mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
321 lines
11 KiB
321 lines
11 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifndef __OPENCV_TEST_UTILITY_HPP__ |
|
#define __OPENCV_TEST_UTILITY_HPP__ |
|
|
|
extern int LOOP_TIMES; |
|
|
|
#define MWIDTH 256 |
|
#define MHEIGHT 256 |
|
|
|
#define MIN_VALUE 171 |
|
#define MAX_VALUE 357 |
|
|
|
namespace cvtest { |
|
|
|
void showDiff(const Mat& src, const Mat& gold, const Mat& actual, double eps, bool alwaysShow = false); |
|
|
|
cv::ocl::oclMat createMat_ocl(cv::RNG& rng, Size size, int type, bool useRoi); |
|
cv::ocl::oclMat loadMat_ocl(cv::RNG& rng, const Mat& m, bool useRoi); |
|
|
|
// This function test if gpu_rst matches cpu_rst. |
|
// If the two vectors are not equal, it will return the difference in vector size |
|
// Else it will return (total diff of each cpu and gpu rects covered pixels)/(total cpu rects covered pixels) |
|
// The smaller, the better matched |
|
double checkRectSimilarity(cv::Size sz, std::vector<cv::Rect>& ob1, std::vector<cv::Rect>& ob2); |
|
|
|
|
|
//! read image from testdata folder. |
|
cv::Mat readImage(const std::string &fileName, int flags = cv::IMREAD_COLOR); |
|
cv::Mat readImageType(const std::string &fname, int type); |
|
|
|
double checkNorm(const cv::Mat &m); |
|
double checkNorm(const cv::Mat &m1, const cv::Mat &m2); |
|
double checkSimilarity(const cv::Mat &m1, const cv::Mat &m2); |
|
|
|
inline double checkNormRelative(const Mat &m1, const Mat &m2) |
|
{ |
|
return cv::norm(m1, m2, cv::NORM_INF) / |
|
std::max((double)std::numeric_limits<float>::epsilon(), |
|
(double)std::max(cv::norm(m1, cv::NORM_INF), norm(m2, cv::NORM_INF))); |
|
} |
|
|
|
#define EXPECT_MAT_NORM(mat, eps) \ |
|
{ \ |
|
EXPECT_LE(checkNorm(cv::Mat(mat)), eps) \ |
|
} |
|
|
|
#define EXPECT_MAT_NEAR(mat1, mat2, eps) \ |
|
{ \ |
|
ASSERT_EQ(mat1.type(), mat2.type()); \ |
|
ASSERT_EQ(mat1.size(), mat2.size()); \ |
|
EXPECT_LE(checkNorm(cv::Mat(mat1), cv::Mat(mat2)), eps) \ |
|
<< cv::format("Size: %d x %d", mat1.cols, mat1.rows) << std::endl; \ |
|
} |
|
|
|
#define EXPECT_MAT_NEAR_RELATIVE(mat1, mat2, eps) \ |
|
{ \ |
|
ASSERT_EQ(mat1.type(), mat2.type()); \ |
|
ASSERT_EQ(mat1.size(), mat2.size()); \ |
|
EXPECT_LE(checkNormRelative(cv::Mat(mat1), cv::Mat(mat2)), eps) \ |
|
<< cv::format("Size: %d x %d", mat1.cols, mat1.rows) << std::endl; \ |
|
} |
|
|
|
#define EXPECT_MAT_SIMILAR(mat1, mat2, eps) \ |
|
{ \ |
|
ASSERT_EQ(mat1.type(), mat2.type()); \ |
|
ASSERT_EQ(mat1.size(), mat2.size()); \ |
|
EXPECT_LE(checkSimilarity(cv::Mat(mat1), cv::Mat(mat2)), eps); \ |
|
} |
|
|
|
|
|
using perf::MatDepth; |
|
using perf::MatType; |
|
|
|
//! return vector with types from specified range. |
|
std::vector<MatType> types(int depth_start, int depth_end, int cn_start, int cn_end); |
|
|
|
//! return vector with all types (depth: CV_8U-CV_64F, channels: 1-4). |
|
const std::vector<MatType> &all_types(); |
|
|
|
class Inverse |
|
{ |
|
public: |
|
inline Inverse(bool val = false) : val_(val) {} |
|
|
|
inline operator bool() const |
|
{ |
|
return val_; |
|
} |
|
|
|
private: |
|
bool val_; |
|
}; |
|
|
|
void PrintTo(const Inverse &useRoi, std::ostream *os); |
|
|
|
#define OCL_RNG_SEED 123456 |
|
|
|
template <typename T> |
|
struct TSTestWithParam : public ::testing::TestWithParam<T> |
|
{ |
|
cv::RNG rng; |
|
|
|
TSTestWithParam() |
|
{ |
|
rng = cv::RNG(OCL_RNG_SEED); |
|
} |
|
|
|
int randomInt(int minVal, int maxVal) |
|
{ |
|
return rng.uniform(minVal, maxVal); |
|
} |
|
|
|
double randomDouble(double minVal, double maxVal) |
|
{ |
|
return rng.uniform(minVal, maxVal); |
|
} |
|
|
|
double randomDoubleLog(double minVal, double maxVal) |
|
{ |
|
double logMin = log((double)minVal + 1); |
|
double logMax = log((double)maxVal + 1); |
|
double pow = rng.uniform(logMin, logMax); |
|
double v = exp(pow) - 1; |
|
CV_Assert(v >= minVal && (v < maxVal || (v == minVal && v == maxVal))); |
|
return v; |
|
} |
|
|
|
Size randomSize(int minVal, int maxVal) |
|
{ |
|
#if 1 |
|
return cv::Size((int)randomDoubleLog(minVal, maxVal), (int)randomDoubleLog(minVal, maxVal)); |
|
#else |
|
return cv::Size(randomInt(minVal, maxVal), randomInt(minVal, maxVal)); |
|
#endif |
|
} |
|
|
|
Size randomSize(int minValX, int maxValX, int minValY, int maxValY) |
|
{ |
|
#if 1 |
|
return cv::Size(randomDoubleLog(minValX, maxValX), randomDoubleLog(minValY, maxValY)); |
|
#else |
|
return cv::Size(randomInt(minVal, maxVal), randomInt(minVal, maxVal)); |
|
#endif |
|
} |
|
|
|
Scalar randomScalar(double minVal, double maxVal) |
|
{ |
|
return Scalar(randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal)); |
|
} |
|
|
|
Mat randomMat(Size size, int type, double minVal, double maxVal, bool useRoi = false) |
|
{ |
|
RNG dataRng(rng.next()); |
|
return cvtest::randomMat(dataRng, size, type, minVal, maxVal, useRoi); |
|
} |
|
|
|
struct Border |
|
{ |
|
int top, bot, lef, rig; |
|
}; |
|
|
|
Border randomBorder(int minValue = 0, int maxValue = MAX_VALUE) |
|
{ |
|
Border border = { |
|
(int)randomDoubleLog(minValue, maxValue), |
|
(int)randomDoubleLog(minValue, maxValue), |
|
(int)randomDoubleLog(minValue, maxValue), |
|
(int)randomDoubleLog(minValue, maxValue) |
|
}; |
|
return border; |
|
} |
|
|
|
void randomSubMat(Mat& whole, Mat& subMat, const Size& roiSize, const Border& border, int type, double minVal, double maxVal) |
|
{ |
|
Size wholeSize = Size(roiSize.width + border.lef + border.rig, roiSize.height + border.top + border.bot); |
|
whole = randomMat(wholeSize, type, minVal, maxVal, false); |
|
subMat = whole(Rect(border.lef, border.top, roiSize.width, roiSize.height)); |
|
} |
|
|
|
void generateOclMat(cv::ocl::oclMat& whole, cv::ocl::oclMat& subMat, const Mat& wholeMat, const Size& roiSize, const Border& border) |
|
{ |
|
whole = wholeMat; |
|
subMat = whole(Rect(border.lef, border.top, roiSize.width, roiSize.height)); |
|
} |
|
}; |
|
|
|
#define PARAM_TEST_CASE(name, ...) struct name : public TSTestWithParam< std::tr1::tuple< __VA_ARGS__ > > |
|
|
|
#define GET_PARAM(k) std::tr1::get< k >(GetParam()) |
|
|
|
#define ALL_TYPES testing::ValuesIn(all_types()) |
|
#define TYPES(depth_start, depth_end, cn_start, cn_end) testing::ValuesIn(types(depth_start, depth_end, cn_start, cn_end)) |
|
|
|
#define DIFFERENT_SIZES testing::Values(cv::Size(128, 128), cv::Size(113, 113), cv::Size(1300, 1300)) |
|
|
|
#define IMAGE_CHANNELS testing::Values(Channels(1), Channels(3), Channels(4)) |
|
#ifndef IMPLEMENT_PARAM_CLASS |
|
#define IMPLEMENT_PARAM_CLASS(name, type) \ |
|
class name \ |
|
{ \ |
|
public: \ |
|
name ( type arg = type ()) : val_(arg) {} \ |
|
operator type () const {return val_;} \ |
|
private: \ |
|
type val_; \ |
|
}; \ |
|
inline void PrintTo( name param, std::ostream* os) \ |
|
{ \ |
|
*os << #name << "(" << testing::PrintToString(static_cast< type >(param)) << ")"; \ |
|
} |
|
|
|
IMPLEMENT_PARAM_CLASS(Channels, int) |
|
#endif // IMPLEMENT_PARAM_CLASS |
|
|
|
} // namespace cvtest |
|
|
|
enum {FLIP_BOTH = 0, FLIP_X = 1, FLIP_Y = -1}; |
|
CV_ENUM(FlipCode, FLIP_BOTH, FLIP_X, FLIP_Y) |
|
|
|
CV_ENUM(CmpCode, CMP_EQ, CMP_GT, CMP_GE, CMP_LT, CMP_LE, CMP_NE) |
|
CV_ENUM(NormCode, NORM_INF, NORM_L1, NORM_L2, NORM_TYPE_MASK, NORM_RELATIVE, NORM_MINMAX) |
|
CV_ENUM(ReduceOp, CV_REDUCE_SUM, CV_REDUCE_AVG, CV_REDUCE_MAX, CV_REDUCE_MIN) |
|
CV_ENUM(MorphOp, MORPH_OPEN, MORPH_CLOSE, MORPH_GRADIENT, MORPH_TOPHAT, MORPH_BLACKHAT) |
|
CV_ENUM(ThreshOp, THRESH_BINARY, THRESH_BINARY_INV, THRESH_TRUNC, THRESH_TOZERO, THRESH_TOZERO_INV) |
|
CV_ENUM(Interpolation, INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, INTER_AREA) |
|
CV_ENUM(Border, BORDER_REFLECT101, BORDER_REPLICATE, BORDER_CONSTANT, BORDER_REFLECT, BORDER_WRAP) |
|
CV_ENUM(TemplateMethod, TM_SQDIFF, TM_SQDIFF_NORMED, TM_CCORR, TM_CCORR_NORMED, TM_CCOEFF, TM_CCOEFF_NORMED) |
|
|
|
CV_FLAGS(GemmFlags, GEMM_1_T, GEMM_2_T, GEMM_3_T) |
|
CV_FLAGS(WarpFlags, INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, WARP_INVERSE_MAP) |
|
CV_FLAGS(DftFlags, DFT_INVERSE, DFT_SCALE, DFT_ROWS, DFT_COMPLEX_OUTPUT, DFT_REAL_OUTPUT) |
|
|
|
# define OCL_TEST_P(test_case_name, test_name) \ |
|
class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : \ |
|
public test_case_name { \ |
|
public: \ |
|
GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() { } \ |
|
virtual void TestBody(); \ |
|
void OCLTestBody(); \ |
|
private: \ |
|
static int AddToRegistry() \ |
|
{ \ |
|
::testing::UnitTest::GetInstance()->parameterized_test_registry(). \ |
|
GetTestCasePatternHolder<test_case_name>(\ |
|
#test_case_name, __FILE__, __LINE__)->AddTestPattern(\ |
|
#test_case_name, \ |
|
#test_name, \ |
|
new ::testing::internal::TestMetaFactory< \ |
|
GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>()); \ |
|
return 0; \ |
|
} \ |
|
\ |
|
static int gtest_registering_dummy_; \ |
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(\ |
|
GTEST_TEST_CLASS_NAME_(test_case_name, test_name)); \ |
|
}; \ |
|
\ |
|
int GTEST_TEST_CLASS_NAME_(test_case_name, \ |
|
test_name)::gtest_registering_dummy_ = \ |
|
GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::AddToRegistry(); \ |
|
\ |
|
void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody() \ |
|
{ \ |
|
try \ |
|
{ \ |
|
OCLTestBody(); \ |
|
} \ |
|
catch (const cv::Exception & ex) \ |
|
{ \ |
|
if (ex.code == CV_OpenCLDoubleNotSupported)\ |
|
std::cout << "Test skipped (selected device does not support double)" << std::endl; \ |
|
else if (ex.code == CV_OpenCLNoAMDBlasFft) \ |
|
std::cout << "Test skipped (AMD Blas / Fft libraries are not available)" << std::endl; \ |
|
else \ |
|
throw; \ |
|
} \ |
|
} \ |
|
\ |
|
void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::OCLTestBody() |
|
|
|
#endif // __OPENCV_TEST_UTILITY_HPP__
|
|
|