mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
314 lines
10 KiB
314 lines
10 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
#ifdef HAVE_TBB |
|
#include "tbb/task_scheduler_init.h" |
|
#endif |
|
|
|
using namespace cv; |
|
using namespace std; |
|
|
|
class CV_solvePnPRansac_Test : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_solvePnPRansac_Test() |
|
{ |
|
eps[SOLVEPNP_ITERATIVE] = 1.0e-2; |
|
eps[SOLVEPNP_EPNP] = 1.0e-2; |
|
eps[SOLVEPNP_P3P] = 1.0e-2; |
|
eps[SOLVEPNP_DLS] = 1.0e-2; |
|
totalTestsCount = 10; |
|
} |
|
~CV_solvePnPRansac_Test() {} |
|
protected: |
|
void generate3DPointCloud(vector<Point3f>& points, Point3f pmin = Point3f(-1, |
|
-1, 5), Point3f pmax = Point3f(1, 1, 10)) |
|
{ |
|
const Point3f delta = pmax - pmin; |
|
for (size_t i = 0; i < points.size(); i++) |
|
{ |
|
Point3f p(float(rand()) / RAND_MAX, float(rand()) / RAND_MAX, |
|
float(rand()) / RAND_MAX); |
|
p.x *= delta.x; |
|
p.y *= delta.y; |
|
p.z *= delta.z; |
|
p = p + pmin; |
|
points[i] = p; |
|
} |
|
} |
|
|
|
void generateCameraMatrix(Mat& cameraMatrix, RNG& rng) |
|
{ |
|
const double fcMinVal = 1e-3; |
|
const double fcMaxVal = 100; |
|
cameraMatrix.create(3, 3, CV_64FC1); |
|
cameraMatrix.setTo(Scalar(0)); |
|
cameraMatrix.at<double>(0,0) = rng.uniform(fcMinVal, fcMaxVal); |
|
cameraMatrix.at<double>(1,1) = rng.uniform(fcMinVal, fcMaxVal); |
|
cameraMatrix.at<double>(0,2) = rng.uniform(fcMinVal, fcMaxVal); |
|
cameraMatrix.at<double>(1,2) = rng.uniform(fcMinVal, fcMaxVal); |
|
cameraMatrix.at<double>(2,2) = 1; |
|
} |
|
|
|
void generateDistCoeffs(Mat& distCoeffs, RNG& rng) |
|
{ |
|
distCoeffs = Mat::zeros(4, 1, CV_64FC1); |
|
for (int i = 0; i < 3; i++) |
|
distCoeffs.at<double>(i,0) = rng.uniform(0.0, 1.0e-6); |
|
} |
|
|
|
void generatePose(Mat& rvec, Mat& tvec, RNG& rng) |
|
{ |
|
const double minVal = 1.0e-3; |
|
const double maxVal = 1.0; |
|
rvec.create(3, 1, CV_64FC1); |
|
tvec.create(3, 1, CV_64FC1); |
|
for (int i = 0; i < 3; i++) |
|
{ |
|
rvec.at<double>(i,0) = rng.uniform(minVal, maxVal); |
|
tvec.at<double>(i,0) = rng.uniform(minVal, maxVal/10); |
|
} |
|
} |
|
|
|
virtual bool runTest(RNG& rng, int mode, int method, const vector<Point3f>& points, const double* epsilon, double& maxError) |
|
{ |
|
Mat rvec, tvec; |
|
vector<int> inliers; |
|
Mat trueRvec, trueTvec; |
|
Mat intrinsics, distCoeffs; |
|
generateCameraMatrix(intrinsics, rng); |
|
if (mode == 0) |
|
distCoeffs = Mat::zeros(4, 1, CV_64FC1); |
|
else |
|
generateDistCoeffs(distCoeffs, rng); |
|
generatePose(trueRvec, trueTvec, rng); |
|
|
|
vector<Point2f> projectedPoints; |
|
projectedPoints.resize(points.size()); |
|
projectPoints(Mat(points), trueRvec, trueTvec, intrinsics, distCoeffs, projectedPoints); |
|
for (size_t i = 0; i < projectedPoints.size(); i++) |
|
{ |
|
if (i % 20 == 0) |
|
{ |
|
projectedPoints[i] = projectedPoints[rng.uniform(0,(int)points.size()-1)]; |
|
} |
|
} |
|
|
|
solvePnPRansac(points, projectedPoints, intrinsics, distCoeffs, rvec, tvec, |
|
false, 500, 0.5, 0.99, inliers, method); |
|
|
|
bool isTestSuccess = inliers.size() >= points.size()*0.95; |
|
|
|
double rvecDiff = norm(rvec-trueRvec), tvecDiff = norm(tvec-trueTvec); |
|
isTestSuccess = isTestSuccess && rvecDiff < epsilon[method] && tvecDiff < epsilon[method]; |
|
double error = rvecDiff > tvecDiff ? rvecDiff : tvecDiff; |
|
//cout << error << " " << inliers.size() << " " << eps[method] << endl; |
|
if (error > maxError) |
|
maxError = error; |
|
|
|
return isTestSuccess; |
|
} |
|
|
|
void run(int) |
|
{ |
|
ts->set_failed_test_info(cvtest::TS::OK); |
|
|
|
vector<Point3f> points, points_dls; |
|
const int pointsCount = 500; |
|
points.resize(pointsCount); |
|
generate3DPointCloud(points); |
|
|
|
const int methodsCount = 4; |
|
RNG rng = ts->get_rng(); |
|
|
|
|
|
for (int mode = 0; mode < 2; mode++) |
|
{ |
|
for (int method = 0; method < methodsCount; method++) |
|
{ |
|
double maxError = 0; |
|
int successfulTestsCount = 0; |
|
for (int testIndex = 0; testIndex < totalTestsCount; testIndex++) |
|
{ |
|
if (runTest(rng, mode, method, points, eps, maxError)) |
|
successfulTestsCount++; |
|
} |
|
//cout << maxError << " " << successfulTestsCount << endl; |
|
if (successfulTestsCount < 0.7*totalTestsCount) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Invalid accuracy for method %d, failed %d tests from %d, maximum error equals %f, distortion mode equals %d\n", |
|
method, totalTestsCount - successfulTestsCount, totalTestsCount, maxError, mode); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
} |
|
} |
|
} |
|
} |
|
double eps[4]; |
|
int totalTestsCount; |
|
}; |
|
|
|
class CV_solvePnP_Test : public CV_solvePnPRansac_Test |
|
{ |
|
public: |
|
CV_solvePnP_Test() |
|
{ |
|
eps[SOLVEPNP_ITERATIVE] = 1.0e-6; |
|
eps[SOLVEPNP_EPNP] = 1.0e-6; |
|
eps[SOLVEPNP_P3P] = 1.0e-4; |
|
eps[SOLVEPNP_DLS] = 1.0e-4; |
|
totalTestsCount = 1000; |
|
} |
|
|
|
~CV_solvePnP_Test() {} |
|
protected: |
|
virtual bool runTest(RNG& rng, int mode, int method, const vector<Point3f>& points, const double* epsilon, double& maxError) |
|
{ |
|
Mat rvec, tvec; |
|
Mat trueRvec, trueTvec; |
|
Mat intrinsics, distCoeffs; |
|
generateCameraMatrix(intrinsics, rng); |
|
if (mode == 0) |
|
distCoeffs = Mat::zeros(4, 1, CV_64FC1); |
|
else |
|
generateDistCoeffs(distCoeffs, rng); |
|
generatePose(trueRvec, trueTvec, rng); |
|
|
|
std::vector<Point3f> opoints; |
|
if (method == 2) |
|
{ |
|
opoints = std::vector<Point3f>(points.begin(), points.begin()+4); |
|
} |
|
else if(method == 3) |
|
{ |
|
opoints = std::vector<Point3f>(points.begin(), points.begin()+50); |
|
} |
|
else |
|
opoints = points; |
|
|
|
vector<Point2f> projectedPoints; |
|
projectedPoints.resize(opoints.size()); |
|
projectPoints(Mat(opoints), trueRvec, trueTvec, intrinsics, distCoeffs, projectedPoints); |
|
|
|
solvePnP(opoints, projectedPoints, intrinsics, distCoeffs, rvec, tvec, |
|
false, method); |
|
|
|
double rvecDiff = norm(rvec-trueRvec), tvecDiff = norm(tvec-trueTvec); |
|
bool isTestSuccess = rvecDiff < epsilon[method] && tvecDiff < epsilon[method]; |
|
|
|
double error = rvecDiff > tvecDiff ? rvecDiff : tvecDiff; |
|
if (error > maxError) |
|
maxError = error; |
|
|
|
return isTestSuccess; |
|
} |
|
}; |
|
|
|
TEST(Calib3d_SolvePnPRansac, accuracy) { CV_solvePnPRansac_Test test; test.safe_run(); } |
|
TEST(Calib3d_SolvePnP, accuracy) { CV_solvePnP_Test test; test.safe_run(); } |
|
|
|
|
|
#ifdef HAVE_TBB |
|
|
|
TEST(DISABLED_Calib3d_SolvePnPRansac, concurrency) |
|
{ |
|
int count = 7*13; |
|
|
|
Mat object(1, count, CV_32FC3); |
|
randu(object, -100, 100); |
|
|
|
Mat camera_mat(3, 3, CV_32FC1); |
|
randu(camera_mat, 0.5, 1); |
|
camera_mat.at<float>(0, 1) = 0.f; |
|
camera_mat.at<float>(1, 0) = 0.f; |
|
camera_mat.at<float>(2, 0) = 0.f; |
|
camera_mat.at<float>(2, 1) = 0.f; |
|
|
|
Mat dist_coef(1, 8, CV_32F, cv::Scalar::all(0)); |
|
|
|
vector<cv::Point2f> image_vec; |
|
Mat rvec_gold(1, 3, CV_32FC1); |
|
randu(rvec_gold, 0, 1); |
|
Mat tvec_gold(1, 3, CV_32FC1); |
|
randu(tvec_gold, 0, 1); |
|
projectPoints(object, rvec_gold, tvec_gold, camera_mat, dist_coef, image_vec); |
|
|
|
Mat image(1, count, CV_32FC2, &image_vec[0]); |
|
|
|
Mat rvec1, rvec2; |
|
Mat tvec1, tvec2; |
|
|
|
{ |
|
// limit concurrency to get deterministic result |
|
cv::theRNG().state = 20121010; |
|
tbb::task_scheduler_init one_thread(1); |
|
solvePnPRansac(object, image, camera_mat, dist_coef, rvec1, tvec1); |
|
} |
|
|
|
if(1) |
|
{ |
|
Mat rvec; |
|
Mat tvec; |
|
// parallel executions |
|
for(int i = 0; i < 10; ++i) |
|
{ |
|
cv::theRNG().state = 20121010; |
|
solvePnPRansac(object, image, camera_mat, dist_coef, rvec, tvec); |
|
} |
|
} |
|
|
|
{ |
|
// single thread again |
|
cv::theRNG().state = 20121010; |
|
tbb::task_scheduler_init one_thread(1); |
|
solvePnPRansac(object, image, camera_mat, dist_coef, rvec2, tvec2); |
|
} |
|
|
|
double rnorm = cvtest::norm(rvec1, rvec2, NORM_INF); |
|
double tnorm = cvtest::norm(tvec1, tvec2, NORM_INF); |
|
|
|
EXPECT_LT(rnorm, 1e-6); |
|
EXPECT_LT(tnorm, 1e-6); |
|
|
|
} |
|
#endif
|
|
|