mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
244 lines
8.3 KiB
244 lines
8.3 KiB
#include <opencv2/objdetect/objdetect.hpp> |
|
#include <opencv2/highgui/highgui.hpp> |
|
#include <opencv2/imgproc/imgproc.hpp> |
|
|
|
#include <iostream> |
|
#include <stdio.h> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
void help() |
|
{ |
|
cout << "\nThis program demonstrates the haar cascade recognizer\n" |
|
"this classifier can recognize many ~rigid objects, it's most known use is for faces.\n" |
|
"Usage:\n" |
|
"./facedetect [--cascade=<cascade_path> this is the primary trained classifier such as frontal face]\n" |
|
" [--nested-cascade[=nested_cascade_path this an optional secondary classifier such as eyes]]\n" |
|
" [--scale=<image scale greater or equal to 1, try 1.3 for example>\n" |
|
" [filename|camera_index]\n\n" |
|
"see facedetect.cmd for one call:\n" |
|
"./facedetect --cascade=\"../../data/haarcascades/haarcascade_frontalface_alt.xml\" --nested-cascade=\"../../data/haarcascades/haarcascade_eye.xml\" --scale=1.3 \n" |
|
"Hit any key to quit.\n" << endl; |
|
} |
|
|
|
void detectAndDraw( Mat& img, |
|
CascadeClassifier& cascade, CascadeClassifier& nestedCascade, |
|
double scale); |
|
|
|
String cascadeName = |
|
"../../data/haarcascades/haarcascade_frontalface_alt.xml"; |
|
String nestedCascadeName = |
|
"../../data/haarcascades/haarcascade_eye_tree_eyeglasses.xml"; |
|
|
|
int main( int argc, const char** argv ) |
|
{ |
|
CvCapture* capture = 0; |
|
Mat frame, frameCopy, image; |
|
const String scaleOpt = "--scale="; |
|
size_t scaleOptLen = scaleOpt.length(); |
|
const String cascadeOpt = "--cascade="; |
|
size_t cascadeOptLen = cascadeOpt.length(); |
|
const String nestedCascadeOpt = "--nested-cascade"; |
|
size_t nestedCascadeOptLen = nestedCascadeOpt.length(); |
|
String inputName; |
|
|
|
help(); |
|
CascadeClassifier cascade, nestedCascade; |
|
double scale = 1; |
|
|
|
for( int i = 1; i < argc; i++ ) |
|
{ |
|
cout << "Processing " << i << " " << argv[i] << endl; |
|
if( cascadeOpt.compare( 0, cascadeOptLen, argv[i], cascadeOptLen ) == 0 ) |
|
{ |
|
cascadeName.assign( argv[i] + cascadeOptLen ); |
|
cout << " from which we have cascadeName= " << cascadeName << endl; |
|
} |
|
else if( nestedCascadeOpt.compare( 0, nestedCascadeOptLen, argv[i], nestedCascadeOptLen ) == 0 ) |
|
{ |
|
if( argv[i][nestedCascadeOpt.length()] == '=' ) |
|
nestedCascadeName.assign( argv[i] + nestedCascadeOpt.length() + 1 ); |
|
if( !nestedCascade.load( nestedCascadeName ) ) |
|
cerr << "WARNING: Could not load classifier cascade for nested objects" << endl; |
|
} |
|
else if( scaleOpt.compare( 0, scaleOptLen, argv[i], scaleOptLen ) == 0 ) |
|
{ |
|
if( !sscanf( argv[i] + scaleOpt.length(), "%lf", &scale ) || scale < 1 ) |
|
scale = 1; |
|
cout << " from which we read scale = " << scale << endl; |
|
} |
|
else if( argv[i][0] == '-' ) |
|
{ |
|
cerr << "WARNING: Unknown option %s" << argv[i] << endl; |
|
} |
|
else |
|
inputName.assign( argv[i] ); |
|
} |
|
|
|
if( !cascade.load( cascadeName ) ) |
|
{ |
|
cerr << "ERROR: Could not load classifier cascade" << endl; |
|
cerr << "Usage: facedetect [--cascade=<cascade_path>]\n" |
|
" [--nested-cascade[=nested_cascade_path]]\n" |
|
" [--scale[=<image scale>\n" |
|
" [filename|camera_index]\n" << endl ; |
|
return -1; |
|
} |
|
|
|
if( inputName.empty() || (isdigit(inputName.c_str()[0]) && inputName.c_str()[1] == '\0') ) |
|
{ |
|
capture = cvCaptureFromCAM( inputName.empty() ? 0 : inputName.c_str()[0] - '0' ); |
|
int c = inputName.empty() ? 0 : inputName.c_str()[0] - '0' ; |
|
if(!capture) cout << "Capture from CAM " << c << " didn't work" << endl; |
|
} |
|
else if( inputName.size() ) |
|
{ |
|
image = imread( inputName, 1 ); |
|
if( image.empty() ) |
|
{ |
|
capture = cvCaptureFromAVI( inputName.c_str() ); |
|
if(!capture) cout << "Capture from AVI didn't work" << endl; |
|
} |
|
} |
|
else |
|
{ |
|
image = imread( "lena.jpg", 1 ); |
|
if(image.empty()) cout << "Couldn't read lena.jpg" << endl; |
|
} |
|
|
|
cvNamedWindow( "result", 1 ); |
|
|
|
if( capture ) |
|
{ |
|
cout << "In capture ..." << endl; |
|
for(;;) |
|
{ |
|
IplImage* iplImg = cvQueryFrame( capture ); |
|
frame = iplImg; |
|
if( frame.empty() ) |
|
break; |
|
if( iplImg->origin == IPL_ORIGIN_TL ) |
|
frame.copyTo( frameCopy ); |
|
else |
|
flip( frame, frameCopy, 0 ); |
|
|
|
detectAndDraw( frameCopy, cascade, nestedCascade, scale ); |
|
|
|
if( waitKey( 10 ) >= 0 ) |
|
goto _cleanup_; |
|
} |
|
|
|
waitKey(0); |
|
_cleanup_: |
|
cvReleaseCapture( &capture ); |
|
} |
|
else |
|
{ |
|
cout << "In image read" << endl; |
|
if( !image.empty() ) |
|
{ |
|
detectAndDraw( image, cascade, nestedCascade, scale ); |
|
waitKey(0); |
|
} |
|
else if( !inputName.empty() ) |
|
{ |
|
/* assume it is a text file containing the |
|
list of the image filenames to be processed - one per line */ |
|
FILE* f = fopen( inputName.c_str(), "rt" ); |
|
if( f ) |
|
{ |
|
char buf[1000+1]; |
|
while( fgets( buf, 1000, f ) ) |
|
{ |
|
int len = (int)strlen(buf), c; |
|
while( len > 0 && isspace(buf[len-1]) ) |
|
len--; |
|
buf[len] = '\0'; |
|
cout << "file " << buf << endl; |
|
image = imread( buf, 1 ); |
|
if( !image.empty() ) |
|
{ |
|
detectAndDraw( image, cascade, nestedCascade, scale ); |
|
c = waitKey(0); |
|
if( c == 27 || c == 'q' || c == 'Q' ) |
|
break; |
|
} |
|
else |
|
{ |
|
cerr << "Aw snap, couldn't read image " << buf << endl; |
|
} |
|
} |
|
fclose(f); |
|
} |
|
} |
|
} |
|
|
|
cvDestroyWindow("result"); |
|
|
|
return 0; |
|
} |
|
|
|
void detectAndDraw( Mat& img, |
|
CascadeClassifier& cascade, CascadeClassifier& nestedCascade, |
|
double scale) |
|
{ |
|
int i = 0; |
|
double t = 0; |
|
vector<Rect> faces; |
|
const static Scalar colors[] = { CV_RGB(0,0,255), |
|
CV_RGB(0,128,255), |
|
CV_RGB(0,255,255), |
|
CV_RGB(0,255,0), |
|
CV_RGB(255,128,0), |
|
CV_RGB(255,255,0), |
|
CV_RGB(255,0,0), |
|
CV_RGB(255,0,255)} ; |
|
Mat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 ); |
|
|
|
cvtColor( img, gray, CV_BGR2GRAY ); |
|
resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR ); |
|
equalizeHist( smallImg, smallImg ); |
|
|
|
t = (double)cvGetTickCount(); |
|
cascade.detectMultiScale( smallImg, faces, |
|
1.1, 2, 0 |
|
//|CV_HAAR_FIND_BIGGEST_OBJECT |
|
//|CV_HAAR_DO_ROUGH_SEARCH |
|
|CV_HAAR_SCALE_IMAGE |
|
, |
|
Size(30, 30) ); |
|
t = (double)cvGetTickCount() - t; |
|
printf( "detection time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) ); |
|
for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++, i++ ) |
|
{ |
|
Mat smallImgROI; |
|
vector<Rect> nestedObjects; |
|
Point center; |
|
Scalar color = colors[i%8]; |
|
int radius; |
|
center.x = cvRound((r->x + r->width*0.5)*scale); |
|
center.y = cvRound((r->y + r->height*0.5)*scale); |
|
radius = cvRound((r->width + r->height)*0.25*scale); |
|
circle( img, center, radius, color, 3, 8, 0 ); |
|
if( nestedCascade.empty() ) |
|
continue; |
|
smallImgROI = smallImg(*r); |
|
nestedCascade.detectMultiScale( smallImgROI, nestedObjects, |
|
1.1, 2, 0 |
|
//|CV_HAAR_FIND_BIGGEST_OBJECT |
|
//|CV_HAAR_DO_ROUGH_SEARCH |
|
//|CV_HAAR_DO_CANNY_PRUNING |
|
|CV_HAAR_SCALE_IMAGE |
|
, |
|
Size(30, 30) ); |
|
for( vector<Rect>::const_iterator nr = nestedObjects.begin(); nr != nestedObjects.end(); nr++ ) |
|
{ |
|
center.x = cvRound((r->x + nr->x + nr->width*0.5)*scale); |
|
center.y = cvRound((r->y + nr->y + nr->height*0.5)*scale); |
|
radius = cvRound((nr->width + nr->height)*0.25*scale); |
|
circle( img, center, radius, color, 3, 8, 0 ); |
|
} |
|
} |
|
cv::imshow( "result", img ); |
|
}
|
|
|