mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
432 lines
18 KiB
432 lines
18 KiB
#include <algorithm> |
|
#include <iostream> |
|
#include <cctype> |
|
|
|
#include <opencv2/gapi.hpp> |
|
#include <opencv2/gapi/core.hpp> |
|
#include <opencv2/gapi/infer.hpp> |
|
#include <opencv2/gapi/infer/ie.hpp> |
|
#include <opencv2/gapi/streaming/cap.hpp> |
|
#include <opencv2/gapi/cpu/gcpukernel.hpp> |
|
#include <opencv2/highgui.hpp> // CommandLineParser |
|
|
|
const std::string about = |
|
"This is an OpenCV-based version of Gaze Estimation example"; |
|
const std::string keys = |
|
"{ h help | | Print this help message }" |
|
"{ input | | Path to the input video file }" |
|
"{ facem | face-detection-retail-0005.xml | Path to OpenVINO face detection model (.xml) }" |
|
"{ faced | CPU | Target device for the face detection (e.g. CPU, GPU, VPU, ...) }" |
|
"{ landm | facial-landmarks-35-adas-0002.xml | Path to OpenVINO landmarks detector model (.xml) }" |
|
"{ landd | CPU | Target device for the landmarks detector (e.g. CPU, GPU, VPU, ...) }" |
|
"{ headm | head-pose-estimation-adas-0001.xml | Path to OpenVINO head pose estimation model (.xml) }" |
|
"{ headd | CPU | Target device for the head pose estimation inference (e.g. CPU, GPU, VPU, ...) }" |
|
"{ gazem | gaze-estimation-adas-0002.xml | Path to OpenVINO gaze vector estimaiton model (.xml) }" |
|
"{ gazed | CPU | Target device for the gaze vector estimation inference (e.g. CPU, GPU, VPU, ...) }" |
|
; |
|
|
|
namespace { |
|
std::string weights_path(const std::string &model_path) { |
|
const auto EXT_LEN = 4u; |
|
const auto sz = model_path.size(); |
|
CV_Assert(sz > EXT_LEN); |
|
|
|
auto ext = model_path.substr(sz - EXT_LEN); |
|
auto lower = [](unsigned char c) { |
|
return static_cast<unsigned char>(std::tolower(c)); |
|
}; |
|
std::transform(ext.begin(), ext.end(), ext.begin(), lower); |
|
CV_Assert(ext == ".xml"); |
|
return model_path.substr(0u, sz - EXT_LEN) + ".bin"; |
|
} |
|
} // anonymous namespace |
|
|
|
namespace custom { |
|
namespace { |
|
using GMat3 = std::tuple<cv::GMat,cv::GMat,cv::GMat>; |
|
using GMats = cv::GArray<cv::GMat>; |
|
using GRects = cv::GArray<cv::Rect>; |
|
using GSize = cv::GOpaque<cv::Size>; |
|
G_API_NET(Faces, <cv::GMat(cv::GMat)>, "face-detector" ); |
|
G_API_NET(Landmarks, <cv::GMat(cv::GMat)>, "facial-landmarks"); |
|
G_API_NET(HeadPose, < GMat3(cv::GMat)>, "head-pose"); |
|
G_API_NET(Gaze, <cv::GMat(cv::GMat,cv::GMat,cv::GMat)>, "gaze-vector"); |
|
|
|
G_API_OP(Size, <GSize(cv::GMat)>, "custom.gapi.size") { |
|
static cv::GOpaqueDesc outMeta(const cv::GMatDesc &) { |
|
return cv::empty_gopaque_desc(); |
|
} |
|
}; |
|
|
|
G_API_OP(ParseSSD, |
|
<GRects(cv::GMat, GSize, bool)>, |
|
"custom.gaze_estimation.parseSSD") { |
|
static cv::GArrayDesc outMeta( const cv::GMatDesc & |
|
, const cv::GOpaqueDesc & |
|
, bool) { |
|
return cv::empty_array_desc(); |
|
} |
|
}; |
|
|
|
// Left/Right eye per every face |
|
G_API_OP(ParseEyes, |
|
<std::tuple<GRects, GRects>(GMats, GRects, GSize)>, |
|
"custom.gaze_estimation.parseEyes") { |
|
static std::tuple<cv::GArrayDesc, cv::GArrayDesc> |
|
outMeta( const cv::GArrayDesc & |
|
, const cv::GArrayDesc & |
|
, const cv::GOpaqueDesc &) { |
|
return std::make_tuple(cv::empty_array_desc(), cv::empty_array_desc()); |
|
} |
|
}; |
|
|
|
// Combine three scalars into a 1x3 vector (per every face) |
|
G_API_OP(ProcessPoses, |
|
<GMats(GMats, GMats, GMats)>, |
|
"custom.gaze_estimation.processPoses") { |
|
static cv::GArrayDesc outMeta( const cv::GArrayDesc & |
|
, const cv::GArrayDesc & |
|
, const cv::GArrayDesc &) { |
|
return cv::empty_array_desc(); |
|
} |
|
}; |
|
|
|
void adjustBoundingBox(cv::Rect& boundingBox) { |
|
auto w = boundingBox.width; |
|
auto h = boundingBox.height; |
|
|
|
boundingBox.x -= static_cast<int>(0.067 * w); |
|
boundingBox.y -= static_cast<int>(0.028 * h); |
|
|
|
boundingBox.width += static_cast<int>(0.15 * w); |
|
boundingBox.height += static_cast<int>(0.13 * h); |
|
|
|
if (boundingBox.width < boundingBox.height) { |
|
auto dx = (boundingBox.height - boundingBox.width); |
|
boundingBox.x -= dx / 2; |
|
boundingBox.width += dx; |
|
} else { |
|
auto dy = (boundingBox.width - boundingBox.height); |
|
boundingBox.y -= dy / 2; |
|
boundingBox.height += dy; |
|
} |
|
} |
|
|
|
void gazeVectorToGazeAngles(const cv::Point3f& gazeVector, |
|
cv::Point2f& gazeAngles) { |
|
auto r = cv::norm(gazeVector); |
|
|
|
double v0 = static_cast<double>(gazeVector.x); |
|
double v1 = static_cast<double>(gazeVector.y); |
|
double v2 = static_cast<double>(gazeVector.z); |
|
|
|
gazeAngles.x = static_cast<float>(180.0 / M_PI * (M_PI_2 + std::atan2(v2, v0))); |
|
gazeAngles.y = static_cast<float>(180.0 / M_PI * (M_PI_2 - std::acos(v1 / r))); |
|
} |
|
|
|
GAPI_OCV_KERNEL(OCVSize, Size) { |
|
static void run(const cv::Mat &in, cv::Size &out) { |
|
out = in.size(); |
|
} |
|
}; |
|
|
|
GAPI_OCV_KERNEL(OCVParseSSD, ParseSSD) { |
|
static void run(const cv::Mat &in_ssd_result, |
|
const cv::Size &upscale, |
|
const bool filter_out_of_bounds, |
|
std::vector<cv::Rect> &out_objects) { |
|
const auto &in_ssd_dims = in_ssd_result.size; |
|
CV_Assert(in_ssd_dims.dims() == 4u); |
|
|
|
const int MAX_PROPOSALS = in_ssd_dims[2]; |
|
const int OBJECT_SIZE = in_ssd_dims[3]; |
|
CV_Assert(OBJECT_SIZE == 7); // fixed SSD object size |
|
|
|
const cv::Rect surface({0,0}, upscale); |
|
out_objects.clear(); |
|
|
|
const float *data = in_ssd_result.ptr<float>(); |
|
for (int i = 0; i < MAX_PROPOSALS; i++) { |
|
const float image_id = data[i * OBJECT_SIZE + 0]; |
|
const float label = data[i * OBJECT_SIZE + 1]; |
|
const float confidence = data[i * OBJECT_SIZE + 2]; |
|
const float rc_left = data[i * OBJECT_SIZE + 3]; |
|
const float rc_top = data[i * OBJECT_SIZE + 4]; |
|
const float rc_right = data[i * OBJECT_SIZE + 5]; |
|
const float rc_bottom = data[i * OBJECT_SIZE + 6]; |
|
(void) label; |
|
if (image_id < 0.f) { |
|
break; // marks end-of-detections |
|
} |
|
if (confidence < 0.5f) { |
|
continue; // skip objects with low confidence |
|
} |
|
cv::Rect rc; // map relative coordinates to the original image scale |
|
rc.x = static_cast<int>(rc_left * upscale.width); |
|
rc.y = static_cast<int>(rc_top * upscale.height); |
|
rc.width = static_cast<int>(rc_right * upscale.width) - rc.x; |
|
rc.height = static_cast<int>(rc_bottom * upscale.height) - rc.y; |
|
adjustBoundingBox(rc); // TODO: new option? |
|
|
|
const auto clipped_rc = rc & surface; // TODO: new option? |
|
if (filter_out_of_bounds) { |
|
if (clipped_rc.area() != rc.area()) { |
|
continue; |
|
} |
|
} |
|
out_objects.emplace_back(clipped_rc); |
|
} |
|
} |
|
}; |
|
|
|
cv::Rect eyeBox(const cv::Rect &face_rc, |
|
float p1_x, float p1_y, float p2_x, float p2_y, |
|
float scale = 1.8f) { |
|
const auto &up = face_rc.size(); |
|
const cv::Point p1 = { |
|
static_cast<int>(p1_x*up.width), |
|
static_cast<int>(p1_y*up.height) |
|
}; |
|
const cv::Point p2 = { |
|
static_cast<int>(p2_x*up.width), |
|
static_cast<int>(p2_y*up.height) |
|
}; |
|
cv::Rect result; |
|
|
|
const auto size = static_cast<float>(cv::norm(p1 - p2)); |
|
const auto midpoint = (p1 + p2) / 2; |
|
|
|
result.width = static_cast<int>(scale * size); |
|
result.height = result.width; |
|
result.x = face_rc.x + midpoint.x - (result.width / 2); |
|
result.y = face_rc.y + midpoint.y - (result.height / 2); |
|
// Shift result to the original frame's absolute coordinates |
|
return result; |
|
} |
|
|
|
GAPI_OCV_KERNEL(OCVParseEyes, ParseEyes) { |
|
static void run(const std::vector<cv::Mat> &in_landmarks_per_face, |
|
const std::vector<cv::Rect> &in_face_rcs, |
|
const cv::Size &frame_size, |
|
std::vector<cv::Rect> &out_left_eyes, |
|
std::vector<cv::Rect> &out_right_eyes) { |
|
const size_t numFaces = in_landmarks_per_face.size(); |
|
const cv::Rect surface(cv::Point(0,0), frame_size); |
|
GAPI_Assert(numFaces == in_face_rcs.size()); |
|
out_left_eyes.clear(); |
|
out_right_eyes.clear(); |
|
out_left_eyes.reserve(numFaces); |
|
out_right_eyes.reserve(numFaces); |
|
|
|
for (std::size_t i = 0u; i < numFaces; i++) { |
|
const auto &lm = in_landmarks_per_face[i]; |
|
const auto &rc = in_face_rcs[i]; |
|
// Left eye is defined by points 0/1 (x2), |
|
// Right eye is defined by points 2/3 (x2) |
|
const float *data = lm.ptr<float>(); |
|
out_left_eyes .push_back(surface & eyeBox(rc, data[0], data[1], data[2], data[3])); |
|
out_right_eyes.push_back(surface & eyeBox(rc, data[4], data[5], data[6], data[7])); |
|
} |
|
} |
|
}; |
|
|
|
GAPI_OCV_KERNEL(OCVProcessPoses, ProcessPoses) { |
|
static void run(const std::vector<cv::Mat> &in_ys, |
|
const std::vector<cv::Mat> &in_ps, |
|
const std::vector<cv::Mat> &in_rs, |
|
std::vector<cv::Mat> &out_poses) { |
|
const std::size_t sz = in_ys.size(); |
|
GAPI_Assert(sz == in_ps.size() && sz == in_rs.size()); |
|
out_poses.clear(); |
|
for (std::size_t idx = 0u; idx < sz; idx++) { |
|
cv::Mat pose(1, 3, CV_32FC1); |
|
float *ptr = pose.ptr<float>(); |
|
ptr[0] = in_ys[idx].ptr<float>()[0]; |
|
ptr[1] = in_ps[idx].ptr<float>()[0]; |
|
ptr[2] = in_rs[idx].ptr<float>()[0]; |
|
out_poses.push_back(std::move(pose)); |
|
} |
|
} |
|
}; |
|
} // anonymous namespace |
|
} // namespace custom |
|
|
|
namespace vis { |
|
namespace { |
|
cv::Point2f midp(const cv::Rect &rc) { |
|
return (rc.tl() + rc.br()) / 2; |
|
}; |
|
void bbox(cv::Mat &m, const cv::Rect &rc) { |
|
cv::rectangle(m, rc, cv::Scalar{0,255,0}, 2, cv::LINE_8, 0); |
|
}; |
|
void pose(cv::Mat &m, const cv::Mat &p, const cv::Rect &face_rc) { |
|
const auto *posePtr = p.ptr<float>(); |
|
const auto yaw = static_cast<double>(posePtr[0]); |
|
const auto pitch = static_cast<double>(posePtr[1]); |
|
const auto roll = static_cast<double>(posePtr[2]); |
|
|
|
const auto sinY = std::sin(yaw * M_PI / 180.0); |
|
const auto sinP = std::sin(pitch * M_PI / 180.0); |
|
const auto sinR = std::sin(roll * M_PI / 180.0); |
|
|
|
const auto cosY = std::cos(yaw * M_PI / 180.0); |
|
const auto cosP = std::cos(pitch * M_PI / 180.0); |
|
const auto cosR = std::cos(roll * M_PI / 180.0); |
|
|
|
const auto axisLength = 0.4 * face_rc.width; |
|
const auto xCenter = face_rc.x + face_rc.width / 2; |
|
const auto yCenter = face_rc.y + face_rc.height / 2; |
|
|
|
const auto center = cv::Point{xCenter, yCenter}; |
|
const auto axisln = cv::Point2d{axisLength, axisLength}; |
|
const auto ctr = cv::Matx<double,2,2>(cosR*cosY, sinY*sinP*sinR, 0.f, cosP*sinR); |
|
const auto ctt = cv::Matx<double,2,2>(cosR*sinY*sinP, cosY*sinR, 0.f, -cosP*cosR); |
|
const auto ctf = cv::Matx<double,2,2>(sinY*cosP, 0.f, 0.f, sinP); |
|
|
|
// center to right |
|
cv::line(m, center, center + static_cast<cv::Point>(ctr*axisln), cv::Scalar(0, 0, 255), 2); |
|
// center to top |
|
cv::line(m, center, center + static_cast<cv::Point>(ctt*axisln), cv::Scalar(0, 255, 0), 2); |
|
// center to forward |
|
cv::line(m, center, center + static_cast<cv::Point>(ctf*axisln), cv::Scalar(255, 0, 255), 2); |
|
} |
|
void vvec(cv::Mat &m, const cv::Mat &v, const cv::Rect &face_rc, |
|
const cv::Rect &left_rc, const cv::Rect &right_rc) { |
|
const auto scale = 0.002 * face_rc.width; |
|
|
|
cv::Point3f gazeVector; |
|
const auto *gazePtr = v.ptr<float>(); |
|
gazeVector.x = gazePtr[0]; |
|
gazeVector.y = gazePtr[1]; |
|
gazeVector.z = gazePtr[2]; |
|
gazeVector = gazeVector / cv::norm(gazeVector); |
|
|
|
const double arrowLength = 0.4 * face_rc.width; |
|
const auto left_mid = midp(left_rc); |
|
const auto right_mid = midp(right_rc); |
|
|
|
cv::Point2f gazeArrow; |
|
gazeArrow.x = gazeVector.x; |
|
gazeArrow.y = -gazeVector.y; |
|
gazeArrow *= arrowLength; |
|
|
|
cv::arrowedLine(m, left_mid, left_mid + gazeArrow, cv::Scalar(255, 0, 0), 2); |
|
cv::arrowedLine(m, right_mid, right_mid + gazeArrow, cv::Scalar(255, 0, 0), 2); |
|
|
|
cv::Point2f gazeAngles; |
|
custom::gazeVectorToGazeAngles(gazeVector, gazeAngles); |
|
|
|
cv::putText(m, |
|
cv::format("gaze angles: (h=%0.0f, v=%0.0f)", |
|
static_cast<double>(std::round(gazeAngles.x)), |
|
static_cast<double>(std::round(gazeAngles.y))), |
|
cv::Point(static_cast<int>(face_rc.tl().x), |
|
static_cast<int>(face_rc.br().y + 12. * face_rc.width / 100.)), |
|
cv::FONT_HERSHEY_PLAIN, scale * 2, cv::Scalar::all(255), 1); |
|
}; |
|
} // anonymous namespace |
|
} // namespace vis |
|
|
|
int main(int argc, char *argv[]) |
|
{ |
|
cv::CommandLineParser cmd(argc, argv, keys); |
|
cmd.about(about); |
|
if (cmd.has("help")) { |
|
cmd.printMessage(); |
|
return 0; |
|
} |
|
|
|
cv::GMat in; |
|
cv::GMat faces = cv::gapi::infer<custom::Faces>(in); |
|
cv::GOpaque<cv::Size> sz = custom::Size::on(in); // FIXME |
|
cv::GArray<cv::Rect> faces_rc = custom::ParseSSD::on(faces, sz, true); |
|
cv::GArray<cv::GMat> angles_y, angles_p, angles_r; |
|
std::tie(angles_y, angles_p, angles_r) = cv::gapi::infer<custom::HeadPose>(faces_rc, in); |
|
cv::GArray<cv::GMat> heads_pos = custom::ProcessPoses::on(angles_y, angles_p, angles_r); |
|
cv::GArray<cv::GMat> landmarks = cv::gapi::infer<custom::Landmarks>(faces_rc, in); |
|
cv::GArray<cv::Rect> left_eyes, right_eyes; |
|
std::tie(left_eyes, right_eyes) = custom::ParseEyes::on(landmarks, faces_rc, sz); |
|
cv::GArray<cv::GMat> gaze_vectors = cv::gapi::infer2<custom::Gaze>( in |
|
, left_eyes |
|
, right_eyes |
|
, heads_pos); |
|
cv::GComputation graph(cv::GIn(in), |
|
cv::GOut( cv::gapi::copy(in) |
|
, faces_rc |
|
, left_eyes |
|
, right_eyes |
|
, heads_pos |
|
, gaze_vectors)); |
|
|
|
const auto input_file_name = cmd.get<std::string>("input"); |
|
const auto face_model_path = cmd.get<std::string>("facem"); |
|
const auto head_model_path = cmd.get<std::string>("headm"); |
|
const auto lmrk_model_path = cmd.get<std::string>("landm"); |
|
const auto gaze_model_path = cmd.get<std::string>("gazem"); |
|
|
|
auto face_net = cv::gapi::ie::Params<custom::Faces> { |
|
face_model_path, // path to topology IR |
|
weights_path(face_model_path), // path to weights |
|
cmd.get<std::string>("faced"), /// device specifier |
|
}; |
|
auto head_net = cv::gapi::ie::Params<custom::HeadPose> { |
|
head_model_path, // path to topology IR |
|
weights_path(head_model_path), // path to weights |
|
cmd.get<std::string>("headd"), // device specifier |
|
}.cfgOutputLayers({"angle_y_fc", "angle_p_fc", "angle_r_fc"}); |
|
auto landmarks_net = cv::gapi::ie::Params<custom::Landmarks> { |
|
lmrk_model_path, // path to topology IR |
|
weights_path(lmrk_model_path), // path to weights |
|
cmd.get<std::string>("landd"), // device specifier |
|
}; |
|
auto gaze_net = cv::gapi::ie::Params<custom::Gaze> { |
|
gaze_model_path, // path to topology IR |
|
weights_path(gaze_model_path), // path to weights |
|
cmd.get<std::string>("gazed"), // device specifier |
|
}.cfgInputLayers({"left_eye_image", "right_eye_image", "head_pose_angles"}); |
|
|
|
auto kernels = cv::gapi::kernels< custom::OCVSize |
|
, custom::OCVParseSSD |
|
, custom::OCVParseEyes |
|
, custom::OCVProcessPoses>(); |
|
auto networks = cv::gapi::networks(face_net, head_net, landmarks_net, gaze_net); |
|
auto pipeline = graph.compileStreaming(cv::compile_args(networks, kernels)); |
|
|
|
cv::TickMeter tm; |
|
cv::Mat image; |
|
std::vector<cv::Rect> out_faces, out_right_eyes, out_left_eyes; |
|
std::vector<cv::Mat> out_poses; |
|
std::vector<cv::Mat> out_gazes; |
|
std::size_t frames = 0u; |
|
std::cout << "Reading " << input_file_name << std::endl; |
|
|
|
pipeline.setSource(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input_file_name)); |
|
pipeline.start(); |
|
tm.start(); |
|
while (pipeline.pull(cv::gout( image |
|
, out_faces |
|
, out_left_eyes |
|
, out_right_eyes |
|
, out_poses |
|
, out_gazes))) { |
|
frames++; |
|
// Visualize results on the frame |
|
for (auto &&rc : out_faces) vis::bbox(image, rc); |
|
for (auto &&rc : out_left_eyes) vis::bbox(image, rc); |
|
for (auto &&rc : out_right_eyes) vis::bbox(image, rc); |
|
for (std::size_t i = 0u; i < out_faces.size(); i++) { |
|
vis::pose(image, out_poses[i], out_faces[i]); |
|
vis::vvec(image, out_gazes[i], out_faces[i], out_left_eyes[i], out_right_eyes[i]); |
|
} |
|
tm.stop(); |
|
const auto fps_str = std::to_string(frames / tm.getTimeSec()) + " FPS"; |
|
cv::putText(image, fps_str, {0,32}, cv::FONT_HERSHEY_SIMPLEX, 1.0, {0,255,0}, 2); |
|
cv::imshow("Out", image); |
|
cv::waitKey(1); |
|
tm.start(); |
|
} |
|
tm.stop(); |
|
std::cout << "Processed " << frames << " frames" |
|
<< " (" << frames / tm.getTimeSec() << " FPS)" << std::endl; |
|
return 0; |
|
}
|
|
|