mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
116 lines
2.9 KiB
116 lines
2.9 KiB
.. _hull: |
|
|
|
Convex Hull |
|
*********** |
|
|
|
Goal |
|
===== |
|
|
|
In this tutorial you will learn how to: |
|
|
|
.. container:: enumeratevisibleitemswithsquare |
|
|
|
* Use the OpenCV function :convex_hull:`convexHull <>` |
|
|
|
|
|
Theory |
|
====== |
|
|
|
Code |
|
==== |
|
|
|
This tutorial code's is shown lines below. You can also download it from `here <http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ShapeDescriptors/hull_demo.cpp>`_ |
|
|
|
.. code-block:: cpp |
|
|
|
#include "opencv2/highgui/highgui.hpp" |
|
#include "opencv2/imgproc/imgproc.hpp" |
|
#include <iostream> |
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
|
|
using namespace cv; |
|
using namespace std; |
|
|
|
Mat src; Mat src_gray; |
|
int thresh = 100; |
|
int max_thresh = 255; |
|
RNG rng(12345); |
|
|
|
/// Function header |
|
void thresh_callback(int, void* ); |
|
|
|
/** @function main */ |
|
int main( int argc, char** argv ) |
|
{ |
|
/// Load source image and convert it to gray |
|
src = imread( argv[1], 1 ); |
|
|
|
/// Convert image to gray and blur it |
|
cvtColor( src, src_gray, CV_BGR2GRAY ); |
|
blur( src_gray, src_gray, Size(3,3) ); |
|
|
|
/// Create Window |
|
char* source_window = "Source"; |
|
namedWindow( source_window, CV_WINDOW_AUTOSIZE ); |
|
imshow( source_window, src ); |
|
|
|
createTrackbar( " Threshold:", "Source", &thresh, max_thresh, thresh_callback ); |
|
thresh_callback( 0, 0 ); |
|
|
|
waitKey(0); |
|
return(0); |
|
} |
|
|
|
/** @function thresh_callback */ |
|
void thresh_callback(int, void* ) |
|
{ |
|
Mat src_copy = src.clone(); |
|
Mat threshold_output; |
|
vector<vector<Point> > contours; |
|
vector<Vec4i> hierarchy; |
|
|
|
/// Detect edges using Threshold |
|
threshold( src_gray, threshold_output, thresh, 255, THRESH_BINARY ); |
|
|
|
/// Find contours |
|
findContours( threshold_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0) ); |
|
|
|
/// Find the convex hull object for each contour |
|
vector<vector<Point> >hull( contours.size() ); |
|
for( int i = 0; i < contours.size(); i++ ) |
|
{ convexHull( Mat(contours[i]), hull[i], false ); } |
|
|
|
/// Draw contours + hull results |
|
Mat drawing = Mat::zeros( threshold_output.size(), CV_8UC3 ); |
|
for( int i = 0; i< contours.size(); i++ ) |
|
{ |
|
Scalar color = Scalar( rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255) ); |
|
drawContours( drawing, contours, i, color, 1, 8, vector<Vec4i>(), 0, Point() ); |
|
drawContours( drawing, hull, i, color, 1, 8, vector<Vec4i>(), 0, Point() ); |
|
} |
|
|
|
/// Show in a window |
|
namedWindow( "Hull demo", CV_WINDOW_AUTOSIZE ); |
|
imshow( "Hull demo", drawing ); |
|
} |
|
|
|
|
|
Explanation |
|
============ |
|
|
|
Result |
|
====== |
|
|
|
#. Here it is: |
|
|
|
========== ========== |
|
|Hull_0| |Hull_1| |
|
========== ========== |
|
|
|
.. |Hull_0| image:: images/Hull_Original_Image.jpg |
|
:align: middle |
|
|
|
.. |Hull_1| image:: images/Hull_Result.jpg |
|
:align: middle |
|
|
|
|