Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

219 lines
9.2 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <iostream>
#include <limits>
#include "gputest.hpp"
#define CHECK(pred, err) if (!(pred)) { \
ts->printf(CvTS::LOG, "Fail: \"%s\" at line: %d\n", #pred, __LINE__); \
ts->set_failed_test_info(err); \
return; }
using namespace cv;
using namespace std;
struct CV_GpuBitwiseTest: public CvTest
{
CV_GpuBitwiseTest(): CvTest("GPU-BitwiseOpers", "bitwiseMatOperators") {}
void run(int)
{
int rows, cols;
for (int depth = CV_8U; depth <= CV_64F; ++depth)
for (int cn = 1; cn <= 4; ++cn)
for (int attempt = 0; attempt < 3; ++attempt)
{
rows = 1 + rand() % 100;
cols = 1 + rand() % 100;
test_bitwise_not(rows, cols, CV_MAKETYPE(depth, cn));
test_bitwise_or(rows, cols, CV_MAKETYPE(depth, cn));
test_bitwise_and(rows, cols, CV_MAKETYPE(depth, cn));
test_bitwise_xor(rows, cols, CV_MAKETYPE(depth, cn));
}
}
void test_bitwise_not(int rows, int cols, int type)
{
Mat src(rows, cols, type);
RNG rng;
for (int i = 0; i < src.rows; ++i)
{
Mat row(1, src.cols * src.elemSize(), CV_8U, src.ptr(i));
rng.fill(row, RNG::UNIFORM, Scalar(0), Scalar(255));
}
Mat dst_gold = ~src;
gpu::GpuMat mask(src.size(), CV_8U);
mask.setTo(Scalar(1));
gpu::GpuMat dst;
gpu::bitwise_not(gpu::GpuMat(src), dst, mask);
CHECK(dst_gold.size() == dst.size(), CvTS::FAIL_INVALID_OUTPUT);
CHECK(dst_gold.type() == dst.type(), CvTS::FAIL_INVALID_OUTPUT);
Mat dsth(dst);
for (int i = 0; i < dst_gold.rows; ++i)
CHECK(memcmp(dst_gold.ptr(i), dsth.ptr(i), dst_gold.cols * dst_gold.elemSize()) == 0, CvTS::FAIL_INVALID_OUTPUT)
}
void test_bitwise_or(int rows, int cols, int type)
{
Mat src1(rows, cols, type);
Mat src2(rows, cols, type);
RNG rng;
for (int i = 0; i < src1.rows; ++i)
{
Mat row1(1, src1.cols * src1.elemSize(), CV_8U, src1.ptr(i));
rng.fill(row1, RNG::UNIFORM, Scalar(0), Scalar(255));
Mat row2(1, src2.cols * src2.elemSize(), CV_8U, src2.ptr(i));
rng.fill(row2, RNG::UNIFORM, Scalar(0), Scalar(255));
}
Mat dst_gold = src1 | src2;
gpu::GpuMat dst = gpu::GpuMat(src1) | gpu::GpuMat(src2);
CHECK(dst_gold.size() == dst.size(), CvTS::FAIL_INVALID_OUTPUT);
CHECK(dst_gold.type() == dst.type(), CvTS::FAIL_INVALID_OUTPUT);
Mat dsth(dst);
for (int i = 0; i < dst_gold.rows; ++i)
CHECK(memcmp(dst_gold.ptr(i), dsth.ptr(i), dst_gold.cols * dst_gold.elemSize()) == 0, CvTS::FAIL_INVALID_OUTPUT)
Mat mask(src1.size(), CV_8U);
randu(mask, Scalar(0), Scalar(255));
Mat dst_gold2(dst_gold.size(), dst_gold.type()); dst_gold2.setTo(Scalar::all(0));
gpu::GpuMat dst2(dst.size(), dst.type()); dst2.setTo(Scalar::all(0));
bitwise_or(src1, src2, dst_gold2, mask);
gpu::bitwise_or(gpu::GpuMat(src1), gpu::GpuMat(src2), dst2, gpu::GpuMat(mask));
CHECK(dst_gold2.size() == dst2.size(), CvTS::FAIL_INVALID_OUTPUT);
CHECK(dst_gold2.type() == dst2.type(), CvTS::FAIL_INVALID_OUTPUT);
dsth = dst2;
for (int i = 0; i < dst_gold.rows; ++i)
CHECK(memcmp(dst_gold2.ptr(i), dsth.ptr(i), dst_gold2.cols * dst_gold2.elemSize()) == 0, CvTS::FAIL_INVALID_OUTPUT)
}
void test_bitwise_and(int rows, int cols, int type)
{
Mat src1(rows, cols, type);
Mat src2(rows, cols, type);
RNG rng;
for (int i = 0; i < src1.rows; ++i)
{
Mat row1(1, src1.cols * src1.elemSize(), CV_8U, src1.ptr(i));
rng.fill(row1, RNG::UNIFORM, Scalar(0), Scalar(255));
Mat row2(1, src2.cols * src2.elemSize(), CV_8U, src2.ptr(i));
rng.fill(row2, RNG::UNIFORM, Scalar(0), Scalar(255));
}
Mat dst_gold = src1 & src2;
gpu::GpuMat dst = gpu::GpuMat(src1) & gpu::GpuMat(src2);
CHECK(dst_gold.size() == dst.size(), CvTS::FAIL_INVALID_OUTPUT);
CHECK(dst_gold.type() == dst.type(), CvTS::FAIL_INVALID_OUTPUT);
Mat dsth(dst);
for (int i = 0; i < dst_gold.rows; ++i)
CHECK(memcmp(dst_gold.ptr(i), dsth.ptr(i), dst_gold.cols * dst_gold.elemSize()) == 0, CvTS::FAIL_INVALID_OUTPUT)
Mat mask(src1.size(), CV_8U);
randu(mask, Scalar(0), Scalar(255));
Mat dst_gold2(dst_gold.size(), dst_gold.type()); dst_gold2.setTo(Scalar::all(0));
gpu::GpuMat dst2(dst.size(), dst.type()); dst2.setTo(Scalar::all(0));
bitwise_and(src1, src2, dst_gold2, mask);
gpu::bitwise_and(gpu::GpuMat(src1), gpu::GpuMat(src2), dst2, gpu::GpuMat(mask));
CHECK(dst_gold2.size() == dst2.size(), CvTS::FAIL_INVALID_OUTPUT);
CHECK(dst_gold2.type() == dst2.type(), CvTS::FAIL_INVALID_OUTPUT);
dsth = dst2;
for (int i = 0; i < dst_gold.rows; ++i)
CHECK(memcmp(dst_gold2.ptr(i), dsth.ptr(i), dst_gold2.cols * dst_gold2.elemSize()) == 0, CvTS::FAIL_INVALID_OUTPUT)
}
void test_bitwise_xor(int rows, int cols, int type)
{
Mat src1(rows, cols, type);
Mat src2(rows, cols, type);
RNG rng;
for (int i = 0; i < src1.rows; ++i)
{
Mat row1(1, src1.cols * src1.elemSize(), CV_8U, src1.ptr(i));
rng.fill(row1, RNG::UNIFORM, Scalar(0), Scalar(255));
Mat row2(1, src2.cols * src2.elemSize(), CV_8U, src2.ptr(i));
rng.fill(row2, RNG::UNIFORM, Scalar(0), Scalar(255));
}
Mat dst_gold = src1 ^ src2;
gpu::GpuMat dst = gpu::GpuMat(src1) ^ gpu::GpuMat(src2);
CHECK(dst_gold.size() == dst.size(), CvTS::FAIL_INVALID_OUTPUT);
CHECK(dst_gold.type() == dst.type(), CvTS::FAIL_INVALID_OUTPUT);
Mat dsth(dst);
for (int i = 0; i < dst_gold.rows; ++i)
CHECK(memcmp(dst_gold.ptr(i), dsth.ptr(i), dst_gold.cols * dst_gold.elemSize()) == 0, CvTS::FAIL_INVALID_OUTPUT)
Mat mask(src1.size(), CV_8U);
randu(mask, Scalar(0), Scalar(255));
Mat dst_gold2(dst_gold.size(), dst_gold.type()); dst_gold2.setTo(Scalar::all(0));
gpu::GpuMat dst2(dst.size(), dst.type()); dst2.setTo(Scalar::all(0));
bitwise_xor(src1, src2, dst_gold2, mask);
gpu::bitwise_xor(gpu::GpuMat(src1), gpu::GpuMat(src2), dst2, gpu::GpuMat(mask));
CHECK(dst_gold2.size() == dst2.size(), CvTS::FAIL_INVALID_OUTPUT);
CHECK(dst_gold2.type() == dst2.type(), CvTS::FAIL_INVALID_OUTPUT);
dsth = dst2;
for (int i = 0; i < dst_gold.rows; ++i)
CHECK(memcmp(dst_gold2.ptr(i), dsth.ptr(i), dst_gold2.cols * dst_gold2.elemSize()) == 0, CvTS::FAIL_INVALID_OUTPUT)
}
} gpu_bitwise_test;