mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
189 lines
6.1 KiB
189 lines
6.1 KiB
#include "perf_precomp.hpp" |
|
#include "opencv2/highgui/highgui.hpp" |
|
#include "opencv2/core/internal.hpp" |
|
#include "opencv2/flann/flann.hpp" |
|
#include "opencv2/opencv_modules.hpp" |
|
|
|
using namespace std; |
|
using namespace cv; |
|
using namespace perf; |
|
using std::tr1::make_tuple; |
|
using std::tr1::get; |
|
|
|
#define SURF_MATCH_CONFIDENCE 0.65f |
|
#define ORB_MATCH_CONFIDENCE 0.3f |
|
#define WORK_MEGAPIX 0.6 |
|
|
|
typedef TestBaseWithParam<String> stitch; |
|
typedef TestBaseWithParam<String> match; |
|
typedef std::tr1::tuple<String, int> matchVector_t; |
|
typedef TestBaseWithParam<matchVector_t> matchVector; |
|
|
|
#ifdef HAVE_OPENCV_NONFREE |
|
#define TEST_DETECTORS testing::Values("surf", "orb") |
|
#else |
|
#define TEST_DETECTORS testing::Values<String>("orb") |
|
#endif |
|
|
|
PERF_TEST_P(stitch, a123, TEST_DETECTORS) |
|
{ |
|
Mat pano; |
|
|
|
vector<Mat> imgs; |
|
imgs.push_back( imread( getDataPath("stitching/a1.jpg") ) ); |
|
imgs.push_back( imread( getDataPath("stitching/a2.jpg") ) ); |
|
imgs.push_back( imread( getDataPath("stitching/a3.jpg") ) ); |
|
|
|
Ptr<detail::FeaturesFinder> featuresFinder = GetParam() == "orb" |
|
? (detail::FeaturesFinder*)new detail::OrbFeaturesFinder() |
|
: (detail::FeaturesFinder*)new detail::SurfFeaturesFinder(); |
|
|
|
Ptr<detail::FeaturesMatcher> featuresMatcher = GetParam() == "orb" |
|
? new detail::BestOf2NearestMatcher(false, ORB_MATCH_CONFIDENCE) |
|
: new detail::BestOf2NearestMatcher(false, SURF_MATCH_CONFIDENCE); |
|
|
|
declare.time(30 * 20).iterations(20); |
|
|
|
while(next()) |
|
{ |
|
Stitcher stitcher = Stitcher::createDefault(); |
|
stitcher.setFeaturesFinder(featuresFinder); |
|
stitcher.setFeaturesMatcher(featuresMatcher); |
|
stitcher.setWarper(new SphericalWarper()); |
|
stitcher.setRegistrationResol(WORK_MEGAPIX); |
|
|
|
startTimer(); |
|
stitcher.stitch(imgs, pano); |
|
stopTimer(); |
|
} |
|
} |
|
|
|
PERF_TEST_P(stitch, b12, TEST_DETECTORS) |
|
{ |
|
Mat pano; |
|
|
|
vector<Mat> imgs; |
|
imgs.push_back( imread( getDataPath("stitching/b1.jpg") ) ); |
|
imgs.push_back( imread( getDataPath("stitching/b2.jpg") ) ); |
|
|
|
Ptr<detail::FeaturesFinder> featuresFinder = GetParam() == "orb" |
|
? (detail::FeaturesFinder*)new detail::OrbFeaturesFinder() |
|
: (detail::FeaturesFinder*)new detail::SurfFeaturesFinder(); |
|
|
|
Ptr<detail::FeaturesMatcher> featuresMatcher = GetParam() == "orb" |
|
? new detail::BestOf2NearestMatcher(false, ORB_MATCH_CONFIDENCE) |
|
: new detail::BestOf2NearestMatcher(false, SURF_MATCH_CONFIDENCE); |
|
|
|
declare.time(30 * 20).iterations(20); |
|
|
|
while(next()) |
|
{ |
|
Stitcher stitcher = Stitcher::createDefault(); |
|
stitcher.setFeaturesFinder(featuresFinder); |
|
stitcher.setFeaturesMatcher(featuresMatcher); |
|
stitcher.setWarper(new SphericalWarper()); |
|
stitcher.setRegistrationResol(WORK_MEGAPIX); |
|
|
|
startTimer(); |
|
stitcher.stitch(imgs, pano); |
|
stopTimer(); |
|
} |
|
} |
|
|
|
PERF_TEST_P( match, bestOf2Nearest, TEST_DETECTORS) |
|
{ |
|
Mat img1, img1_full = imread( getDataPath("stitching/b1.jpg") ); |
|
Mat img2, img2_full = imread( getDataPath("stitching/b2.jpg") ); |
|
float scale1 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img1_full.total())); |
|
float scale2 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img2_full.total())); |
|
resize(img1_full, img1, Size(), scale1, scale1); |
|
resize(img2_full, img2, Size(), scale2, scale2); |
|
|
|
Ptr<detail::FeaturesFinder> finder; |
|
Ptr<detail::FeaturesMatcher> matcher; |
|
if (GetParam() == "surf") |
|
{ |
|
finder = new detail::SurfFeaturesFinder(); |
|
matcher = new detail::BestOf2NearestMatcher(false, SURF_MATCH_CONFIDENCE); |
|
} |
|
else if (GetParam() == "orb") |
|
{ |
|
finder = new detail::OrbFeaturesFinder(); |
|
matcher = new detail::BestOf2NearestMatcher(false, ORB_MATCH_CONFIDENCE); |
|
} |
|
else |
|
{ |
|
FAIL() << "Unknown 2D features type: " << GetParam(); |
|
} |
|
|
|
detail::ImageFeatures features1, features2; |
|
(*finder)(img1, features1); |
|
(*finder)(img2, features2); |
|
|
|
detail::MatchesInfo pairwise_matches; |
|
|
|
declare.in(features1.descriptors, features2.descriptors) |
|
.iterations(100); |
|
|
|
while(next()) |
|
{ |
|
cvflann::seed_random(42);//for predictive FlannBasedMatcher |
|
startTimer(); |
|
(*matcher)(features1, features2, pairwise_matches); |
|
stopTimer(); |
|
matcher->collectGarbage(); |
|
} |
|
} |
|
|
|
PERF_TEST_P( matchVector, bestOf2NearestVectorFeatures, testing::Combine( |
|
TEST_DETECTORS, |
|
testing::Values(2, 4, 6, 8)) |
|
) |
|
{ |
|
Mat img1, img1_full = imread( getDataPath("stitching/b1.jpg") ); |
|
Mat img2, img2_full = imread( getDataPath("stitching/b2.jpg") ); |
|
float scale1 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img1_full.total())); |
|
float scale2 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img2_full.total())); |
|
resize(img1_full, img1, Size(), scale1, scale1); |
|
resize(img2_full, img2, Size(), scale2, scale2); |
|
|
|
Ptr<detail::FeaturesFinder> finder; |
|
Ptr<detail::FeaturesMatcher> matcher; |
|
String detectorName = get<0>(GetParam()); |
|
int featuresVectorSize = get<1>(GetParam()); |
|
if (detectorName == "surf") |
|
{ |
|
finder = new detail::SurfFeaturesFinder(); |
|
matcher = new detail::BestOf2NearestMatcher(false, SURF_MATCH_CONFIDENCE); |
|
} |
|
else if (detectorName == "orb") |
|
{ |
|
finder = new detail::OrbFeaturesFinder(); |
|
matcher = new detail::BestOf2NearestMatcher(false, ORB_MATCH_CONFIDENCE); |
|
} |
|
else |
|
{ |
|
FAIL() << "Unknown 2D features type: " << get<0>(GetParam()); |
|
} |
|
|
|
detail::ImageFeatures features1, features2; |
|
(*finder)(img1, features1); |
|
(*finder)(img2, features2); |
|
vector<detail::ImageFeatures> features; |
|
vector<detail::MatchesInfo> pairwise_matches; |
|
for(int i = 0; i < featuresVectorSize/2; i++) |
|
{ |
|
features.push_back(features1); |
|
features.push_back(features2); |
|
} |
|
|
|
declare.time(200); |
|
while(next()) |
|
{ |
|
cvflann::seed_random(42);//for predictive FlannBasedMatcher |
|
startTimer(); |
|
(*matcher)(features, pairwise_matches); |
|
stopTimer(); |
|
matcher->collectGarbage(); |
|
} |
|
}
|
|
|