mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
367 lines
16 KiB
367 lines
16 KiB
# This file is a part of OpenCV project. |
|
# It is a subject to the license terms in the LICENSE file found in the top-level directory |
|
# of this distribution and at http://opencv.org/license.html. |
|
# |
|
# Copyright (C) 2018, Intel Corporation, all rights reserved. |
|
# Third party copyrights are property of their respective owners. |
|
# |
|
# Use this script to get the text graph representation (.pbtxt) of SSD-based |
|
# deep learning network trained in TensorFlow Object Detection API. |
|
# Then you can import it with a binary frozen graph (.pb) using readNetFromTensorflow() function. |
|
# See details and examples on the following wiki page: https://github.com/opencv/opencv/wiki/TensorFlow-Object-Detection-API |
|
import argparse |
|
import re |
|
from math import sqrt |
|
from tf_text_graph_common import * |
|
|
|
class SSDAnchorGenerator: |
|
def __init__(self, min_scale, max_scale, num_layers, aspect_ratios, |
|
reduce_boxes_in_lowest_layer, image_width, image_height): |
|
self.min_scale = min_scale |
|
self.aspect_ratios = aspect_ratios |
|
self.reduce_boxes_in_lowest_layer = reduce_boxes_in_lowest_layer |
|
self.image_width = image_width |
|
self.image_height = image_height |
|
self.scales = [min_scale + (max_scale - min_scale) * i / (num_layers - 1) |
|
for i in range(num_layers)] + [1.0] |
|
|
|
def get(self, layer_id): |
|
if layer_id == 0 and self.reduce_boxes_in_lowest_layer: |
|
widths = [0.1, self.min_scale * sqrt(2.0), self.min_scale * sqrt(0.5)] |
|
heights = [0.1, self.min_scale / sqrt(2.0), self.min_scale / sqrt(0.5)] |
|
else: |
|
widths = [self.scales[layer_id] * sqrt(ar) for ar in self.aspect_ratios] |
|
heights = [self.scales[layer_id] / sqrt(ar) for ar in self.aspect_ratios] |
|
|
|
widths += [sqrt(self.scales[layer_id] * self.scales[layer_id + 1])] |
|
heights += [sqrt(self.scales[layer_id] * self.scales[layer_id + 1])] |
|
min_size = min(self.image_width, self.image_height) |
|
widths = [w * min_size for w in widths] |
|
heights = [h * min_size for h in heights] |
|
return widths, heights |
|
|
|
|
|
class MultiscaleAnchorGenerator: |
|
def __init__(self, min_level, aspect_ratios, scales_per_octave, anchor_scale): |
|
self.min_level = min_level |
|
self.aspect_ratios = aspect_ratios |
|
self.anchor_scale = anchor_scale |
|
self.scales = [2**(float(s) / scales_per_octave) for s in range(scales_per_octave)] |
|
|
|
def get(self, layer_id): |
|
widths = [] |
|
heights = [] |
|
for a in self.aspect_ratios: |
|
for s in self.scales: |
|
base_anchor_size = 2**(self.min_level + layer_id) * self.anchor_scale |
|
ar = sqrt(a) |
|
heights.append(base_anchor_size * s / ar) |
|
widths.append(base_anchor_size * s * ar) |
|
return widths, heights |
|
|
|
|
|
def createSSDGraph(modelPath, configPath, outputPath): |
|
# Nodes that should be kept. |
|
keepOps = ['Conv2D', 'BiasAdd', 'Add', 'Relu', 'Relu6', 'Placeholder', 'FusedBatchNorm', |
|
'DepthwiseConv2dNative', 'ConcatV2', 'Mul', 'MaxPool', 'AvgPool', 'Identity', |
|
'Sub', 'ResizeNearestNeighbor', 'Pad'] |
|
|
|
# Node with which prefixes should be removed |
|
prefixesToRemove = ('MultipleGridAnchorGenerator/', 'Postprocessor/', 'Preprocessor/map') |
|
|
|
# Load a config file. |
|
config = readTextMessage(configPath) |
|
config = config['model'][0]['ssd'][0] |
|
num_classes = int(config['num_classes'][0]) |
|
|
|
fixed_shape_resizer = config['image_resizer'][0]['fixed_shape_resizer'][0] |
|
image_width = int(fixed_shape_resizer['width'][0]) |
|
image_height = int(fixed_shape_resizer['height'][0]) |
|
|
|
box_predictor = 'convolutional' if 'convolutional_box_predictor' in config['box_predictor'][0] else 'weight_shared_convolutional' |
|
|
|
anchor_generator = config['anchor_generator'][0] |
|
if 'ssd_anchor_generator' in anchor_generator: |
|
ssd_anchor_generator = anchor_generator['ssd_anchor_generator'][0] |
|
min_scale = float(ssd_anchor_generator['min_scale'][0]) |
|
max_scale = float(ssd_anchor_generator['max_scale'][0]) |
|
num_layers = int(ssd_anchor_generator['num_layers'][0]) |
|
aspect_ratios = [float(ar) for ar in ssd_anchor_generator['aspect_ratios']] |
|
reduce_boxes_in_lowest_layer = True |
|
if 'reduce_boxes_in_lowest_layer' in ssd_anchor_generator: |
|
reduce_boxes_in_lowest_layer = ssd_anchor_generator['reduce_boxes_in_lowest_layer'][0] == 'true' |
|
priors_generator = SSDAnchorGenerator(min_scale, max_scale, num_layers, |
|
aspect_ratios, reduce_boxes_in_lowest_layer, |
|
image_width, image_height) |
|
|
|
|
|
print('Scale: [%f-%f]' % (min_scale, max_scale)) |
|
print('Aspect ratios: %s' % str(aspect_ratios)) |
|
print('Reduce boxes in the lowest layer: %s' % str(reduce_boxes_in_lowest_layer)) |
|
elif 'multiscale_anchor_generator' in anchor_generator: |
|
multiscale_anchor_generator = anchor_generator['multiscale_anchor_generator'][0] |
|
min_level = int(multiscale_anchor_generator['min_level'][0]) |
|
max_level = int(multiscale_anchor_generator['max_level'][0]) |
|
anchor_scale = float(multiscale_anchor_generator['anchor_scale'][0]) |
|
aspect_ratios = [float(ar) for ar in multiscale_anchor_generator['aspect_ratios']] |
|
scales_per_octave = int(multiscale_anchor_generator['scales_per_octave'][0]) |
|
num_layers = max_level - min_level + 1 |
|
priors_generator = MultiscaleAnchorGenerator(min_level, aspect_ratios, |
|
scales_per_octave, anchor_scale) |
|
print('Levels: [%d-%d]' % (min_level, max_level)) |
|
print('Anchor scale: %f' % anchor_scale) |
|
print('Scales per octave: %d' % scales_per_octave) |
|
print('Aspect ratios: %s' % str(aspect_ratios)) |
|
else: |
|
print('Unknown anchor_generator') |
|
exit(0) |
|
|
|
print('Number of classes: %d' % num_classes) |
|
print('Number of layers: %d' % num_layers) |
|
print('box predictor: %s' % box_predictor) |
|
print('Input image size: %dx%d' % (image_width, image_height)) |
|
|
|
# Read the graph. |
|
inpNames = ['image_tensor'] |
|
outNames = ['num_detections', 'detection_scores', 'detection_boxes', 'detection_classes'] |
|
|
|
writeTextGraph(modelPath, outputPath, outNames) |
|
graph_def = parseTextGraph(outputPath) |
|
|
|
def getUnconnectedNodes(): |
|
unconnected = [] |
|
for node in graph_def.node: |
|
unconnected.append(node.name) |
|
for inp in node.input: |
|
if inp in unconnected: |
|
unconnected.remove(inp) |
|
return unconnected |
|
|
|
|
|
def fuse_nodes(nodesToKeep): |
|
# Detect unfused batch normalization nodes and fuse them. |
|
# Add_0 <-- moving_variance, add_y |
|
# Rsqrt <-- Add_0 |
|
# Mul_0 <-- Rsqrt, gamma |
|
# Mul_1 <-- input, Mul_0 |
|
# Mul_2 <-- moving_mean, Mul_0 |
|
# Sub_0 <-- beta, Mul_2 |
|
# Add_1 <-- Mul_1, Sub_0 |
|
nodesMap = {node.name: node for node in graph_def.node} |
|
subgraphBatchNorm = ['Add', |
|
['Mul', 'input', ['Mul', ['Rsqrt', ['Add', 'moving_variance', 'add_y']], 'gamma']], |
|
['Sub', 'beta', ['Mul', 'moving_mean', 'Mul_0']]] |
|
# Detect unfused nearest neighbor resize. |
|
subgraphResizeNN = ['Reshape', |
|
['Mul', ['Reshape', 'input', ['Pack', 'shape_1', 'shape_2', 'shape_3', 'shape_4', 'shape_5']], |
|
'ones'], |
|
['Pack', ['StridedSlice', ['Shape', 'input'], 'stack', 'stack_1', 'stack_2'], |
|
'out_height', 'out_width', 'out_channels']] |
|
def checkSubgraph(node, targetNode, inputs, fusedNodes): |
|
op = targetNode[0] |
|
if node.op == op and (len(node.input) >= len(targetNode) - 1): |
|
fusedNodes.append(node) |
|
for i, inpOp in enumerate(targetNode[1:]): |
|
if isinstance(inpOp, list): |
|
if not node.input[i] in nodesMap or \ |
|
not checkSubgraph(nodesMap[node.input[i]], inpOp, inputs, fusedNodes): |
|
return False |
|
else: |
|
inputs[inpOp] = node.input[i] |
|
|
|
return True |
|
else: |
|
return False |
|
|
|
nodesToRemove = [] |
|
for node in graph_def.node: |
|
inputs = {} |
|
fusedNodes = [] |
|
if checkSubgraph(node, subgraphBatchNorm, inputs, fusedNodes): |
|
name = node.name |
|
node.Clear() |
|
node.name = name |
|
node.op = 'FusedBatchNorm' |
|
node.input.append(inputs['input']) |
|
node.input.append(inputs['gamma']) |
|
node.input.append(inputs['beta']) |
|
node.input.append(inputs['moving_mean']) |
|
node.input.append(inputs['moving_variance']) |
|
node.addAttr('epsilon', 0.001) |
|
nodesToRemove += fusedNodes[1:] |
|
|
|
inputs = {} |
|
fusedNodes = [] |
|
if checkSubgraph(node, subgraphResizeNN, inputs, fusedNodes): |
|
name = node.name |
|
node.Clear() |
|
node.name = name |
|
node.op = 'ResizeNearestNeighbor' |
|
node.input.append(inputs['input']) |
|
node.input.append(name + '/output_shape') |
|
|
|
out_height_node = nodesMap[inputs['out_height']] |
|
out_width_node = nodesMap[inputs['out_width']] |
|
out_height = int(out_height_node.attr['value']['tensor'][0]['int_val'][0]) |
|
out_width = int(out_width_node.attr['value']['tensor'][0]['int_val'][0]) |
|
|
|
shapeNode = NodeDef() |
|
shapeNode.name = name + '/output_shape' |
|
shapeNode.op = 'Const' |
|
shapeNode.addAttr('value', [out_height, out_width]) |
|
graph_def.node.insert(graph_def.node.index(node), shapeNode) |
|
nodesToKeep.append(shapeNode.name) |
|
|
|
nodesToRemove += fusedNodes[1:] |
|
for node in nodesToRemove: |
|
graph_def.node.remove(node) |
|
|
|
nodesToKeep = [] |
|
fuse_nodes(nodesToKeep) |
|
|
|
removeIdentity(graph_def) |
|
|
|
def to_remove(name, op): |
|
return (not name in nodesToKeep) and \ |
|
(op == 'Const' or (not op in keepOps) or name.startswith(prefixesToRemove)) |
|
|
|
removeUnusedNodesAndAttrs(to_remove, graph_def) |
|
|
|
|
|
# Connect input node to the first layer |
|
assert(graph_def.node[0].op == 'Placeholder') |
|
# assert(graph_def.node[1].op == 'Conv2D') |
|
weights = graph_def.node[1].input[0] |
|
for i in range(len(graph_def.node[1].input)): |
|
graph_def.node[1].input.pop() |
|
graph_def.node[1].input.append(graph_def.node[0].name) |
|
graph_def.node[1].input.append(weights) |
|
|
|
# Create SSD postprocessing head ############################################### |
|
|
|
# Concatenate predictions of classes, predictions of bounding boxes and proposals. |
|
def addConcatNode(name, inputs, axisNodeName): |
|
concat = NodeDef() |
|
concat.name = name |
|
concat.op = 'ConcatV2' |
|
for inp in inputs: |
|
concat.input.append(inp) |
|
concat.input.append(axisNodeName) |
|
graph_def.node.extend([concat]) |
|
|
|
addConstNode('concat/axis_flatten', [-1], graph_def) |
|
addConstNode('PriorBox/concat/axis', [-2], graph_def) |
|
|
|
for label in ['ClassPredictor', 'BoxEncodingPredictor' if box_predictor is 'convolutional' else 'BoxPredictor']: |
|
concatInputs = [] |
|
for i in range(num_layers): |
|
# Flatten predictions |
|
flatten = NodeDef() |
|
if box_predictor is 'convolutional': |
|
inpName = 'BoxPredictor_%d/%s/BiasAdd' % (i, label) |
|
else: |
|
if i == 0: |
|
inpName = 'WeightSharedConvolutionalBoxPredictor/%s/BiasAdd' % label |
|
else: |
|
inpName = 'WeightSharedConvolutionalBoxPredictor_%d/%s/BiasAdd' % (i, label) |
|
flatten.input.append(inpName) |
|
flatten.name = inpName + '/Flatten' |
|
flatten.op = 'Flatten' |
|
|
|
concatInputs.append(flatten.name) |
|
graph_def.node.extend([flatten]) |
|
addConcatNode('%s/concat' % label, concatInputs, 'concat/axis_flatten') |
|
|
|
num_matched_layers = 0 |
|
for node in graph_def.node: |
|
if re.match('BoxPredictor_\d/BoxEncodingPredictor/Conv2D', node.name) or \ |
|
re.match('WeightSharedConvolutionalBoxPredictor(_\d)*/BoxPredictor/Conv2D', node.name): |
|
node.addAttr('loc_pred_transposed', True) |
|
num_matched_layers += 1 |
|
assert(num_matched_layers == num_layers) |
|
|
|
# Add layers that generate anchors (bounding boxes proposals). |
|
priorBoxes = [] |
|
for i in range(num_layers): |
|
priorBox = NodeDef() |
|
priorBox.name = 'PriorBox_%d' % i |
|
priorBox.op = 'PriorBox' |
|
if box_predictor is 'convolutional': |
|
priorBox.input.append('BoxPredictor_%d/BoxEncodingPredictor/BiasAdd' % i) |
|
else: |
|
if i == 0: |
|
priorBox.input.append('WeightSharedConvolutionalBoxPredictor/BoxPredictor/Conv2D') |
|
else: |
|
priorBox.input.append('WeightSharedConvolutionalBoxPredictor_%d/BoxPredictor/BiasAdd' % i) |
|
priorBox.input.append(graph_def.node[0].name) # image_tensor |
|
|
|
priorBox.addAttr('flip', False) |
|
priorBox.addAttr('clip', False) |
|
|
|
widths, heights = priors_generator.get(i) |
|
|
|
priorBox.addAttr('width', widths) |
|
priorBox.addAttr('height', heights) |
|
priorBox.addAttr('variance', [0.1, 0.1, 0.2, 0.2]) |
|
|
|
graph_def.node.extend([priorBox]) |
|
priorBoxes.append(priorBox.name) |
|
|
|
# Compare this layer's output with Postprocessor/Reshape |
|
addConcatNode('PriorBox/concat', priorBoxes, 'concat/axis_flatten') |
|
|
|
# Sigmoid for classes predictions and DetectionOutput layer |
|
sigmoid = NodeDef() |
|
sigmoid.name = 'ClassPredictor/concat/sigmoid' |
|
sigmoid.op = 'Sigmoid' |
|
sigmoid.input.append('ClassPredictor/concat') |
|
graph_def.node.extend([sigmoid]) |
|
|
|
detectionOut = NodeDef() |
|
detectionOut.name = 'detection_out' |
|
detectionOut.op = 'DetectionOutput' |
|
|
|
if box_predictor == 'convolutional': |
|
detectionOut.input.append('BoxEncodingPredictor/concat') |
|
else: |
|
detectionOut.input.append('BoxPredictor/concat') |
|
detectionOut.input.append(sigmoid.name) |
|
detectionOut.input.append('PriorBox/concat') |
|
|
|
detectionOut.addAttr('num_classes', num_classes + 1) |
|
detectionOut.addAttr('share_location', True) |
|
detectionOut.addAttr('background_label_id', 0) |
|
detectionOut.addAttr('nms_threshold', 0.6) |
|
detectionOut.addAttr('top_k', 100) |
|
detectionOut.addAttr('code_type', "CENTER_SIZE") |
|
detectionOut.addAttr('keep_top_k', 100) |
|
detectionOut.addAttr('confidence_threshold', 0.01) |
|
|
|
graph_def.node.extend([detectionOut]) |
|
|
|
while True: |
|
unconnectedNodes = getUnconnectedNodes() |
|
unconnectedNodes.remove(detectionOut.name) |
|
if not unconnectedNodes: |
|
break |
|
|
|
for name in unconnectedNodes: |
|
for i in range(len(graph_def.node)): |
|
if graph_def.node[i].name == name: |
|
del graph_def.node[i] |
|
break |
|
|
|
# Save as text. |
|
graph_def.save(outputPath) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description='Run this script to get a text graph of ' |
|
'SSD model from TensorFlow Object Detection API. ' |
|
'Then pass it with .pb file to cv::dnn::readNetFromTensorflow function.') |
|
parser.add_argument('--input', required=True, help='Path to frozen TensorFlow graph.') |
|
parser.add_argument('--output', required=True, help='Path to output text graph.') |
|
parser.add_argument('--config', required=True, help='Path to a *.config file is used for training.') |
|
args = parser.parse_args() |
|
|
|
createSSDGraph(args.input, args.config, args.output)
|
|
|