mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
219 lines
9.2 KiB
219 lines
9.2 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include <iostream> |
|
#include <limits> |
|
#include "gputest.hpp" |
|
|
|
#define CHECK(pred, err) if (!(pred)) { \ |
|
ts->printf(CvTS::LOG, "Fail: \"%s\" at line: %d\n", #pred, __LINE__); \ |
|
ts->set_failed_test_info(err); \ |
|
return; } |
|
|
|
using namespace cv; |
|
using namespace std; |
|
|
|
struct CV_GpuBitwiseTest: public CvTest |
|
{ |
|
CV_GpuBitwiseTest(): CvTest("GPU-BitwiseOpers", "bitwiseMatOperators") {} |
|
|
|
void run(int) |
|
{ |
|
int rows, cols; |
|
for (int depth = CV_8U; depth <= CV_64F; ++depth) |
|
for (int cn = 1; cn <= 4; ++cn) |
|
for (int attempt = 0; attempt < 3; ++attempt) |
|
{ |
|
rows = 1 + rand() % 100; |
|
cols = 1 + rand() % 100; |
|
test_bitwise_not(rows, cols, CV_MAKETYPE(depth, cn)); |
|
test_bitwise_or(rows, cols, CV_MAKETYPE(depth, cn)); |
|
test_bitwise_and(rows, cols, CV_MAKETYPE(depth, cn)); |
|
test_bitwise_xor(rows, cols, CV_MAKETYPE(depth, cn)); |
|
} |
|
} |
|
|
|
void test_bitwise_not(int rows, int cols, int type) |
|
{ |
|
Mat src(rows, cols, type); |
|
|
|
RNG rng; |
|
for (int i = 0; i < src.rows; ++i) |
|
{ |
|
Mat row(1, src.cols * src.elemSize(), CV_8U, src.ptr(i)); |
|
rng.fill(row, RNG::UNIFORM, Scalar(0), Scalar(255)); |
|
} |
|
|
|
Mat dst_gold = ~src; |
|
|
|
gpu::GpuMat mask(src.size(), CV_8U); |
|
mask.setTo(Scalar(1)); |
|
|
|
gpu::GpuMat dst; |
|
gpu::bitwise_not(gpu::GpuMat(src), dst, mask); |
|
|
|
CHECK(dst_gold.size() == dst.size(), CvTS::FAIL_INVALID_OUTPUT); |
|
CHECK(dst_gold.type() == dst.type(), CvTS::FAIL_INVALID_OUTPUT); |
|
|
|
Mat dsth(dst); |
|
for (int i = 0; i < dst_gold.rows; ++i) |
|
CHECK(memcmp(dst_gold.ptr(i), dsth.ptr(i), dst_gold.cols * dst_gold.elemSize()) == 0, CvTS::FAIL_INVALID_OUTPUT) |
|
} |
|
|
|
void test_bitwise_or(int rows, int cols, int type) |
|
{ |
|
Mat src1(rows, cols, type); |
|
Mat src2(rows, cols, type); |
|
|
|
RNG rng; |
|
for (int i = 0; i < src1.rows; ++i) |
|
{ |
|
Mat row1(1, src1.cols * src1.elemSize(), CV_8U, src1.ptr(i)); |
|
rng.fill(row1, RNG::UNIFORM, Scalar(0), Scalar(255)); |
|
Mat row2(1, src2.cols * src2.elemSize(), CV_8U, src2.ptr(i)); |
|
rng.fill(row2, RNG::UNIFORM, Scalar(0), Scalar(255)); |
|
} |
|
|
|
Mat dst_gold = src1 | src2; |
|
gpu::GpuMat dst = gpu::GpuMat(src1) | gpu::GpuMat(src2); |
|
|
|
CHECK(dst_gold.size() == dst.size(), CvTS::FAIL_INVALID_OUTPUT); |
|
CHECK(dst_gold.type() == dst.type(), CvTS::FAIL_INVALID_OUTPUT); |
|
Mat dsth(dst); |
|
for (int i = 0; i < dst_gold.rows; ++i) |
|
CHECK(memcmp(dst_gold.ptr(i), dsth.ptr(i), dst_gold.cols * dst_gold.elemSize()) == 0, CvTS::FAIL_INVALID_OUTPUT) |
|
|
|
Mat mask(src1.size(), CV_8U); |
|
randu(mask, Scalar(0), Scalar(255)); |
|
|
|
Mat dst_gold2(dst_gold.size(), dst_gold.type()); dst_gold2.setTo(Scalar::all(0)); |
|
gpu::GpuMat dst2(dst.size(), dst.type()); dst2.setTo(Scalar::all(0)); |
|
bitwise_or(src1, src2, dst_gold2, mask); |
|
gpu::bitwise_or(gpu::GpuMat(src1), gpu::GpuMat(src2), dst2, gpu::GpuMat(mask)); |
|
|
|
CHECK(dst_gold2.size() == dst2.size(), CvTS::FAIL_INVALID_OUTPUT); |
|
CHECK(dst_gold2.type() == dst2.type(), CvTS::FAIL_INVALID_OUTPUT); |
|
dsth = dst2; |
|
for (int i = 0; i < dst_gold.rows; ++i) |
|
CHECK(memcmp(dst_gold2.ptr(i), dsth.ptr(i), dst_gold2.cols * dst_gold2.elemSize()) == 0, CvTS::FAIL_INVALID_OUTPUT) |
|
} |
|
|
|
void test_bitwise_and(int rows, int cols, int type) |
|
{ |
|
Mat src1(rows, cols, type); |
|
Mat src2(rows, cols, type); |
|
|
|
RNG rng; |
|
for (int i = 0; i < src1.rows; ++i) |
|
{ |
|
Mat row1(1, src1.cols * src1.elemSize(), CV_8U, src1.ptr(i)); |
|
rng.fill(row1, RNG::UNIFORM, Scalar(0), Scalar(255)); |
|
Mat row2(1, src2.cols * src2.elemSize(), CV_8U, src2.ptr(i)); |
|
rng.fill(row2, RNG::UNIFORM, Scalar(0), Scalar(255)); |
|
} |
|
|
|
Mat dst_gold = src1 & src2; |
|
|
|
gpu::GpuMat dst = gpu::GpuMat(src1) & gpu::GpuMat(src2); |
|
|
|
CHECK(dst_gold.size() == dst.size(), CvTS::FAIL_INVALID_OUTPUT); |
|
CHECK(dst_gold.type() == dst.type(), CvTS::FAIL_INVALID_OUTPUT); |
|
Mat dsth(dst); |
|
for (int i = 0; i < dst_gold.rows; ++i) |
|
CHECK(memcmp(dst_gold.ptr(i), dsth.ptr(i), dst_gold.cols * dst_gold.elemSize()) == 0, CvTS::FAIL_INVALID_OUTPUT) |
|
|
|
|
|
Mat mask(src1.size(), CV_8U); |
|
randu(mask, Scalar(0), Scalar(255)); |
|
|
|
Mat dst_gold2(dst_gold.size(), dst_gold.type()); dst_gold2.setTo(Scalar::all(0)); |
|
gpu::GpuMat dst2(dst.size(), dst.type()); dst2.setTo(Scalar::all(0)); |
|
bitwise_and(src1, src2, dst_gold2, mask); |
|
gpu::bitwise_and(gpu::GpuMat(src1), gpu::GpuMat(src2), dst2, gpu::GpuMat(mask)); |
|
|
|
CHECK(dst_gold2.size() == dst2.size(), CvTS::FAIL_INVALID_OUTPUT); |
|
CHECK(dst_gold2.type() == dst2.type(), CvTS::FAIL_INVALID_OUTPUT); |
|
dsth = dst2; |
|
for (int i = 0; i < dst_gold.rows; ++i) |
|
CHECK(memcmp(dst_gold2.ptr(i), dsth.ptr(i), dst_gold2.cols * dst_gold2.elemSize()) == 0, CvTS::FAIL_INVALID_OUTPUT) |
|
} |
|
|
|
void test_bitwise_xor(int rows, int cols, int type) |
|
{ |
|
Mat src1(rows, cols, type); |
|
Mat src2(rows, cols, type); |
|
|
|
RNG rng; |
|
for (int i = 0; i < src1.rows; ++i) |
|
{ |
|
Mat row1(1, src1.cols * src1.elemSize(), CV_8U, src1.ptr(i)); |
|
rng.fill(row1, RNG::UNIFORM, Scalar(0), Scalar(255)); |
|
Mat row2(1, src2.cols * src2.elemSize(), CV_8U, src2.ptr(i)); |
|
rng.fill(row2, RNG::UNIFORM, Scalar(0), Scalar(255)); |
|
} |
|
|
|
Mat dst_gold = src1 ^ src2; |
|
|
|
gpu::GpuMat dst = gpu::GpuMat(src1) ^ gpu::GpuMat(src2); |
|
|
|
CHECK(dst_gold.size() == dst.size(), CvTS::FAIL_INVALID_OUTPUT); |
|
CHECK(dst_gold.type() == dst.type(), CvTS::FAIL_INVALID_OUTPUT); |
|
Mat dsth(dst); |
|
for (int i = 0; i < dst_gold.rows; ++i) |
|
CHECK(memcmp(dst_gold.ptr(i), dsth.ptr(i), dst_gold.cols * dst_gold.elemSize()) == 0, CvTS::FAIL_INVALID_OUTPUT) |
|
|
|
|
|
Mat mask(src1.size(), CV_8U); |
|
randu(mask, Scalar(0), Scalar(255)); |
|
|
|
Mat dst_gold2(dst_gold.size(), dst_gold.type()); dst_gold2.setTo(Scalar::all(0)); |
|
gpu::GpuMat dst2(dst.size(), dst.type()); dst2.setTo(Scalar::all(0)); |
|
bitwise_xor(src1, src2, dst_gold2, mask); |
|
gpu::bitwise_xor(gpu::GpuMat(src1), gpu::GpuMat(src2), dst2, gpu::GpuMat(mask)); |
|
|
|
CHECK(dst_gold2.size() == dst2.size(), CvTS::FAIL_INVALID_OUTPUT); |
|
CHECK(dst_gold2.type() == dst2.type(), CvTS::FAIL_INVALID_OUTPUT); |
|
dsth = dst2; |
|
for (int i = 0; i < dst_gold.rows; ++i) |
|
CHECK(memcmp(dst_gold2.ptr(i), dsth.ptr(i), dst_gold2.cols * dst_gold2.elemSize()) == 0, CvTS::FAIL_INVALID_OUTPUT) |
|
} |
|
} gpu_bitwise_test; |
|
|
|
|