mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
485 lines
14 KiB
485 lines
14 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "_modelest.h" |
|
#include <algorithm> |
|
#include <iterator> |
|
#include <limits> |
|
|
|
using namespace std; |
|
|
|
|
|
CvModelEstimator2::CvModelEstimator2(int _modelPoints, CvSize _modelSize, int _maxBasicSolutions) |
|
{ |
|
modelPoints = _modelPoints; |
|
modelSize = _modelSize; |
|
maxBasicSolutions = _maxBasicSolutions; |
|
checkPartialSubsets = true; |
|
rng = cvRNG(-1); |
|
} |
|
|
|
CvModelEstimator2::~CvModelEstimator2() |
|
{ |
|
} |
|
|
|
void CvModelEstimator2::setSeed( int64 seed ) |
|
{ |
|
rng = cvRNG(seed); |
|
} |
|
|
|
|
|
int CvModelEstimator2::findInliers( const CvMat* m1, const CvMat* m2, |
|
const CvMat* model, CvMat* _err, |
|
CvMat* _mask, double threshold ) |
|
{ |
|
int i, count = _err->rows*_err->cols, goodCount = 0; |
|
const float* err = _err->data.fl; |
|
uchar* mask = _mask->data.ptr; |
|
|
|
computeReprojError( m1, m2, model, _err ); |
|
threshold *= threshold; |
|
for( i = 0; i < count; i++ ) |
|
goodCount += mask[i] = err[i] <= threshold; |
|
return goodCount; |
|
} |
|
|
|
|
|
CV_IMPL int |
|
cvRANSACUpdateNumIters( double p, double ep, |
|
int model_points, int max_iters ) |
|
{ |
|
if( model_points <= 0 ) |
|
CV_Error( CV_StsOutOfRange, "the number of model points should be positive" ); |
|
|
|
p = MAX(p, 0.); |
|
p = MIN(p, 1.); |
|
ep = MAX(ep, 0.); |
|
ep = MIN(ep, 1.); |
|
|
|
// avoid inf's & nan's |
|
double num = MAX(1. - p, DBL_MIN); |
|
double denom = 1. - pow(1. - ep,model_points); |
|
if( denom < DBL_MIN ) |
|
return 0; |
|
|
|
num = log(num); |
|
denom = log(denom); |
|
|
|
return denom >= 0 || -num >= max_iters*(-denom) ? |
|
max_iters : cvRound(num/denom); |
|
} |
|
|
|
bool CvModelEstimator2::runRANSAC( const CvMat* m1, const CvMat* m2, CvMat* model, |
|
CvMat* mask0, double reprojThreshold, |
|
double confidence, int maxIters ) |
|
{ |
|
bool result = false; |
|
cv::Ptr<CvMat> mask = cvCloneMat(mask0); |
|
cv::Ptr<CvMat> models, err, tmask; |
|
cv::Ptr<CvMat> ms1, ms2; |
|
|
|
int iter, niters = maxIters; |
|
int count = m1->rows*m1->cols, maxGoodCount = 0; |
|
CV_Assert( CV_ARE_SIZES_EQ(m1, m2) && CV_ARE_SIZES_EQ(m1, mask) ); |
|
|
|
if( count < modelPoints ) |
|
return false; |
|
|
|
models = cvCreateMat( modelSize.height*maxBasicSolutions, modelSize.width, CV_64FC1 ); |
|
err = cvCreateMat( 1, count, CV_32FC1 ); |
|
tmask = cvCreateMat( 1, count, CV_8UC1 ); |
|
|
|
if( count > modelPoints ) |
|
{ |
|
ms1 = cvCreateMat( 1, modelPoints, m1->type ); |
|
ms2 = cvCreateMat( 1, modelPoints, m2->type ); |
|
} |
|
else |
|
{ |
|
niters = 1; |
|
ms1 = cvCloneMat(m1); |
|
ms2 = cvCloneMat(m2); |
|
} |
|
|
|
for( iter = 0; iter < niters; iter++ ) |
|
{ |
|
int i, goodCount, nmodels; |
|
if( count > modelPoints ) |
|
{ |
|
bool found = getSubset( m1, m2, ms1, ms2, 300 ); |
|
if( !found ) |
|
{ |
|
if( iter == 0 ) |
|
return false; |
|
break; |
|
} |
|
} |
|
|
|
nmodels = runKernel( ms1, ms2, models ); |
|
if( nmodels <= 0 ) |
|
continue; |
|
for( i = 0; i < nmodels; i++ ) |
|
{ |
|
CvMat model_i; |
|
cvGetRows( models, &model_i, i*modelSize.height, (i+1)*modelSize.height ); |
|
goodCount = findInliers( m1, m2, &model_i, err, tmask, reprojThreshold ); |
|
|
|
if( goodCount > MAX(maxGoodCount, modelPoints-1) ) |
|
{ |
|
std::swap(tmask, mask); |
|
cvCopy( &model_i, model ); |
|
maxGoodCount = goodCount; |
|
niters = cvRANSACUpdateNumIters( confidence, |
|
(double)(count - goodCount)/count, modelPoints, niters ); |
|
} |
|
} |
|
} |
|
|
|
if( maxGoodCount > 0 ) |
|
{ |
|
if( mask != mask0 ) |
|
cvCopy( mask, mask0 ); |
|
result = true; |
|
} |
|
|
|
return result; |
|
} |
|
|
|
|
|
static CV_IMPLEMENT_QSORT( icvSortDistances, int, CV_LT ) |
|
|
|
bool CvModelEstimator2::runLMeDS( const CvMat* m1, const CvMat* m2, CvMat* model, |
|
CvMat* mask, double confidence, int maxIters ) |
|
{ |
|
const double outlierRatio = 0.45; |
|
bool result = false; |
|
cv::Ptr<CvMat> models; |
|
cv::Ptr<CvMat> ms1, ms2; |
|
cv::Ptr<CvMat> err; |
|
|
|
int iter, niters = maxIters; |
|
int count = m1->rows*m1->cols; |
|
double minMedian = DBL_MAX, sigma; |
|
|
|
CV_Assert( CV_ARE_SIZES_EQ(m1, m2) && CV_ARE_SIZES_EQ(m1, mask) ); |
|
|
|
if( count < modelPoints ) |
|
return false; |
|
|
|
models = cvCreateMat( modelSize.height*maxBasicSolutions, modelSize.width, CV_64FC1 ); |
|
err = cvCreateMat( 1, count, CV_32FC1 ); |
|
|
|
if( count > modelPoints ) |
|
{ |
|
ms1 = cvCreateMat( 1, modelPoints, m1->type ); |
|
ms2 = cvCreateMat( 1, modelPoints, m2->type ); |
|
} |
|
else |
|
{ |
|
niters = 1; |
|
ms1 = cvCloneMat(m1); |
|
ms2 = cvCloneMat(m2); |
|
} |
|
|
|
niters = cvRound(log(1-confidence)/log(1-pow(1-outlierRatio,(double)modelPoints))); |
|
niters = MIN( MAX(niters, 3), maxIters ); |
|
|
|
for( iter = 0; iter < niters; iter++ ) |
|
{ |
|
int i, nmodels; |
|
if( count > modelPoints ) |
|
{ |
|
bool found = getSubset( m1, m2, ms1, ms2, 300 ); |
|
if( !found ) |
|
{ |
|
if( iter == 0 ) |
|
return false; |
|
break; |
|
} |
|
} |
|
|
|
nmodels = runKernel( ms1, ms2, models ); |
|
if( nmodels <= 0 ) |
|
continue; |
|
for( i = 0; i < nmodels; i++ ) |
|
{ |
|
CvMat model_i; |
|
cvGetRows( models, &model_i, i*modelSize.height, (i+1)*modelSize.height ); |
|
computeReprojError( m1, m2, &model_i, err ); |
|
icvSortDistances( err->data.i, count, 0 ); |
|
|
|
double median = count % 2 != 0 ? |
|
err->data.fl[count/2] : (err->data.fl[count/2-1] + err->data.fl[count/2])*0.5; |
|
|
|
if( median < minMedian ) |
|
{ |
|
minMedian = median; |
|
cvCopy( &model_i, model ); |
|
} |
|
} |
|
} |
|
|
|
if( minMedian < DBL_MAX ) |
|
{ |
|
sigma = 2.5*1.4826*(1 + 5./(count - modelPoints))*sqrt(minMedian); |
|
sigma = MAX( sigma, 0.001 ); |
|
|
|
count = findInliers( m1, m2, model, err, mask, sigma ); |
|
result = count >= modelPoints; |
|
} |
|
|
|
return result; |
|
} |
|
|
|
|
|
bool CvModelEstimator2::getSubset( const CvMat* m1, const CvMat* m2, |
|
CvMat* ms1, CvMat* ms2, int maxAttempts ) |
|
{ |
|
cv::AutoBuffer<int> _idx(modelPoints); |
|
int* idx = _idx; |
|
int i = 0, j, k, idx_i, iters = 0; |
|
int type = CV_MAT_TYPE(m1->type), elemSize = CV_ELEM_SIZE(type); |
|
const int *m1ptr = m1->data.i, *m2ptr = m2->data.i; |
|
int *ms1ptr = ms1->data.i, *ms2ptr = ms2->data.i; |
|
int count = m1->cols*m1->rows; |
|
|
|
assert( CV_IS_MAT_CONT(m1->type & m2->type) && (elemSize % sizeof(int) == 0) ); |
|
elemSize /= sizeof(int); |
|
|
|
for(; iters < maxAttempts; iters++) |
|
{ |
|
for( i = 0; i < modelPoints && iters < maxAttempts; ) |
|
{ |
|
idx[i] = idx_i = cvRandInt(&rng) % count; |
|
for( j = 0; j < i; j++ ) |
|
if( idx_i == idx[j] ) |
|
break; |
|
if( j < i ) |
|
continue; |
|
for( k = 0; k < elemSize; k++ ) |
|
{ |
|
ms1ptr[i*elemSize + k] = m1ptr[idx_i*elemSize + k]; |
|
ms2ptr[i*elemSize + k] = m2ptr[idx_i*elemSize + k]; |
|
} |
|
if( checkPartialSubsets && (!checkSubset( ms1, i+1 ) || !checkSubset( ms2, i+1 ))) |
|
{ |
|
iters++; |
|
continue; |
|
} |
|
i++; |
|
} |
|
if( !checkPartialSubsets && i == modelPoints && |
|
(!checkSubset( ms1, i ) || !checkSubset( ms2, i ))) |
|
continue; |
|
break; |
|
} |
|
|
|
return i == modelPoints && iters < maxAttempts; |
|
} |
|
|
|
|
|
bool CvModelEstimator2::checkSubset( const CvMat* m, int count ) |
|
{ |
|
int j, k, i, i0, i1; |
|
CvPoint2D64f* ptr = (CvPoint2D64f*)m->data.ptr; |
|
|
|
assert( CV_MAT_TYPE(m->type) == CV_64FC2 ); |
|
|
|
if( checkPartialSubsets ) |
|
i0 = i1 = count - 1; |
|
else |
|
i0 = 0, i1 = count - 1; |
|
|
|
for( i = i0; i <= i1; i++ ) |
|
{ |
|
// check that the i-th selected point does not belong |
|
// to a line connecting some previously selected points |
|
for( j = 0; j < i; j++ ) |
|
{ |
|
double dx1 = ptr[j].x - ptr[i].x; |
|
double dy1 = ptr[j].y - ptr[i].y; |
|
for( k = 0; k < j; k++ ) |
|
{ |
|
double dx2 = ptr[k].x - ptr[i].x; |
|
double dy2 = ptr[k].y - ptr[i].y; |
|
if( fabs(dx2*dy1 - dy2*dx1) <= FLT_EPSILON*(fabs(dx1) + fabs(dy1) + fabs(dx2) + fabs(dy2))) |
|
break; |
|
} |
|
if( k < j ) |
|
break; |
|
} |
|
if( j < i ) |
|
break; |
|
} |
|
|
|
return i >= i1; |
|
} |
|
|
|
|
|
namespace cv |
|
{ |
|
|
|
class Affine3DEstimator : public CvModelEstimator2 |
|
{ |
|
public: |
|
Affine3DEstimator() : CvModelEstimator2(4, cvSize(4, 3), 1) {} |
|
virtual int runKernel( const CvMat* m1, const CvMat* m2, CvMat* model ); |
|
protected: |
|
virtual void computeReprojError( const CvMat* m1, const CvMat* m2, const CvMat* model, CvMat* error ); |
|
virtual bool checkSubset( const CvMat* ms1, int count ); |
|
}; |
|
|
|
} |
|
|
|
int cv::Affine3DEstimator::runKernel( const CvMat* m1, const CvMat* m2, CvMat* model ) |
|
{ |
|
const Point3d* from = reinterpret_cast<const Point3d*>(m1->data.ptr); |
|
const Point3d* to = reinterpret_cast<const Point3d*>(m2->data.ptr); |
|
|
|
Mat A(12, 12, CV_64F); |
|
Mat B(12, 1, CV_64F); |
|
A = Scalar(0.0); |
|
|
|
for(int i = 0; i < modelPoints; ++i) |
|
{ |
|
*B.ptr<Point3d>(3*i) = to[i]; |
|
|
|
double *aptr = A.ptr<double>(3*i); |
|
for(int k = 0; k < 3; ++k) |
|
{ |
|
aptr[3] = 1.0; |
|
*reinterpret_cast<Point3d*>(aptr) = from[i]; |
|
aptr += 16; |
|
} |
|
} |
|
|
|
CvMat cvA = A; |
|
CvMat cvB = B; |
|
CvMat cvX; |
|
cvReshape(model, &cvX, 1, 12); |
|
cvSolve(&cvA, &cvB, &cvX, CV_SVD ); |
|
|
|
return 1; |
|
} |
|
|
|
void cv::Affine3DEstimator::computeReprojError( const CvMat* m1, const CvMat* m2, const CvMat* model, CvMat* error ) |
|
{ |
|
int count = m1->rows * m1->cols; |
|
const Point3d* from = reinterpret_cast<const Point3d*>(m1->data.ptr); |
|
const Point3d* to = reinterpret_cast<const Point3d*>(m2->data.ptr); |
|
const double* F = model->data.db; |
|
float* err = error->data.fl; |
|
|
|
for(int i = 0; i < count; i++ ) |
|
{ |
|
const Point3d& f = from[i]; |
|
const Point3d& t = to[i]; |
|
|
|
double a = F[0]*f.x + F[1]*f.y + F[ 2]*f.z + F[ 3] - t.x; |
|
double b = F[4]*f.x + F[5]*f.y + F[ 6]*f.z + F[ 7] - t.y; |
|
double c = F[8]*f.x + F[9]*f.y + F[10]*f.z + F[11] - t.z; |
|
|
|
err[i] = (float)sqrt(a*a + b*b + c*c); |
|
} |
|
} |
|
|
|
bool cv::Affine3DEstimator::checkSubset( const CvMat* ms1, int count ) |
|
{ |
|
CV_Assert( CV_MAT_TYPE(ms1->type) == CV_64FC3 ); |
|
|
|
int j, k, i = count - 1; |
|
const Point3d* ptr = reinterpret_cast<const Point3d*>(ms1->data.ptr); |
|
|
|
// check that the i-th selected point does not belong |
|
// to a line connecting some previously selected points |
|
|
|
for(j = 0; j < i; ++j) |
|
{ |
|
Point3d d1 = ptr[j] - ptr[i]; |
|
double n1 = norm(d1); |
|
|
|
for(k = 0; k < j; ++k) |
|
{ |
|
Point3d d2 = ptr[k] - ptr[i]; |
|
double n = norm(d2) * n1; |
|
|
|
if (fabs(d1.dot(d2) / n) > 0.996) |
|
break; |
|
} |
|
if( k < j ) |
|
break; |
|
} |
|
|
|
return j == i; |
|
} |
|
|
|
int cv::estimateAffine3D(InputArray _from, InputArray _to, |
|
OutputArray _out, OutputArray _inliers, |
|
double param1, double param2) |
|
{ |
|
Mat from = _from.getMat(), to = _to.getMat(); |
|
int count = from.checkVector(3, CV_32F); |
|
|
|
CV_Assert( count >= 0 && to.checkVector(3, CV_32F) == count ); |
|
|
|
_out.create(3, 4, CV_64F); |
|
Mat out = _out.getMat(); |
|
|
|
_inliers.create(count, 1, CV_8U, -1, true); |
|
Mat inliers = _inliers.getMat(); |
|
inliers = Scalar::all(1); |
|
|
|
Mat dFrom, dTo; |
|
from.convertTo(dFrom, CV_64F); |
|
to.convertTo(dTo, CV_64F); |
|
|
|
CvMat F3x4 = out; |
|
CvMat mask = inliers; |
|
CvMat m1 = dFrom; |
|
CvMat m2 = dTo; |
|
|
|
const double epsilon = numeric_limits<double>::epsilon(); |
|
param1 = param1 <= 0 ? 3 : param1; |
|
param2 = (param2 < epsilon) ? 0.99 : (param2 > 1 - epsilon) ? 0.99 : param2; |
|
|
|
return Affine3DEstimator().runRANSAC(&m1, &m2, &F3x4, &mask, param1, param2 ); |
|
}
|
|
|