
gold[0] = cv::saturate_cast<short>(val1[0] * val2); |
|
gold[1] = cv::saturate_cast<short>(val1[1] * val2); |
|
gold[2] = cv::saturate_cast<short>(val1[2] * val2); |
|
gold[3] = cv::saturate_cast<short>(val1[3] * val2); |
|
|
|
ASSERT_LE(std::abs(gold[0] - actual[0]), 1.0); |
|
ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); |
|
ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); |
|
ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); |
|
} |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Core, Multiply_Array_Special_Case, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES, |
|
WHOLE_SUBMAT)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Multiply_Scalar |
|
|
|
PARAM_TEST_CASE(Multiply_Scalar, cv::gpu::DeviceInfo, cv::Size, std::pair<MatDepth, MatDepth>, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
cv::Size size; |
|
std::pair<MatType, MatType> depth; |
|
bool useRoi; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
depth = GET_PARAM(2); |
|
useRoi = GET_PARAM(3); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
TEST_P(Multiply_Scalar, Accuracy) |
|
{ |
|
if (depth.first == CV_64F || depth.second == CV_64F) |
|
{ |
|
if (!devInfo.supports(cv::gpu::NATIVE_DOUBLE)) |
|
return; |
|
} |
|
|
|
cv::Mat mat = randomMat(size, depth.first); |
|
cv::Scalar val = randomScalar(0, 255); |
|
double scale = randomDouble(0.0, 255.0); |
|
|
|
cv::gpu::GpuMat dst = createMat(size, depth.second, useRoi); |
|
cv::gpu::multiply(loadMat(mat, useRoi), val, dst, scale, depth.second); |
|
|
|
cv::Mat dst_gold; |
|
cv::multiply(mat, val, dst_gold, scale, depth.second); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, depth.first >= CV_32F || depth.second >= CV_32F ? 1e-4 : 0.0); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Core, Multiply_Scalar, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES, |
|
DEPTH_PAIRS, |
|
WHOLE_SUBMAT)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Divide_Array |
|
|
|
PARAM_TEST_CASE(Divide_Array, cv::gpu::DeviceInfo, cv::Size, std::pair<MatDepth, MatDepth>, int, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
cv::Size size; |
|
std::pair<MatType, MatType> depth; |
|
int channels; |
|
bool useRoi; |
|
|
|
int stype; |
|
int dtype; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
depth = GET_PARAM(2); |
|
channels = GET_PARAM(3); |
|
useRoi = GET_PARAM(4); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
stype = CV_MAKE_TYPE(depth.first, channels); |
|
dtype = CV_MAKE_TYPE(depth.second, channels); |
|
} |
|
}; |
|
|
|
TEST_P(Divide_Array, Accuracy) |
|
{ |
|
if (depth.first == CV_64F || depth.second == CV_64F) |
|
{ |
|
if (!devInfo.supports(cv::gpu::NATIVE_DOUBLE)) |
|
return; |
|
} |
|
|
|
cv::Mat mat1 = randomMat(size, stype); |
|
cv::Mat mat2 = randomMat(size, stype, 1.0, 255.0); |
|
double scale = randomDouble(0.0, 255.0); |
|
|
|
cv::gpu::GpuMat dst = createMat(size, dtype, useRoi); |
|
cv::gpu::divide(loadMat(mat1, useRoi), loadMat(mat2, useRoi), dst, scale, depth.second); |
|
|
|
cv::Mat dst_gold; |
|
cv::divide(mat1, mat2, dst_gold, scale, depth.second); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 1.0); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Core, Divide_Array, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES, |
|
DEPTH_PAIRS, |
|
testing::Values(1, 2, 3, 4), |
|
WHOLE_SUBMAT)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Divide_Array_Special_Case |
|
|
|
PARAM_TEST_CASE(Divide_Array_Special_Case, cv::gpu::DeviceInfo, cv::Size, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
cv::Size size; |
|
bool useRoi; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
useRoi = GET_PARAM(2); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
TEST_P(Divide_Array_Special_Case, _8UC4x_32FC1) |
|
{ |
|
cv::Mat mat1 = randomMat(size, CV_8UC4); |
|
cv::Mat mat2 = randomMat(size, CV_32FC1, 1.0, 255.0); |
|
|
|
cv::gpu::GpuMat dst = createMat(size, CV_8UC4, useRoi); |
|
cv::gpu::divide(loadMat(mat1, useRoi), loadMat(mat2, useRoi), dst); |
|
|
|
cv::Mat h_dst(dst); |
|
|
|
for (int y = 0; y < h_dst.rows; ++y) |
|
{ |
|
const cv::Vec4b* mat1_row = mat1.ptr<cv::Vec4b>(y); |
|
const float* mat2_row = mat2.ptr<float>(y); |
|
const cv::Vec4b* dst_row = h_dst.ptr<cv::Vec4b>(y); |
|
|
|
for (int x = 0; x < h_dst.cols; ++x) |
|
{ |
|
cv::Vec4b val1 = mat1_row[x]; |
|
float val2 = mat2_row[x]; |
|
cv::Vec4b actual = dst_row[x]; |
|
|
|
cv::Vec4b gold; |
|
|
|
gold[0] = cv::saturate_cast<uchar>(val1[0] / val2); |
|
gold[1] = cv::saturate_cast<uchar>(val1[1] / val2); |
|
gold[2] = cv::saturate_cast<uchar>(val1[2] / val2); |
|
gold[3] = cv::saturate_cast<uchar>(val1[3] / val2); |
|
|
|
ASSERT_LE(std::abs(gold[0] - actual[0]), 1.0); |
|
ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); |
|
ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); |
|
ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); |
|
} |
|
} |
|
} |
|
|
|
TEST_P(Divide_Array_Special_Case, _16SC4x_32FC1) |
|
{ |
|
cv::Mat mat1 = randomMat(size, CV_16SC4); |
|
cv::Mat mat2 = randomMat(size, CV_32FC1, 1.0, 255.0); |
|
|
|
cv::gpu::GpuMat dst = createMat(size, CV_16SC4, useRoi); |
|
cv::gpu::divide(loadMat(mat1, useRoi), loadMat(mat2, useRoi), dst); |
|
|
|
cv::Mat h_dst(dst); |
|
|
|
for (int y = 0; y < h_dst.rows; ++y) |
|
{ |
|
const cv::Vec4s* mat1_row = mat1.ptr<cv::Vec4s>(y); |
|
const float* mat2_row = mat2.ptr<float>(y); |
|
const cv::Vec4s* dst_row = h_dst.ptr<cv::Vec4s>(y); |
|
|
|
for (int x = 0; x < h_dst.cols; ++x) |
|
{ |
|
cv::Vec4s val1 = mat1_row[x]; |
|
float val2 = mat2_row[x]; |
|
cv::Vec4s actual = dst_row[x]; |
|
|
|
cv::Vec4s gold; |
|
|
|
gold[0] = cv::saturate_cast<short>(val1[0] / val2); |
|
gold[1] = cv::saturate_cast<short>(val1[1] / val2); |
|
gold[2] = cv::saturate_cast<short>(val1[2] / val2); |
|
gold[3] = cv::saturate_cast<short>(val1[3] / val2); |
|
|
|
ASSERT_LE(std::abs(gold[0] - actual[0]), 1.0); |
|
ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); |
|
ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); |
|
ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); |
|
} |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Core, Divide_Array_Special_Case, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES, |
|
WHOLE_SUBMAT)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Divide_Scalar |
|
|
|
PARAM_TEST_CASE(Divide_Scalar, cv::gpu::DeviceInfo, cv::Size, std::pair<MatDepth, MatDepth>, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
cv::Size size; |
|
std::pair<MatType, MatType> depth; |
|
bool useRoi; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
depth = GET_PARAM(2); |
|
useRoi = GET_PARAM(3); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
TEST_P(Divide_Scalar, Accuracy) |
|
{ |
|
if (depth.first == CV_64F || depth.second == CV_64F) |
|
{ |
|
if (!devInfo.supports(cv::gpu::NATIVE_DOUBLE)) |
|
return; |
|
} |
|
|
|
cv::Mat mat = randomMat(size, depth.first); |
|
cv::Scalar val = randomScalar(1.0, 255.0); |
|
double scale = randomDouble(0.0, 255.0); |
|
|
|
cv::gpu::GpuMat dst = createMat(size, depth.second, useRoi); |
|
cv::gpu::divide(loadMat(mat, useRoi), val, dst, scale, depth.second); |
|
|
|
cv::Mat dst_gold; |
|
cv::divide(mat, val, dst_gold, scale, depth.second); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, depth.first >= CV_32F || depth.second >= CV_32F ? 1e-4 : 0.0); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Core, Divide_Scalar, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES, |
|
DEPTH_PAIRS, |
|
WHOLE_SUBMAT)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Divide_Scalar_Inv |
|
|
|
PARAM_TEST_CASE(Divide_Scalar_Inv, cv::gpu::DeviceInfo, cv::Size, std::pair<MatDepth, MatDepth>, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
cv::Size size; |
|
std::pair<MatType, MatType> depth; |
|
bool useRoi; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
depth = GET_PARAM(2); |
|
useRoi = GET_PARAM(3); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
TEST_P(Divide_Scalar_Inv, Accuracy) |
|
{ |
|
if (depth.first == CV_64F || depth.second == CV_64F) |
|
{ |
|
if (!devInfo.supports(cv::gpu::NATIVE_DOUBLE)) |
|
return; |
|
} |
|
|
|
double scale = randomDouble(0.0, 255.0); |
|
cv::Mat mat = randomMat(size, depth.first, 1.0, 255.0); |
|
|
|
cv::gpu::GpuMat dst = createMat(size, depth.second, useRoi); |
|
cv::gpu::divide(scale, loadMat(mat, useRoi), dst, depth.second); |
|
|
|
cv::Mat dst_gold; |
|
cv::divide(scale, mat, dst_gold, depth.second); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, depth.first >= CV_32F || depth.second >= CV_32F ? 1e-4 : 0.0); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Core, Divide_Scalar_Inv, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES, |
|
DEPTH_PAIRS, |
|
WHOLE_SUBMAT)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// AbsDiff |
|
|
|
PARAM_TEST_CASE(AbsDiff, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
cv::Size size; |
|
int depth; |
|
bool useRoi; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
depth = GET_PARAM(2); |
|
useRoi = GET_PARAM(3); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
TEST_P(AbsDiff, Array) |
|
{ |
|
if (depth == CV_64F) |
|
{ |
|
if (!devInfo.supports(cv::gpu::NATIVE_DOUBLE)) |
|
return; |
|
} |
|
|
|
cv::Mat src1 = randomMat(size, depth); |
|
cv::Mat src2 = randomMat(size, depth); |
|
|
|
cv::gpu::GpuMat dst = createMat(size, depth, useRoi); |
|
cv::gpu::absdiff(loadMat(src1, useRoi), loadMat(src2, useRoi), dst); |
|
|
|
cv::Mat dst_gold; |
|
cv::absdiff(src1, src2, dst_gold); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0); |
|
} |
|
|
|
TEST_P(AbsDiff, Scalar) |
|
{ |
|
if (depth == CV_64F) |
|
{ |
|
if (!devInfo.supports(cv::gpu::NATIVE_DOUBLE)) |
|
return; |
|
} |
|
|
|
cv::Mat src = randomMat(size, depth); |
|
cv::Scalar val = randomScalar(0.0, 255.0); |
|
|
|
cv::gpu::GpuMat dst = createMat(size, depth, useRoi); |
|
cv::gpu::absdiff(loadMat(src, useRoi), val, dst); |
|
|
|
cv::Mat dst_gold; |
|
cv::absdiff(src, val, dst_gold); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, depth <= CV_32F ? 1.0 : 1e-5); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Core, AbsDiff, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES, |
|
ALL_DEPTH, |
|
WHOLE_SUBMAT)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Abs |
|
|
|
PARAM_TEST_CASE(Abs, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
cv::Size size; |
|
int type; |
|
bool useRoi; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
type = GET_PARAM(2); |
|
useRoi = GET_PARAM(3); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
TEST_P(Abs, Accuracy) |
|
{ |
|
cv::Mat src = randomMat(size, type); |
|
|
|
cv::gpu::GpuMat dst = createMat(size, type, useRoi); |
|
cv::gpu::abs(loadMat(src, useRoi), dst); |
|
|
|
cv::Mat dst_gold = cv::abs(src); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Core, Abs, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES, |
|
testing::Values(MatType(CV_16SC1), MatType(CV_32FC1)), |
|
WHOLE_SUBMAT)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Sqr |
|
|
|
PARAM_TEST_CASE(Sqr, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
cv::Size size; |
|
int type; |
|
bool useRoi; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
type = GET_PARAM(2); |
|
useRoi = GET_PARAM(3); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
TEST_P(Sqr, Accuracy) |
|
{ |
|
cv::Mat src = randomMat(size, type); |
|
|
|
cv::gpu::GpuMat dst = createMat(size, type, useRoi); |
|
cv::gpu::sqr(loadMat(src, useRoi), dst); |
|
|
|
cv::Mat dst_gold; |
|
cv::multiply(src, src, dst_gold); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Core, Sqr, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES, |
|
testing::Values(MatType(CV_8UC1), MatType(CV_16UC1), MatType(CV_16SC1), MatType(CV_32FC1)), |
|
WHOLE_SUBMAT)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Sqrt |
|
|
|
namespace |
|
{ |
|
template <typename T> void sqrtImpl(const cv::Mat& src, cv::Mat& dst) |
|
{ |
|
dst.create(src.size(), src.type()); |
|
|
|
for (int y = 0; y < src.rows; ++y) |
|
{ |
|
for (int x = 0; x < src.cols; ++x) |
|
dst.at<T>(y, x) = static_cast<T>(std::sqrt(static_cast<float>(src.at<T>(y, x)))); |
|
} |
|
} |
|
|
|
void sqrtGold(const cv::Mat& src, cv::Mat& dst) |
|
{ |
|
typedef void (*func_t)(const cv::Mat& src, cv::Mat& dst); |
|
|
|
const func_t funcs[] = |
|
{ |
|
sqrtImpl<uchar>, sqrtImpl<schar>, sqrtImpl<ushort>, sqrtImpl<short>, |
|
sqrtImpl<int>, sqrtImpl<float> |
|
}; |
|
|
|
funcs[src.depth()](src, dst); |
|
} |
|
} |
|
|
|
PARAM_TEST_CASE(Sqrt, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
cv::Size size; |
|
int type; |
|
bool useRoi; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
type = GET_PARAM(2); |
|
useRoi = GET_PARAM(3); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
TEST_P(Sqrt, Accuracy) |
|
{ |
|
cv::Mat src = randomMat(size, type); |
|
|
|
cv::gpu::GpuMat dst = createMat(size, type, useRoi); |
|
cv::gpu::sqrt(loadMat(src, useRoi), dst); |
|
|
|
cv::Mat dst_gold; |
|
sqrtGold(src, dst_gold); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Core, Sqrt, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES, |
|
testing::Values(MatType(CV_8UC1), MatType(CV_16UC1), MatType(CV_16SC1), MatType(CV_32FC1)), |
|
WHOLE_SUBMAT)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Log |
|
|
|
namespace |
|
{ |
|
template <typename T> void logImpl(const cv::Mat& src, cv::Mat& dst) |
|
{ |
|
dst.create(src.size(), src.type()); |
|
|
|
for (int y = 0; y < src.rows; ++y) |
|
{ |
|
for (int x = 0; x < src.cols; ++x) |
|
dst.at<T>(y, x) = static_cast<T>(std::log(static_cast<float>(src.at<T>(y, x)))); |
|
} |
|
} |
|
|
|
void logGold(const cv::Mat& src, cv::Mat& dst) |
|
{ |
|
typedef void (*func_t)(const cv::Mat& src, cv::Mat& dst); |
|
|
|
const func_t funcs[] = |
|
{ |
|
logImpl<uchar>, logImpl<schar>, logImpl<ushort>, logImpl<short>, |
|
logImpl<int>, logImpl<float> |
|
}; |
|
|
|
funcs[src.depth()](src, dst); |
|
} |
|
} |
|
|
|
PARAM_TEST_CASE(Log, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
cv::Size size; |
|
int type; |
|
bool useRoi; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
type = GET_PARAM(2); |
|
useRoi = GET_PARAM(3); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
TEST_P(Log, Accuracy) |
|
{ |
|
cv::Mat src = randomMat(size, type, 1.0, 255.0); |
|
|
|
cv::gpu::GpuMat dst = createMat(size, type, useRoi); |
|
cv::gpu::log(loadMat(src, useRoi), dst); |
|
|
|
cv::Mat dst_gold; |
|
logGold(src, dst_gold); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 1e-6); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Core, Log, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES, |
|
testing::Values(MatType(CV_8UC1), MatType(CV_16UC1), MatType(CV_16SC1), MatType(CV_32FC1)), |
|
WHOLE_SUBMAT)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Exp |
|
|
|
PARAM_TEST_CASE(Exp, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
cv::Size size; |
|
int type; |
|
bool useRoi; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
type = GET_PARAM(2); |
|
useRoi = GET_PARAM(3); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
TEST_P(Exp, Accuracy) |
|
{ |
|
cv::Mat src = randomMat(size, type, 0.0, 10.0); |
|
|
|
cv::gpu::GpuMat dst = createMat(size, type, useRoi); |
|
cv::gpu::exp(loadMat(src, useRoi), dst); |
|
|
|
cv::Mat dst_gold; |
|
cv::exp(src, dst_gold); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 1e-2); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Core, Exp, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES, |
|
testing::Values(MatType(CV_32FC1)), |
|
WHOLE_SUBMAT)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// compare |
|
|
|
PARAM_TEST_CASE(Compare, cv::gpu::DeviceInfo, cv::Size, MatDepth, CmpCode, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
cv::Size size; |
|
int depth; |
|
int cmp_code; |
|
bool useRoi; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
depth = GET_PARAM(2); |
|
cmp_code = GET_PARAM(3); |
|
useRoi = GET_PARAM(4); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
TEST_P(Compare, Accuracy) |
|
{ |
|
cv::Mat src1 = randomMat(size, depth); |
|
cv::Mat src2 = randomMat(size, depth); |
|
|
|
cv::gpu::GpuMat dst = createMat(size, CV_8UC1, useRoi); |
|
cv::gpu::compare(loadMat(src1, useRoi), loadMat(src2, useRoi), dst, cmp_code); |
|
|
|
cv::Mat dst_gold; |
|
cv::compare(src1, src2, dst_gold, cmp_code); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Core, Compare, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES, |
|
ALL_DEPTH, |
|
ALL_CMP_CODES, |
|
WHOLE_SUBMAT)); |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// Bitwise_Array |
|
|
|
PARAM_TEST_CASE(Bitwise_Array, cv::gpu::DeviceInfo, cv::Size, MatType) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
cv::Size size; |
|
int type; |
|
|
|
cv::Mat src1; |
|
cv::Mat src2; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
type = GET_PARAM(2); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
src1 = randomMat(size, type, 0.0, std::numeric_limits<int>::max()); |
|
src2 = randomMat(size, type, 0.0, std::numeric_limits<int>::max()); |
|
} |
|
}; |
|
|
|
TEST_P(Bitwise_Array, Not) |
|
{ |
|
cv::gpu::GpuMat dst; |
|
cv::gpu::bitwise_not(loadMat(src1), dst); |
|
|
|
cv::Mat dst_gold = ~src1; |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0); |
|
} |
|
|
|
TEST_P(Bitwise_Array, Or) |
|
{ |
|
cv::gpu::GpuMat dst; |
|
cv::gpu::bitwise_or(loadMat(src1), loadMat(src2), dst); |
|
|
|
cv::Mat dst_gold = src1 | src2; |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0); |
|
} |
|
|
|
TEST_P(Bitwise_Array, And) |
|
{ |
|
cv::gpu::GpuMat dst; |
|
cv::gpu::bitwise_and(loadMat(src1), loadMat(src2), dst); |
|
|
|
cv::Mat dst_gold = src1 & src2; |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0); |
|
} |
|
|
|
TEST_P(Bitwise_Array, Xor) |
|
{ |
|
cv::gpu::GpuMat dst; |
|
cv::gpu::bitwise_xor(loadMat(src1), loadMat(src2), dst); |
|
|
|
cv::Mat dst_gold = src1 ^ src2; |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Core, Bitwise_Array, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES, |
|
TYPES(CV_8U, CV_32S, 1, 4))); |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// Bitwise_Scalar |
|
|
|
PARAM_TEST_CASE(Bitwise_Scalar, cv::gpu::DeviceInfo, cv::Size, MatDepth, int) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
cv::Size size; |
|
int depth; |
|
int channels; |
|
|
|
cv::Mat src; |
|
cv::Scalar val; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
depth = GET_PARAM(2); |
|
channels = GET_PARAM(3); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
src = randomMat(size, CV_MAKE_TYPE(depth, channels)); |
|
cv::Scalar_<int> ival = randomScalar(0.0, 255.0); |
|
val = ival; |
|
} |
|
}; |
|
|
|
TEST_P(Bitwise_Scalar, Or) |
|
{ |
|
cv::gpu::GpuMat dst; |
|
cv::gpu::bitwise_or(loadMat(src), val, dst); |
|
|
|
cv::Mat dst_gold; |
|
cv::bitwise_or(src, val, dst_gold); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0); |
|
} |
|
|
|
TEST_P(Bitwise_Scalar, And) |
|
{ |
|
cv::gpu::GpuMat dst; |
|
cv::gpu::bitwise_and(loadMat(src), val, dst); |
|
|
|
cv::Mat dst_gold; |
|
cv::bitwise_and(src, val, dst_gold); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0); |
|
} |
|
|
|
TEST_P(Bitwise_Scalar, Xor) |
|
{ |
|
cv::gpu::GpuMat dst; |
|
cv::gpu::bitwise_xor(loadMat(src), val, dst); |
|
|
|
cv::Mat dst_gold; |
|
cv::bitwise_xor(src, val, dst_gold); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Core, Bitwise_Scalar, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES, |
|
testing::Values(MatDepth(CV_8U), MatDepth(CV_16U), MatDepth(CV_32S)), |
|
testing::Values(1, 3, 4))); |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// RShift |
|
|
|
namespace |
|
{ |
|
template <typename T> void rhiftImpl(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst) |
|
{ |
|
const int cn = src.channels(); |
|
|
|
dst.create(src.size(), src.type()); |
|
|
|
for (int y = 0; y < src.rows; ++y) |
|
{ |
|
for (int x = 0; x < src.cols; ++x) |
|
{ |
|
for (int c = 0; c < cn; ++c) |
|
dst.at<T>(y, x * cn + c) = src.at<T>(y, x * cn + c) >> val.val[c]; |
|
} |
|
} |
|
} |
|
|
|
void rhiftGold(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst) |
|
{ |
|
typedef void (*func_t)(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst); |
|
|
|
const func_t funcs[] = |
|
{ |
|
rhiftImpl<uchar>, rhiftImpl<schar>, rhiftImpl<ushort>, rhiftImpl<short>, rhiftImpl<int> |
|
}; |
|
|
|
funcs[src.depth()](src, val, dst); |
|
} |
|
} |
|
|
|
PARAM_TEST_CASE(RShift, cv::gpu::DeviceInfo, cv::Size, MatDepth, int, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
cv::Size size; |
|
int depth; |
|
int channels; |
|
bool useRoi; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
depth = GET_PARAM(2); |
|
channels = GET_PARAM(3); |
|
useRoi = GET_PARAM(4); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
TEST_P(RShift, Accuracy) |
|
{ |
|
int type = CV_MAKE_TYPE(depth, channels); |
|
cv::Mat src = randomMat(size, type); |
|
cv::Scalar_<int> val = randomScalar(0.0, 8.0); |
|
|
|
cv::gpu::GpuMat dst = createMat(size, type, useRoi); |
|
cv::gpu::rshift(loadMat(src, useRoi), val, dst); |
|
|
|
cv::Mat dst_gold; |
|
rhiftGold(src, val, dst_gold); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Core, RShift, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES, |
|
testing::Values(MatDepth(CV_8U), MatDepth(CV_8S), MatDepth(CV_16U), MatDepth(CV_16S), MatDepth(CV_32S)), |
|
testing::Values(1, 3, 4), |
|
WHOLE_SUBMAT)); |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// LShift |
|
|
|
namespace |
|
{ |
|
template <typename T> void lhiftImpl(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst) |
|
{ |
|
const int cn = src.channels(); |
|
|
|
dst.create(src.size(), src.type()); |
|
|
|
for (int y = 0; y < src.rows; ++y) |
|
{ |
|
for (int x = 0; x < src.cols; ++x) |
|
{ |
|
for (int c = 0; c < cn; ++c) |
|
dst.at<T>(y, x * cn + c) = src.at<T>(y, x * cn + c) << val.val[c]; |
|
} |
|
} |
|
} |
|
|
|
void lhiftGold(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst) |
|
{ |
|
typedef void (*func_t)(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst); |
|
|
|
const func_t funcs[] = |
|
{ |
|
lhiftImpl<uchar>, lhiftImpl<schar>, lhiftImpl<ushort>, lhiftImpl<short>, lhiftImpl<int> |
|
}; |
|
|
|
funcs[src.depth()](src, val, dst); |
|
} |
|
} |
|
|
|
PARAM_TEST_CASE(LShift, cv::gpu::DeviceInfo, cv::Size, MatDepth, int, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
cv::Size size; |
|
int depth; |
|
int channels; |
|
bool useRoi; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
depth = GET_PARAM(2); |
|
channels = GET_PARAM(3); |
|
useRoi = GET_PARAM(4); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
TEST_P(LShift, Accuracy) |
|
{ |
|
int type = CV_MAKE_TYPE(depth, channels); |
|
cv::Mat src = randomMat(size, type); |
|
cv::Scalar_<int> val = randomScalar(0.0, 8.0); |
|
|
|
cv::gpu::GpuMat dst = createMat(size, type, useRoi); |
|
cv::gpu::rshift(loadMat(src, useRoi), val, dst); |
|
|
|
cv::Mat dst_gold; |
|
rhiftGold(src, val, dst_gold); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Core, LShift, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES, |
|
testing::Values(MatDepth(CV_8U), MatDepth(CV_16U), MatDepth(CV_32S)), |
|
testing::Values(1, 3, 4), |
|
WHOLE_SUBMAT)); |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// Min |
|
|
|
PARAM_TEST_CASE(Min, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
cv::Size size; |
|
int depth; |
|
bool useRoi; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
depth = GET_PARAM(2); |
|
useRoi = GET_PARAM(3); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
TEST_P(Min, Accuracy) |
|
{ |
|
cv::Mat src1 = randomMat(size, depth); |
|
cv::Mat src2 = randomMat(size, depth); |
|
|
|
cv::gpu::GpuMat dst = createMat(size, depth, useRoi); |
|
cv::gpu::min(loadMat(src1, useRoi), loadMat(src2, useRoi), dst); |
|
|
|
cv::Mat dst_gold = cv::min(src1, src2); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Core, Min, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES, |
|
ALL_DEPTH, |
|
WHOLE_SUBMAT)); |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// Max |
|
|
|
PARAM_TEST_CASE(Max, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
cv::Size size; |
|
int depth; |
|
bool useRoi; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
depth = GET_PARAM(2); |
|
useRoi = GET_PARAM(3); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
TEST_P(Max, Accuracy) |
|
{ |
|
cv::Mat src1 = randomMat(size, depth); |
|
cv::Mat src2 = randomMat(size, depth); |
|
|
|
cv::gpu::GpuMat dst = createMat(size, depth, useRoi); |
|
cv::gpu::max(loadMat(src1, useRoi), loadMat(src2, useRoi), dst); |
|
|
|
cv::Mat dst_gold = cv::max(src1, src2); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Core, Max, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES, |
|
ALL_DEPTH, |
|
WHOLE_SUBMAT)); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
using namespace cvtest; |
|
using namespace testing; |
|
|
|
PARAM_TEST_CASE(ArithmTestBase, cv::gpu::DeviceInfo, MatType, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
int type; |
|
bool useRoi; |
|
|
|
cv::Size size; |
|
cv::Mat mat1; |
|
cv::Mat mat2; |
|
cv::Scalar val; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
type = GET_PARAM(1); |
|
useRoi = GET_PARAM(2); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
cv::RNG& rng = TS::ptr()->get_rng(); |
|
|
|
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); |
|
|
|
mat1 = randomMat(rng, size, type, 5, 16, false); |
|
mat2 = randomMat(rng, size, type, 5, 16, false); |
|
|
|
val = cv::Scalar(rng.uniform(1, 3), rng.uniform(1, 3), rng.uniform(1, 3), rng.uniform(1, 3)); |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// transpose |
|
|
|
struct Transpose : ArithmTestBase {}; |
|
|
|
TEST_P(Transpose, Accuracy) |
|
{ |
|
cv::Mat dst_gold; |
|
cv::transpose(mat1, dst_gold); |
|
|
|
cv::Mat dst; |
|
|
|
cv::gpu::GpuMat gpuRes; |
|
|
|
cv::gpu::transpose(loadMat(mat1, useRoi), gpuRes); |
|
|
|
gpuRes.download(dst); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Arithm, Transpose, Combine( |
|
ALL_DEVICES, |
|
Values(CV_8UC1, CV_8UC4, CV_8SC1, CV_8SC4, CV_16UC2, CV_16SC2, CV_32SC1, CV_32SC2, CV_32FC1, CV_32FC2, CV_64FC1), |
|
WHOLE_SUBMAT)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// meanStdDev |
|
|
|
PARAM_TEST_CASE(MeanStdDev, cv::gpu::DeviceInfo, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
bool useRoi; |
|
|
|
cv::Size size; |
|
cv::Mat mat; |
|
|
|
cv::Scalar mean_gold; |
|
cv::Scalar stddev_gold; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
useRoi = GET_PARAM(1); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
cv::RNG& rng = TS::ptr()->get_rng(); |
|
|
|
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); |
|
|
|
mat = randomMat(rng, size, CV_8UC1, 1, 255, false); |
|
|
|
cv::meanStdDev(mat, mean_gold, stddev_gold); |
|
} |
|
}; |
|
|
|
TEST_P(MeanStdDev, Accuracy) |
|
{ |
|
cv::Scalar mean; |
|
cv::Scalar stddev; |
|
|
|
cv::gpu::meanStdDev(loadMat(mat, useRoi), mean, stddev); |
|
|
|
EXPECT_NEAR(mean_gold[0], mean[0], 1e-5); |
|
EXPECT_NEAR(mean_gold[1], mean[1], 1e-5); |
|
EXPECT_NEAR(mean_gold[2], mean[2], 1e-5); |
|
EXPECT_NEAR(mean_gold[3], mean[3], 1e-5); |
|
|
|
EXPECT_NEAR(stddev_gold[0], stddev[0], 1e-5); |
|
EXPECT_NEAR(stddev_gold[1], stddev[1], 1e-5); |
|
EXPECT_NEAR(stddev_gold[2], stddev[2], 1e-5); |
|
EXPECT_NEAR(stddev_gold[3], stddev[3], 1e-5); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Arithm, MeanStdDev, Combine( |
|
ALL_DEVICES, |
|
WHOLE_SUBMAT)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// normDiff |
|
|
|
PARAM_TEST_CASE(NormDiff, cv::gpu::DeviceInfo, NormCode, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
int normCode; |
|
bool useRoi; |
|
|
|
cv::Size size; |
|
cv::Mat mat1, mat2; |
|
|
|
double norm_gold; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
normCode = GET_PARAM(1); |
|
useRoi = GET_PARAM(2); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
cv::RNG& rng = TS::ptr()->get_rng(); |
|
|
|
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); |
|
|
|
mat1 = randomMat(rng, size, CV_8UC1, 1, 255, false); |
|
mat2 = randomMat(rng, size, CV_8UC1, 1, 255, false); |
|
|
|
norm_gold = cv::norm(mat1, mat2, normCode); |
|
} |
|
}; |
|
|
|
TEST_P(NormDiff, Accuracy) |
|
{ |
|
double norm = cv::gpu::norm(loadMat(mat1, useRoi), loadMat(mat2, useRoi), normCode); |
|
|
|
EXPECT_NEAR(norm_gold, norm, 1e-6); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Arithm, NormDiff, Combine( |
|
ALL_DEVICES, |
|
Values((int) cv::NORM_INF, (int) cv::NORM_L1, (int) cv::NORM_L2), |
|
WHOLE_SUBMAT)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// flip |
|
|
|
PARAM_TEST_CASE(Flip, cv::gpu::DeviceInfo, MatType, FlipCode, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
int type; |
|
int flip_code; |
|
bool useRoi; |
|
|
|
cv::Size size; |
|
cv::Mat mat; |
|
|
|
cv::Mat dst_gold; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
type = GET_PARAM(1); |
|
flip_code = GET_PARAM(2); |
|
useRoi = GET_PARAM(3); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
cv::RNG& rng = TS::ptr()->get_rng(); |
|
|
|
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); |
|
|
|
mat = randomMat(rng, size, type, 1, 255, false); |
|
|
|
cv::flip(mat, dst_gold, flip_code); |
|
} |
|
}; |
|
|
|
TEST_P(Flip, Accuracy) |
|
{ |
|
cv::Mat dst; |
|
|
|
cv::gpu::GpuMat gpu_res; |
|
|
|
cv::gpu::flip(loadMat(mat, useRoi), gpu_res, flip_code); |
|
|
|
gpu_res.download(dst); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Arithm, Flip, Combine( |
|
ALL_DEVICES, |
|
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_16UC1, CV_16UC3, CV_16UC4, CV_32SC1, CV_32SC3, CV_32SC4, CV_32FC1, CV_32FC3, CV_32FC4), |
|
Values((int)FLIP_BOTH, (int)FLIP_X, (int)FLIP_Y), |
|
WHOLE_SUBMAT)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// LUT |
|
|
|
PARAM_TEST_CASE(LUT, cv::gpu::DeviceInfo, MatType, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
int type; |
|
bool useRoi; |
|
|
|
cv::Size size; |
|
cv::Mat mat; |
|
cv::Mat lut; |
|
|
|
cv::Mat dst_gold; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
type = GET_PARAM(1); |
|
useRoi = GET_PARAM(2); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
cv::RNG& rng = TS::ptr()->get_rng(); |
|
|
|
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); |
|
|
|
mat = randomMat(rng, size, type, 1, 255, false); |
|
lut = randomMat(rng, cv::Size(256, 1), CV_8UC1, 100, 200, false); |
|
|
|
cv::LUT(mat, lut, dst_gold); |
|
} |
|
}; |
|
|
|
TEST_P(LUT, Accuracy) |
|
{ |
|
cv::Mat dst; |
|
|
|
cv::gpu::GpuMat gpu_res; |
|
|
|
cv::gpu::LUT(loadMat(mat, useRoi), lut, gpu_res); |
|
|
|
gpu_res.download(dst); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Arithm, LUT, Combine( |
|
ALL_DEVICES, |
|
Values(CV_8UC1, CV_8UC3), |
|
WHOLE_SUBMAT)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// pow |
|
|
|
PARAM_TEST_CASE(Pow, cv::gpu::DeviceInfo, MatType, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
int type; |
|
bool useRoi; |
|
|
|
double power; |
|
cv::Size size; |
|
cv::Mat mat; |
|
|
|
cv::Mat dst_gold; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
type = GET_PARAM(1); |
|
useRoi = GET_PARAM(2); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
cv::RNG& rng = TS::ptr()->get_rng(); |
|
|
|
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); |
|
|
|
mat = randomMat(rng, size, type, 0.0, 100.0, false); |
|
|
|
if (mat.depth() == CV_32F) |
|
power = rng.uniform(1.2f, 3.f); |
|
else |
|
{ |
|
int ipower = rng.uniform(2, 8); |
|
power = (float)ipower; |
|
} |
|
|
|
cv::pow(mat, power, dst_gold); |
|
} |
|
}; |
|
|
|
TEST_P(Pow, Accuracy) |
|
{ |
|
cv::Mat dst; |
|
|
|
cv::gpu::GpuMat gpu_res; |
|
|
|
cv::gpu::pow(loadMat(mat, useRoi), power, gpu_res); |
|
|
|
gpu_res.download(dst); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 2); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Arithm, Pow, Combine( |
|
ALL_DEVICES, |
|
Values(CV_32F, CV_32FC3), |
|
WHOLE_SUBMAT)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// magnitude |
|
|
|
PARAM_TEST_CASE(Magnitude, cv::gpu::DeviceInfo, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
bool useRoi; |
|
|
|
cv::Size size; |
|
cv::Mat mat1, mat2; |
|
|
|
cv::Mat dst_gold; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
useRoi = GET_PARAM(1); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
cv::RNG& rng = TS::ptr()->get_rng(); |
|
|
|
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); |
|
|
|
mat1 = randomMat(rng, size, CV_32FC1, 0.0, 100.0, false); |
|
mat2 = randomMat(rng, size, CV_32FC1, 0.0, 100.0, false); |
|
|
|
cv::magnitude(mat1, mat2, dst_gold); |
|
} |
|
}; |
|
|
|
TEST_P(Magnitude, Accuracy) |
|
{ |
|
cv::Mat dst; |
|
|
|
cv::gpu::GpuMat gpu_res; |
|
|
|
cv::gpu::magnitude(loadMat(mat1, useRoi), loadMat(mat2, useRoi), gpu_res); |
|
|
|
gpu_res.download(dst); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 1e-4); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Arithm, Magnitude, Combine( |
|
ALL_DEVICES, |
|
WHOLE_SUBMAT)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// phase |
|
|
|
PARAM_TEST_CASE(Phase, cv::gpu::DeviceInfo, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
bool useRoi; |
|
|
|
cv::Size size; |
|
cv::Mat mat1, mat2; |
|
|
|
cv::Mat dst_gold; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
useRoi = GET_PARAM(1); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
cv::RNG& rng = TS::ptr()->get_rng(); |
|
|
|
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); |
|
|
|
mat1 = randomMat(rng, size, CV_32FC1, 0.0, 100.0, false); |
|
mat2 = randomMat(rng, size, CV_32FC1, 0.0, 100.0, false); |
|
|
|
cv::phase(mat1, mat2, dst_gold); |
|
} |
|
}; |
|
|
|
TEST_P(Phase, Accuracy) |
|
{ |
|
cv::Mat dst; |
|
|
|
cv::gpu::GpuMat gpu_res; |
|
|
|
cv::gpu::phase(loadMat(mat1, useRoi), loadMat(mat2, useRoi), gpu_res); |
|
|
|
gpu_res.download(dst); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 1e-3); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Arithm, Phase, Combine( |
|
ALL_DEVICES, |
|
WHOLE_SUBMAT)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// cartToPolar |
|
|
|
PARAM_TEST_CASE(CartToPolar, cv::gpu::DeviceInfo, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
bool useRoi; |
|
|
|
cv::Size size; |
|
cv::Mat mat1, mat2; |
|
|
|
cv::Mat mag_gold; |
|
cv::Mat angle_gold; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
useRoi = GET_PARAM(1); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
cv::RNG& rng = TS::ptr()->get_rng(); |
|
|
|
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); |
|
|
|
mat1 = randomMat(rng, size, CV_32FC1, -100.0, 100.0, false); |
|
mat2 = randomMat(rng, size, CV_32FC1, -100.0, 100.0, false); |
|
|
|
cv::cartToPolar(mat1, mat2, mag_gold, angle_gold); |
|
} |
|
}; |
|
|
|
TEST_P(CartToPolar, Accuracy) |
|
{ |
|
cv::Mat mag, angle; |
|
|
|
cv::gpu::GpuMat gpuMag; |
|
cv::gpu::GpuMat gpuAngle; |
|
|
|
cv::gpu::cartToPolar(loadMat(mat1, useRoi), loadMat(mat2, useRoi), gpuMag, gpuAngle); |
|
|
|
gpuMag.download(mag); |
|
gpuAngle.download(angle); |
|
|
|
EXPECT_MAT_NEAR(mag_gold, mag, 1e-4); |
|
EXPECT_MAT_NEAR(angle_gold, angle, 1e-3); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Arithm, CartToPolar, Combine( |
|
ALL_DEVICES, |
|
WHOLE_SUBMAT)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// polarToCart |
|
|
|
PARAM_TEST_CASE(PolarToCart, cv::gpu::DeviceInfo, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
bool useRoi; |
|
|
|
cv::Size size; |
|
cv::Mat mag; |
|
cv::Mat angle; |
|
|
|
cv::Mat x_gold; |
|
cv::Mat y_gold; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
useRoi = GET_PARAM(1); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
cv::RNG& rng = TS::ptr()->get_rng(); |
|
|
|
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); |
|
|
|
mag = randomMat(rng, size, CV_32FC1, -100.0, 100.0, false); |
|
angle = randomMat(rng, size, CV_32FC1, 0.0, 2.0 * CV_PI, false); |
|
|
|
cv::polarToCart(mag, angle, x_gold, y_gold); |
|
} |
|
}; |
|
|
|
TEST_P(PolarToCart, Accuracy) |
|
{ |
|
cv::Mat x, y; |
|
|
|
cv::gpu::GpuMat gpuX; |
|
cv::gpu::GpuMat gpuY; |
|
|
|
cv::gpu::polarToCart(loadMat(mag, useRoi), loadMat(angle, useRoi), gpuX, gpuY); |
|
|
|
gpuX.download(x); |
|
gpuY.download(y); |
|
|
|
EXPECT_MAT_NEAR(x_gold, x, 1e-4); |
|
EXPECT_MAT_NEAR(y_gold, y, 1e-4); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Arithm, PolarToCart, Combine( |
|
ALL_DEVICES, |
|
WHOLE_SUBMAT)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// minMax |
|
|
|
PARAM_TEST_CASE(MinMax, cv::gpu::DeviceInfo, MatType, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
int type; |
|
bool useRoi; |
|
|
|
cv::Size size; |
|
cv::Mat mat; |
|
cv::Mat mask; |
|
|
|
double minVal_gold; |
|
double maxVal_gold; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
type = GET_PARAM(1); |
|
useRoi = GET_PARAM(2); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
cv::RNG& rng = TS::ptr()->get_rng(); |
|
|
|
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); |
|
|
|
mat = randomMat(rng, size, type, 0.0, 127.0, false); |
|
mask = randomMat(rng, size, CV_8UC1, 0, 2, false); |
|
|
|
if (type != CV_8S) |
|
{ |
|
cv::minMaxLoc(mat, &minVal_gold, &maxVal_gold, 0, 0, mask); |
|
} |
|
else |
|
{ |
|
// OpenCV's minMaxLoc doesn't support CV_8S type |
|
minVal_gold = std::numeric_limits<double>::max(); |
|
maxVal_gold = -std::numeric_limits<double>::max(); |
|
for (int i = 0; i < mat.rows; ++i) |
|
{ |
|
const signed char* mat_row = mat.ptr<signed char>(i); |
|
const unsigned char* mask_row = mask.ptr<unsigned char>(i); |
|
for (int j = 0; j < mat.cols; ++j) |
|
{ |
|
if (mask_row[j]) |
|
{ |
|
signed char val = mat_row[j]; |
|
if (val < minVal_gold) minVal_gold = val; |
|
if (val > maxVal_gold) maxVal_gold = val; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
}; |
|
|
|
TEST_P(MinMax, Accuracy) |
|
{ |
|
if (type == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) |
|
return; |
|
|
|
double minVal, maxVal; |
|
|
|
cv::gpu::minMax(loadMat(mat, useRoi), &minVal, &maxVal, loadMat(mask, useRoi)); |
|
|
|
EXPECT_DOUBLE_EQ(minVal_gold, minVal); |
|
EXPECT_DOUBLE_EQ(maxVal_gold, maxVal); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Arithm, MinMax, Combine( |
|
ALL_DEVICES, |
|
Values(CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F), |
|
WHOLE_SUBMAT)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// minMaxLoc |
|
|
|
PARAM_TEST_CASE(MinMaxLoc, cv::gpu::DeviceInfo, MatType, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
int type; |
|
bool useRoi; |
|
|
|
cv::Size size; |
|
cv::Mat mat; |
|
cv::Mat mask; |
|
|
|
double minVal_gold; |
|
double maxVal_gold; |
|
cv::Point minLoc_gold; |
|
cv::Point maxLoc_gold; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
type = GET_PARAM(1); |
|
useRoi = GET_PARAM(2); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
cv::RNG& rng = TS::ptr()->get_rng(); |
|
|
|
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); |
|
|
|
mat = randomMat(rng, size, type, 0.0, 127.0, false); |
|
mask = randomMat(rng, size, CV_8UC1, 0, 2, false); |
|
|
|
if (type != CV_8S) |
|
{ |
|
cv::minMaxLoc(mat, &minVal_gold, &maxVal_gold, &minLoc_gold, &maxLoc_gold, mask); |
|
} |
|
else |
|
{ |
|
// OpenCV's minMaxLoc doesn't support CV_8S type |
|
minVal_gold = std::numeric_limits<double>::max(); |
|
maxVal_gold = -std::numeric_limits<double>::max(); |
|
for (int i = 0; i < mat.rows; ++i) |
|
{ |
|
const signed char* mat_row = mat.ptr<signed char>(i); |
|
const unsigned char* mask_row = mask.ptr<unsigned char>(i); |
|
for (int j = 0; j < mat.cols; ++j) |
|
{ |
|
if (mask_row[j]) |
|
{ |
|
signed char val = mat_row[j]; |
|
if (val < minVal_gold) { minVal_gold = val; minLoc_gold = cv::Point(j, i); } |
|
if (val > maxVal_gold) { maxVal_gold = val; maxLoc_gold = cv::Point(j, i); } |
|
} |
|
} |
|
} |
|
} |
|
} |
|
}; |
|
|
|
TEST_P(MinMaxLoc, Accuracy) |
|
{ |
|
if (type == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) |
|
return; |
|
|
|
double minVal, maxVal; |
|
cv::Point minLoc, maxLoc; |
|
|
|
cv::gpu::minMaxLoc(loadMat(mat, useRoi), &minVal, &maxVal, &minLoc, &maxLoc, loadMat(mask, useRoi)); |
|
|
|
EXPECT_DOUBLE_EQ(minVal_gold, minVal); |
|
EXPECT_DOUBLE_EQ(maxVal_gold, maxVal); |
|
|
|
int cmpMinVals = memcmp(mat.data + minLoc_gold.y * mat.step + minLoc_gold.x * mat.elemSize(), |
|
mat.data + minLoc.y * mat.step + minLoc.x * mat.elemSize(), |
|
mat.elemSize()); |
|
int cmpMaxVals = memcmp(mat.data + maxLoc_gold.y * mat.step + maxLoc_gold.x * mat.elemSize(), |
|
mat.data + maxLoc.y * mat.step + maxLoc.x * mat.elemSize(), |
|
mat.elemSize()); |
|
|
|
EXPECT_EQ(0, cmpMinVals); |
|
EXPECT_EQ(0, cmpMaxVals); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Arithm, MinMaxLoc, Combine( |
|
ALL_DEVICES, |
|
Values(CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F), |
|
WHOLE_SUBMAT)); |
|
|
|
//////////////////////////////////////////////////////////////////////////// |
|
// countNonZero |
|
|
|
PARAM_TEST_CASE(CountNonZero, cv::gpu::DeviceInfo, MatType, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
int type; |
|
bool useRoi; |
|
|
|
cv::Size size; |
|
cv::Mat mat; |
|
|
|
int n_gold; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
type = GET_PARAM(1); |
|
useRoi = GET_PARAM(2); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
cv::RNG& rng = TS::ptr()->get_rng(); |
|
|
|
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); |
|
|
|
cv::Mat matBase = randomMat(rng, size, CV_8U, 0.0, 1.0, false); |
|
matBase.convertTo(mat, type); |
|
|
|
n_gold = cv::countNonZero(mat); |
|
} |
|
}; |
|
|
|
TEST_P(CountNonZero, Accuracy) |
|
{ |
|
if (type == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) |
|
return; |
|
|
|
int n = cv::gpu::countNonZero(loadMat(mat, useRoi)); |
|
|
|
ASSERT_EQ(n_gold, n); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Arithm, CountNonZero, Combine( |
|
ALL_DEVICES, |
|
Values(CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F), |
|
WHOLE_SUBMAT)); |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// sum |
|
|
|
PARAM_TEST_CASE(Sum, cv::gpu::DeviceInfo, MatType, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
int type; |
|
bool useRoi; |
|
|
|
cv::Size size; |
|
cv::Mat mat; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
type = GET_PARAM(1); |
|
useRoi = GET_PARAM(2); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
cv::RNG& rng = TS::ptr()->get_rng(); |
|
|
|
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); |
|
|
|
mat = randomMat(rng, size, CV_8U, 0.0, 10.0, false); |
|
} |
|
}; |
|
|
|
TEST_P(Sum, Simple) |
|
{ |
|
if (type == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) |
|
return; |
|
|
|
cv::Scalar sum_gold = cv::sum(mat); |
|
|
|
cv::Scalar sum = cv::gpu::sum(loadMat(mat, useRoi)); |
|
|
|
EXPECT_NEAR(sum[0], sum_gold[0], mat.size().area() * 1e-5); |
|
EXPECT_NEAR(sum[1], sum_gold[1], mat.size().area() * 1e-5); |
|
EXPECT_NEAR(sum[2], sum_gold[2], mat.size().area() * 1e-5); |
|
EXPECT_NEAR(sum[3], sum_gold[3], mat.size().area() * 1e-5); |
|
} |
|
|
|
TEST_P(Sum, Abs) |
|
{ |
|
if (type == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) |
|
return; |
|
|
|
cv::Scalar sum_gold = cv::norm(mat, cv::NORM_L1); |
|
|
|
cv::Scalar sum = cv::gpu::absSum(loadMat(mat, useRoi)); |
|
|
|
EXPECT_NEAR(sum[0], sum_gold[0], mat.size().area() * 1e-5); |
|
EXPECT_NEAR(sum[1], sum_gold[1], mat.size().area() * 1e-5); |
|
EXPECT_NEAR(sum[2], sum_gold[2], mat.size().area() * 1e-5); |
|
EXPECT_NEAR(sum[3], sum_gold[3], mat.size().area() * 1e-5); |
|
} |
|
|
|
TEST_P(Sum, Sqr) |
|
{ |
|
if (type == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) |
|
return; |
|
|
|
cv::Mat sqrmat; |
|
multiply(mat, mat, sqrmat); |
|
cv::Scalar sum_gold = sum(sqrmat); |
|
|
|
cv::Scalar sum = cv::gpu::sqrSum(loadMat(mat, useRoi)); |
|
|
|
EXPECT_NEAR(sum[0], sum_gold[0], mat.size().area() * 1e-5); |
|
EXPECT_NEAR(sum[1], sum_gold[1], mat.size().area() * 1e-5); |
|
EXPECT_NEAR(sum[2], sum_gold[2], mat.size().area() * 1e-5); |
|
EXPECT_NEAR(sum[3], sum_gold[3], mat.size().area() * 1e-5); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Arithm, Sum, Combine( |
|
ALL_DEVICES, |
|
Values(CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F), |
|
WHOLE_SUBMAT)); |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// addWeighted |
|
|
|
PARAM_TEST_CASE(AddWeighted, cv::gpu::DeviceInfo, MatType, MatType, MatType, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
int type1; |
|
int type2; |
|
int dtype; |
|
bool useRoi; |
|
|
|
cv::Size size; |
|
cv::Mat src1; |
|
cv::Mat src2; |
|
double alpha; |
|
double beta; |
|
double gamma; |
|
|
|
cv::Mat dst_gold; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
type1 = GET_PARAM(1); |
|
type2 = GET_PARAM(2); |
|
dtype = GET_PARAM(3); |
|
useRoi = GET_PARAM(4); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
cv::RNG& rng = TS::ptr()->get_rng(); |
|
|
|
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); |
|
|
|
src1 = randomMat(rng, size, type1, 0.0, 255.0, false); |
|
src2 = randomMat(rng, size, type2, 0.0, 255.0, false); |
|
|
|
alpha = rng.uniform(-10.0, 10.0); |
|
beta = rng.uniform(-10.0, 10.0); |
|
gamma = rng.uniform(-10.0, 10.0); |
|
|
|
cv::addWeighted(src1, alpha, src2, beta, gamma, dst_gold, dtype); |
|
} |
|
}; |
|
|
|
TEST_P(AddWeighted, Accuracy) |
|
{ |
|
if ((src1.depth() == CV_64F || src2.depth() == CV_64F || dst_gold.depth() == CV_64F) && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) |
|
return; |
|
|
|
cv::Mat dst; |
|
|
|
cv::gpu::GpuMat dev_dst; |
|
|
|
cv::gpu::addWeighted(loadMat(src1, useRoi), alpha, loadMat(src2, useRoi), beta, gamma, dev_dst, dtype); |
|
|
|
dev_dst.download(dst); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, dtype < CV_32F ? 1.0 : 1e-12); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Arithm, AddWeighted, Combine( |
|
ALL_DEVICES, |
|
TYPES(CV_8U, CV_64F, 1, 1), |
|
TYPES(CV_8U, CV_64F, 1, 1), |
|
TYPES(CV_8U, CV_64F, 1, 1), |
|
WHOLE_SUBMAT)); |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// reduce |
|
|
|
PARAM_TEST_CASE(Reduce, cv::gpu::DeviceInfo, MatType, int, ReduceOp, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
int type; |
|
int dim; |
|
int reduceOp; |
|
bool useRoi; |
|
|
|
cv::Size size; |
|
cv::Mat src; |
|
|
|
cv::Mat dst_gold; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
type = GET_PARAM(1); |
|
dim = GET_PARAM(2); |
|
reduceOp = GET_PARAM(3); |
|
useRoi = GET_PARAM(4); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
cv::RNG& rng = TS::ptr()->get_rng(); |
|
|
|
size = cv::Size(rng.uniform(100, 400), rng.uniform(100, 400)); |
|
|
|
src = randomMat(rng, size, type, 0.0, 255.0, false); |
|
|
|
cv::reduce(src, dst_gold, dim, reduceOp, reduceOp == CV_REDUCE_SUM || reduceOp == CV_REDUCE_AVG ? CV_32F : CV_MAT_DEPTH(type)); |
|
|
|
if (dim == 1) |
|
{ |
|
dst_gold.cols = dst_gold.rows; |
|
dst_gold.rows = 1; |
|
dst_gold.step = dst_gold.cols * dst_gold.elemSize(); |
|
} |
|
} |
|
}; |
|
|
|
TEST_P(Reduce, Accuracy) |
|
{ |
|
cv::Mat dst; |
|
|
|
cv::gpu::GpuMat dev_dst; |
|
|
|
cv::gpu::reduce(loadMat(src, useRoi), dev_dst, dim, reduceOp, reduceOp == CV_REDUCE_SUM || reduceOp == CV_REDUCE_AVG ? CV_32F : CV_MAT_DEPTH(type)); |
|
|
|
dev_dst.download(dst); |
|
|
|
double norm = reduceOp == CV_REDUCE_SUM || reduceOp == CV_REDUCE_AVG ? 1e-1 : 0.0; |
|
EXPECT_MAT_NEAR(dst_gold, dst, norm); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Arithm, Reduce, Combine( |
|
ALL_DEVICES, |
|
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_16UC1, CV_16UC3, CV_16UC4, CV_32FC1, CV_32FC3, CV_32FC4), |
|
Values(0, 1), |
|
Values((int)CV_REDUCE_SUM, (int)CV_REDUCE_AVG, (int)CV_REDUCE_MAX, (int)CV_REDUCE_MIN), |
|
WHOLE_SUBMAT)); |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// gemm |
|
|
|
PARAM_TEST_CASE(GEMM, cv::gpu::DeviceInfo, MatType, GemmFlags, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
int type; |
|
int flags; |
|
bool useRoi; |
|
|
|
int size; |
|
cv::Mat src1; |
|
cv::Mat src2; |
|
cv::Mat src3; |
|
double alpha; |
|
double beta; |
|
|
|
cv::Mat dst_gold; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
type = GET_PARAM(1); |
|
flags = GET_PARAM(2); |
|
useRoi = GET_PARAM(3); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
cv::RNG& rng = TS::ptr()->get_rng(); |
|
|
|
size = rng.uniform(100, 200); |
|
|
|
src1 = randomMat(rng, cv::Size(size, size), type, -10.0, 10.0, false); |
|
src2 = randomMat(rng, cv::Size(size, size), type, -10.0, 10.0, false); |
|
src3 = randomMat(rng, cv::Size(size, size), type, -10.0, 10.0, false); |
|
alpha = rng.uniform(-10.0, 10.0); |
|
beta = rng.uniform(-10.0, 10.0); |
|
|
|
cv::gemm(src1, src2, alpha, src3, beta, dst_gold, flags); |
|
} |
|
}; |
|
|
|
TEST_P(GEMM, Accuracy) |
|
{ |
|
cv::Mat dst; |
|
|
|
cv::gpu::GpuMat dev_dst; |
|
|
|
cv::gpu::gemm(loadMat(src1, useRoi), loadMat(src2, useRoi), alpha, loadMat(src3, useRoi), beta, dev_dst, flags); |
|
|
|
dev_dst.download(dst); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 1e-1); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Arithm, GEMM, Combine( |
|
ALL_DEVICES, |
|
Values(CV_32FC1, CV_32FC2), |
|
Values(0, (int) cv::GEMM_1_T, (int) cv::GEMM_2_T, (int) cv::GEMM_3_T), |
|
WHOLE_SUBMAT)); |
|
|
|
#endif // HAVE_CUDA
|
|
|