mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
131 lines
3.4 KiB
131 lines
3.4 KiB
#include "perf_precomp.hpp" |
|
|
|
using namespace std; |
|
using namespace testing; |
|
|
|
namespace { |
|
|
|
/////////////////////////////////////////////////////////////// |
|
// HOG |
|
|
|
DEF_PARAM_TEST_1(Image, string); |
|
|
|
PERF_TEST_P(Image, ObjDetect_HOG, Values<string>("gpu/hog/road.png")) |
|
{ |
|
cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
std::vector<cv::Rect> found_locations; |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_img(img); |
|
|
|
cv::gpu::HOGDescriptor d_hog; |
|
d_hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector()); |
|
|
|
d_hog.detectMultiScale(d_img, found_locations); |
|
|
|
TEST_CYCLE() |
|
{ |
|
d_hog.detectMultiScale(d_img, found_locations); |
|
} |
|
} |
|
else |
|
{ |
|
cv::HOGDescriptor hog; |
|
hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector()); |
|
|
|
hog.detectMultiScale(img, found_locations); |
|
|
|
TEST_CYCLE() |
|
{ |
|
hog.detectMultiScale(img, found_locations); |
|
} |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////// |
|
// HaarClassifier |
|
|
|
typedef pair<string, string> pair_string; |
|
DEF_PARAM_TEST_1(ImageAndCascade, pair_string); |
|
|
|
PERF_TEST_P(ImageAndCascade, ObjDetect_HaarClassifier, |
|
Values<pair_string>(make_pair("gpu/haarcascade/group_1_640x480_VGA.pgm", "gpu/perf/haarcascade_frontalface_alt.xml"))) |
|
{ |
|
cv::Mat img = readImage(GetParam().first, cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::CascadeClassifier_GPU d_cascade; |
|
ASSERT_TRUE(d_cascade.load(perf::TestBase::getDataPath(GetParam().second))); |
|
|
|
cv::gpu::GpuMat d_img(img); |
|
cv::gpu::GpuMat d_objects_buffer; |
|
|
|
d_cascade.detectMultiScale(d_img, d_objects_buffer); |
|
|
|
TEST_CYCLE() |
|
{ |
|
d_cascade.detectMultiScale(d_img, d_objects_buffer); |
|
} |
|
} |
|
else |
|
{ |
|
cv::CascadeClassifier cascade; |
|
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/perf/haarcascade_frontalface_alt.xml"))); |
|
|
|
std::vector<cv::Rect> rects; |
|
|
|
cascade.detectMultiScale(img, rects); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cascade.detectMultiScale(img, rects); |
|
} |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////// |
|
// LBP cascade |
|
|
|
PERF_TEST_P(ImageAndCascade, ObjDetect_LBPClassifier, |
|
Values<pair_string>(make_pair("gpu/haarcascade/group_1_640x480_VGA.pgm", "gpu/lbpcascade/lbpcascade_frontalface.xml"))) |
|
{ |
|
cv::Mat img = readImage(GetParam().first, cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::CascadeClassifier_GPU d_cascade; |
|
ASSERT_TRUE(d_cascade.load(perf::TestBase::getDataPath(GetParam().second))); |
|
|
|
cv::gpu::GpuMat d_img(img); |
|
cv::gpu::GpuMat d_gpu_rects; |
|
|
|
d_cascade.detectMultiScale(d_img, d_gpu_rects); |
|
|
|
TEST_CYCLE() |
|
{ |
|
d_cascade.detectMultiScale(d_img, d_gpu_rects); |
|
} |
|
} |
|
else |
|
{ |
|
cv::CascadeClassifier cascade; |
|
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/lbpcascade/lbpcascade_frontalface.xml"))); |
|
|
|
std::vector<cv::Rect> rects; |
|
|
|
cascade.detectMultiScale(img, rects); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cascade.detectMultiScale(img, rects); |
|
} |
|
} |
|
} |
|
|
|
} // namespace
|
|
|