mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
471 lines
20 KiB
471 lines
20 KiB
#!/usr/bin/env python3 |
|
''' |
|
You can download the Geometric Matching Module model from https://www.dropbox.com/s/tyhc73xa051grjp/cp_vton_gmm.onnx?dl=0 |
|
You can download the Try-On Module model from https://www.dropbox.com/s/q2x97ve2h53j66k/cp_vton_tom.onnx?dl=0 |
|
You can download the cloth segmentation model from https://www.dropbox.com/s/qag9vzambhhkvxr/lip_jppnet_384.pb?dl=0 |
|
You can find the OpenPose proto in opencv_extra/testdata/dnn/openpose_pose_coco.prototxt |
|
and get .caffemodel using opencv_extra/testdata/dnn/download_models.py |
|
''' |
|
|
|
import argparse |
|
import os.path |
|
import numpy as np |
|
import cv2 as cv |
|
|
|
from numpy import linalg |
|
from common import findFile |
|
from human_parsing import parse_human |
|
|
|
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV, |
|
cv.dnn.DNN_BACKEND_VKCOM, cv.dnn.DNN_BACKEND_CUDA) |
|
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD, cv.dnn.DNN_TARGET_HDDL, |
|
cv.dnn.DNN_TARGET_VULKAN, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16) |
|
|
|
parser = argparse.ArgumentParser(description='Use this script to run virtial try-on using CP-VTON', |
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter) |
|
parser.add_argument('--input_image', '-i', required=True, help='Path to image with person.') |
|
parser.add_argument('--input_cloth', '-c', required=True, help='Path to target cloth image') |
|
parser.add_argument('--gmm_model', '-gmm', default='cp_vton_gmm.onnx', help='Path to Geometric Matching Module .onnx model.') |
|
parser.add_argument('--tom_model', '-tom', default='cp_vton_tom.onnx', help='Path to Try-On Module .onnx model.') |
|
parser.add_argument('--segmentation_model', default='lip_jppnet_384.pb', help='Path to cloth segmentation .pb model.') |
|
parser.add_argument('--openpose_proto', default='openpose_pose_coco.prototxt', help='Path to OpenPose .prototxt model was trained on COCO dataset.') |
|
parser.add_argument('--openpose_model', default='openpose_pose_coco.caffemodel', help='Path to OpenPose .caffemodel model was trained on COCO dataset.') |
|
parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int, |
|
help="Choose one of computation backends: " |
|
"%d: automatically (by default), " |
|
"%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), " |
|
"%d: OpenCV implementation, " |
|
"%d: VKCOM, " |
|
"%d: CUDA" % backends) |
|
parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int, |
|
help='Choose one of target computation devices: ' |
|
'%d: CPU target (by default), ' |
|
'%d: OpenCL, ' |
|
'%d: OpenCL fp16 (half-float precision), ' |
|
'%d: NCS2 VPU, ' |
|
'%d: HDDL VPU, ' |
|
'%d: Vulkan, ' |
|
'%d: CUDA, ' |
|
'%d: CUDA fp16 (half-float preprocess)'% targets) |
|
args, _ = parser.parse_known_args() |
|
|
|
|
|
def get_pose_map(image, proto_path, model_path, backend, target, height=256, width=192): |
|
radius = 5 |
|
inp = cv.dnn.blobFromImage(image, 1.0 / 255, (width, height)) |
|
|
|
net = cv.dnn.readNet(proto_path, model_path) |
|
net.setPreferableBackend(backend) |
|
net.setPreferableTarget(target) |
|
net.setInput(inp) |
|
out = net.forward() |
|
|
|
threshold = 0.1 |
|
_, out_c, out_h, out_w = out.shape |
|
pose_map = np.zeros((height, width, out_c - 1)) |
|
# last label: Background |
|
for i in range(0, out.shape[1] - 1): |
|
heatMap = out[0, i, :, :] |
|
keypoint = np.full((height, width), -1) |
|
_, conf, _, point = cv.minMaxLoc(heatMap) |
|
x = width * point[0] // out_w |
|
y = height * point[1] // out_h |
|
if conf > threshold and x > 0 and y > 0: |
|
keypoint[y - radius:y + radius, x - radius:x + radius] = 1 |
|
pose_map[:, :, i] = keypoint |
|
|
|
pose_map = pose_map.transpose(2, 0, 1) |
|
return pose_map |
|
|
|
|
|
class BilinearFilter(object): |
|
""" |
|
PIL bilinear resize implementation |
|
image = image.resize((image_width // 16, image_height // 16), Image.BILINEAR) |
|
""" |
|
def _precompute_coeffs(self, inSize, outSize): |
|
filterscale = max(1.0, inSize / outSize) |
|
ksize = int(np.ceil(filterscale)) * 2 + 1 |
|
|
|
kk = np.zeros(shape=(outSize * ksize, ), dtype=np.float32) |
|
bounds = np.empty(shape=(outSize * 2, ), dtype=np.int32) |
|
|
|
centers = (np.arange(outSize) + 0.5) * filterscale + 0.5 |
|
bounds[::2] = np.where(centers - filterscale < 0, 0, centers - filterscale) |
|
bounds[1::2] = np.where(centers + filterscale > inSize, inSize, centers + filterscale) - bounds[::2] |
|
xmins = bounds[::2] - centers + 1 |
|
|
|
points = np.array([np.arange(row) + xmins[i] for i, row in enumerate(bounds[1::2])]) / filterscale |
|
for xx in range(0, outSize): |
|
point = points[xx] |
|
bilinear = np.where(point < 1.0, 1.0 - abs(point), 0.0) |
|
ww = np.sum(bilinear) |
|
kk[xx * ksize : xx * ksize + bilinear.size] = np.where(ww == 0.0, bilinear, bilinear / ww) |
|
return bounds, kk, ksize |
|
|
|
def _resample_horizontal(self, out, img, ksize, bounds, kk): |
|
for yy in range(0, out.shape[0]): |
|
for xx in range(0, out.shape[1]): |
|
xmin = bounds[xx * 2 + 0] |
|
xmax = bounds[xx * 2 + 1] |
|
k = kk[xx * ksize : xx * ksize + xmax] |
|
out[yy, xx] = np.round(np.sum(img[yy, xmin : xmin + xmax] * k)) |
|
|
|
def _resample_vertical(self, out, img, ksize, bounds, kk): |
|
for yy in range(0, out.shape[0]): |
|
ymin = bounds[yy * 2 + 0] |
|
ymax = bounds[yy * 2 + 1] |
|
k = kk[yy * ksize: yy * ksize + ymax] |
|
out[yy] = np.round(np.sum(img[ymin : ymin + ymax, 0:out.shape[1]] * k[:, np.newaxis], axis=0)) |
|
|
|
def imaging_resample(self, img, xsize, ysize): |
|
height, width = img.shape[0:2] |
|
bounds_horiz, kk_horiz, ksize_horiz = self._precompute_coeffs(width, xsize) |
|
bounds_vert, kk_vert, ksize_vert = self._precompute_coeffs(height, ysize) |
|
|
|
out_hor = np.empty((img.shape[0], xsize), dtype=np.uint8) |
|
self._resample_horizontal(out_hor, img, ksize_horiz, bounds_horiz, kk_horiz) |
|
out = np.empty((ysize, xsize), dtype=np.uint8) |
|
self._resample_vertical(out, out_hor, ksize_vert, bounds_vert, kk_vert) |
|
return out |
|
|
|
|
|
class CpVton(object): |
|
def __init__(self, gmm_model, tom_model, backend, target): |
|
super(CpVton, self).__init__() |
|
self.gmm_net = cv.dnn.readNet(gmm_model) |
|
self.tom_net = cv.dnn.readNet(tom_model) |
|
self.gmm_net.setPreferableBackend(backend) |
|
self.gmm_net.setPreferableTarget(target) |
|
self.tom_net.setPreferableBackend(backend) |
|
self.tom_net.setPreferableTarget(target) |
|
|
|
def prepare_agnostic(self, segm_image, input_image, pose_map, height=256, width=192): |
|
palette = { |
|
'Background' : (0, 0, 0), |
|
'Hat' : (128, 0, 0), |
|
'Hair' : (255, 0, 0), |
|
'Glove' : (0, 85, 0), |
|
'Sunglasses' : (170, 0, 51), |
|
'UpperClothes' : (255, 85, 0), |
|
'Dress' : (0, 0, 85), |
|
'Coat' : (0, 119, 221), |
|
'Socks' : (85, 85, 0), |
|
'Pants' : (0, 85, 85), |
|
'Jumpsuits' : (85, 51, 0), |
|
'Scarf' : (52, 86, 128), |
|
'Skirt' : (0, 128, 0), |
|
'Face' : (0, 0, 255), |
|
'Left-arm' : (51, 170, 221), |
|
'Right-arm' : (0, 255, 255), |
|
'Left-leg' : (85, 255, 170), |
|
'Right-leg' : (170, 255, 85), |
|
'Left-shoe' : (255, 255, 0), |
|
'Right-shoe' : (255, 170, 0) |
|
} |
|
color2label = {val: key for key, val in palette.items()} |
|
head_labels = ['Hat', 'Hair', 'Sunglasses', 'Face', 'Pants', 'Skirt'] |
|
|
|
segm_image = cv.cvtColor(segm_image, cv.COLOR_BGR2RGB) |
|
phead = np.zeros((1, height, width), dtype=np.float32) |
|
pose_shape = np.zeros((height, width), dtype=np.uint8) |
|
for r in range(height): |
|
for c in range(width): |
|
pixel = tuple(segm_image[r, c]) |
|
if tuple(pixel) in color2label: |
|
if color2label[pixel] in head_labels: |
|
phead[0, r, c] = 1 |
|
if color2label[pixel] != 'Background': |
|
pose_shape[r, c] = 255 |
|
|
|
input_image = cv.dnn.blobFromImage(input_image, 1.0 / 127.5, (width, height), mean=(127.5, 127.5, 127.5), swapRB=True) |
|
input_image = input_image.squeeze(0) |
|
|
|
img_head = input_image * phead - (1 - phead) |
|
|
|
downsample = BilinearFilter() |
|
down = downsample.imaging_resample(pose_shape, width // 16, height // 16) |
|
res_shape = cv.resize(down, (width, height), cv.INTER_LINEAR) |
|
|
|
res_shape = cv.dnn.blobFromImage(res_shape, 1.0 / 127.5, mean=(127.5, 127.5, 127.5), swapRB=True) |
|
res_shape = res_shape.squeeze(0) |
|
|
|
agnostic = np.concatenate((res_shape, img_head, pose_map), axis=0) |
|
agnostic = np.expand_dims(agnostic, axis=0) |
|
return agnostic.astype(np.float32) |
|
|
|
def get_warped_cloth(self, cloth_img, agnostic, height=256, width=192): |
|
cloth = cv.dnn.blobFromImage(cloth_img, 1.0 / 127.5, (width, height), mean=(127.5, 127.5, 127.5), swapRB=True) |
|
|
|
self.gmm_net.setInput(agnostic, "input.1") |
|
self.gmm_net.setInput(cloth, "input.18") |
|
theta = self.gmm_net.forward() |
|
|
|
grid = self._generate_grid(theta) |
|
warped_cloth = self._bilinear_sampler(cloth, grid).astype(np.float32) |
|
return warped_cloth |
|
|
|
def get_tryon(self, agnostic, warp_cloth): |
|
inp = np.concatenate([agnostic, warp_cloth], axis=1) |
|
self.tom_net.setInput(inp) |
|
out = self.tom_net.forward() |
|
|
|
p_rendered, m_composite = np.split(out, [3], axis=1) |
|
p_rendered = np.tanh(p_rendered) |
|
m_composite = 1 / (1 + np.exp(-m_composite)) |
|
|
|
p_tryon = warp_cloth * m_composite + p_rendered * (1 - m_composite) |
|
rgb_p_tryon = cv.cvtColor(p_tryon.squeeze(0).transpose(1, 2, 0), cv.COLOR_BGR2RGB) |
|
rgb_p_tryon = (rgb_p_tryon + 1) / 2 |
|
return rgb_p_tryon |
|
|
|
def _compute_L_inverse(self, X, Y): |
|
N = X.shape[0] |
|
|
|
Xmat = np.tile(X, (1, N)) |
|
Ymat = np.tile(Y, (1, N)) |
|
P_dist_squared = np.power(Xmat - Xmat.transpose(1, 0), 2) + np.power(Ymat - Ymat.transpose(1, 0), 2) |
|
|
|
P_dist_squared[P_dist_squared == 0] = 1 |
|
K = np.multiply(P_dist_squared, np.log(P_dist_squared)) |
|
|
|
O = np.ones([N, 1], dtype=np.float32) |
|
Z = np.zeros([3, 3], dtype=np.float32) |
|
P = np.concatenate([O, X, Y], axis=1) |
|
first = np.concatenate((K, P), axis=1) |
|
second = np.concatenate((P.transpose(1, 0), Z), axis=1) |
|
L = np.concatenate((first, second), axis=0) |
|
Li = linalg.inv(L) |
|
return Li |
|
|
|
def _prepare_to_transform(self, out_h=256, out_w=192, grid_size=5): |
|
grid_X, grid_Y = np.meshgrid(np.linspace(-1, 1, out_w), np.linspace(-1, 1, out_h)) |
|
grid_X = np.expand_dims(np.expand_dims(grid_X, axis=0), axis=3) |
|
grid_Y = np.expand_dims(np.expand_dims(grid_Y, axis=0), axis=3) |
|
|
|
axis_coords = np.linspace(-1, 1, grid_size) |
|
N = grid_size ** 2 |
|
P_Y, P_X = np.meshgrid(axis_coords, axis_coords) |
|
|
|
P_X = np.reshape(P_X,(-1, 1)) |
|
P_Y = np.reshape(P_Y,(-1, 1)) |
|
|
|
P_X = np.expand_dims(np.expand_dims(np.expand_dims(P_X, axis=2), axis=3), axis=4).transpose(4, 1, 2, 3, 0) |
|
P_Y = np.expand_dims(np.expand_dims(np.expand_dims(P_Y, axis=2), axis=3), axis=4).transpose(4, 1, 2, 3, 0) |
|
return grid_X, grid_Y, N, P_X, P_Y |
|
|
|
def _expand_torch(self, X, shape): |
|
if len(X.shape) != len(shape): |
|
return X.flatten().reshape(shape) |
|
else: |
|
axis = [1 if src == dst else dst for src, dst in zip(X.shape, shape)] |
|
return np.tile(X, axis) |
|
|
|
def _apply_transformation(self, theta, points, N, P_X, P_Y): |
|
if len(theta.shape) == 2: |
|
theta = np.expand_dims(np.expand_dims(theta, axis=2), axis=3) |
|
|
|
batch_size = theta.shape[0] |
|
|
|
P_X_base = np.copy(P_X) |
|
P_Y_base = np.copy(P_Y) |
|
|
|
Li = self._compute_L_inverse(np.reshape(P_X, (N, -1)), np.reshape(P_Y, (N, -1))) |
|
Li = np.expand_dims(Li, axis=0) |
|
|
|
# split theta into point coordinates |
|
Q_X = np.squeeze(theta[:, :N, :, :], axis=3) |
|
Q_Y = np.squeeze(theta[:, N:, :, :], axis=3) |
|
|
|
Q_X += self._expand_torch(P_X_base, Q_X.shape) |
|
Q_Y += self._expand_torch(P_Y_base, Q_Y.shape) |
|
|
|
points_b = points.shape[0] |
|
points_h = points.shape[1] |
|
points_w = points.shape[2] |
|
|
|
P_X = self._expand_torch(P_X, (1, points_h, points_w, 1, N)) |
|
P_Y = self._expand_torch(P_Y, (1, points_h, points_w, 1, N)) |
|
|
|
W_X = self._expand_torch(Li[:,:N,:N], (batch_size, N, N)) @ Q_X |
|
W_Y = self._expand_torch(Li[:,:N,:N], (batch_size, N, N)) @ Q_Y |
|
|
|
W_X = np.expand_dims(np.expand_dims(W_X, axis=3), axis=4).transpose(0, 4, 2, 3, 1) |
|
W_X = np.repeat(W_X, points_h, axis=1) |
|
W_X = np.repeat(W_X, points_w, axis=2) |
|
|
|
W_Y = np.expand_dims(np.expand_dims(W_Y, axis=3), axis=4).transpose(0, 4, 2, 3, 1) |
|
W_Y = np.repeat(W_Y, points_h, axis=1) |
|
W_Y = np.repeat(W_Y, points_w, axis=2) |
|
|
|
A_X = self._expand_torch(Li[:, N:, :N], (batch_size, 3, N)) @ Q_X |
|
A_Y = self._expand_torch(Li[:, N:, :N], (batch_size, 3, N)) @ Q_Y |
|
|
|
A_X = np.expand_dims(np.expand_dims(A_X, axis=3), axis=4).transpose(0, 4, 2, 3, 1) |
|
A_X = np.repeat(A_X, points_h, axis=1) |
|
A_X = np.repeat(A_X, points_w, axis=2) |
|
|
|
A_Y = np.expand_dims(np.expand_dims(A_Y, axis=3), axis=4).transpose(0, 4, 2, 3, 1) |
|
A_Y = np.repeat(A_Y, points_h, axis=1) |
|
A_Y = np.repeat(A_Y, points_w, axis=2) |
|
|
|
points_X_for_summation = np.expand_dims(np.expand_dims(points[:, :, :, 0], axis=3), axis=4) |
|
points_X_for_summation = self._expand_torch(points_X_for_summation, points[:, :, :, 0].shape + (1, N)) |
|
|
|
points_Y_for_summation = np.expand_dims(np.expand_dims(points[:, :, :, 1], axis=3), axis=4) |
|
points_Y_for_summation = self._expand_torch(points_Y_for_summation, points[:, :, :, 0].shape + (1, N)) |
|
|
|
if points_b == 1: |
|
delta_X = points_X_for_summation - P_X |
|
delta_Y = points_Y_for_summation - P_Y |
|
else: |
|
delta_X = points_X_for_summation - self._expand_torch(P_X, points_X_for_summation.shape) |
|
delta_Y = points_Y_for_summation - self._expand_torch(P_Y, points_Y_for_summation.shape) |
|
|
|
dist_squared = np.power(delta_X, 2) + np.power(delta_Y, 2) |
|
dist_squared[dist_squared == 0] = 1 |
|
U = np.multiply(dist_squared, np.log(dist_squared)) |
|
|
|
points_X_batch = np.expand_dims(points[:,:,:,0], axis=3) |
|
points_Y_batch = np.expand_dims(points[:,:,:,1], axis=3) |
|
|
|
if points_b == 1: |
|
points_X_batch = self._expand_torch(points_X_batch, (batch_size, ) + points_X_batch.shape[1:]) |
|
points_Y_batch = self._expand_torch(points_Y_batch, (batch_size, ) + points_Y_batch.shape[1:]) |
|
|
|
points_X_prime = A_X[:,:,:,:,0]+ \ |
|
np.multiply(A_X[:,:,:,:,1], points_X_batch) + \ |
|
np.multiply(A_X[:,:,:,:,2], points_Y_batch) + \ |
|
np.sum(np.multiply(W_X, self._expand_torch(U, W_X.shape)), 4) |
|
|
|
points_Y_prime = A_Y[:,:,:,:,0]+ \ |
|
np.multiply(A_Y[:,:,:,:,1], points_X_batch) + \ |
|
np.multiply(A_Y[:,:,:,:,2], points_Y_batch) + \ |
|
np.sum(np.multiply(W_Y, self._expand_torch(U, W_Y.shape)), 4) |
|
|
|
return np.concatenate((points_X_prime, points_Y_prime), 3) |
|
|
|
def _generate_grid(self, theta): |
|
grid_X, grid_Y, N, P_X, P_Y = self._prepare_to_transform() |
|
warped_grid = self._apply_transformation(theta, np.concatenate((grid_X, grid_Y), axis=3), N, P_X, P_Y) |
|
return warped_grid |
|
|
|
def _bilinear_sampler(self, img, grid): |
|
x, y = grid[:,:,:,0], grid[:,:,:,1] |
|
|
|
H = img.shape[2] |
|
W = img.shape[3] |
|
max_y = H - 1 |
|
max_x = W - 1 |
|
|
|
# rescale x and y to [0, W-1/H-1] |
|
x = 0.5 * (x + 1.0) * (max_x - 1) |
|
y = 0.5 * (y + 1.0) * (max_y - 1) |
|
|
|
# grab 4 nearest corner points for each (x_i, y_i) |
|
x0 = np.floor(x).astype(int) |
|
x1 = x0 + 1 |
|
y0 = np.floor(y).astype(int) |
|
y1 = y0 + 1 |
|
|
|
# calculate deltas |
|
wa = (x1 - x) * (y1 - y) |
|
wb = (x1 - x) * (y - y0) |
|
wc = (x - x0) * (y1 - y) |
|
wd = (x - x0) * (y - y0) |
|
|
|
# clip to range [0, H-1/W-1] to not violate img boundaries |
|
x0 = np.clip(x0, 0, max_x) |
|
x1 = np.clip(x1, 0, max_x) |
|
y0 = np.clip(y0, 0, max_y) |
|
y1 = np.clip(y1, 0, max_y) |
|
|
|
# get pixel value at corner coords |
|
img = img.reshape(-1, H, W) |
|
Ia = img[:, y0, x0].swapaxes(0, 1) |
|
Ib = img[:, y1, x0].swapaxes(0, 1) |
|
Ic = img[:, y0, x1].swapaxes(0, 1) |
|
Id = img[:, y1, x1].swapaxes(0, 1) |
|
|
|
wa = np.expand_dims(wa, axis=0) |
|
wb = np.expand_dims(wb, axis=0) |
|
wc = np.expand_dims(wc, axis=0) |
|
wd = np.expand_dims(wd, axis=0) |
|
|
|
# compute output |
|
out = wa*Ia + wb*Ib + wc*Ic + wd*Id |
|
return out |
|
|
|
|
|
class CorrelationLayer(object): |
|
def __init__(self, params, blobs): |
|
super(CorrelationLayer, self).__init__() |
|
|
|
def getMemoryShapes(self, inputs): |
|
fetureAShape = inputs[0] |
|
b, _, h, w = fetureAShape |
|
return [[b, h * w, h, w]] |
|
|
|
def forward(self, inputs): |
|
feature_A, feature_B = inputs |
|
b, c, h, w = feature_A.shape |
|
feature_A = feature_A.transpose(0, 1, 3, 2) |
|
feature_A = np.reshape(feature_A, (b, c, h * w)) |
|
feature_B = np.reshape(feature_B, (b, c, h * w)) |
|
feature_B = feature_B.transpose(0, 2, 1) |
|
feature_mul = feature_B @ feature_A |
|
feature_mul= np.reshape(feature_mul, (b, h, w, h * w)) |
|
feature_mul = feature_mul.transpose(0, 1, 3, 2) |
|
correlation_tensor = feature_mul.transpose(0, 2, 1, 3) |
|
correlation_tensor = np.ascontiguousarray(correlation_tensor) |
|
return [correlation_tensor] |
|
|
|
|
|
if __name__ == "__main__": |
|
if not os.path.isfile(args.gmm_model): |
|
raise OSError("GMM model not exist") |
|
if not os.path.isfile(args.tom_model): |
|
raise OSError("TOM model not exist") |
|
if not os.path.isfile(args.segmentation_model): |
|
raise OSError("Segmentation model not exist") |
|
if not os.path.isfile(findFile(args.openpose_proto)): |
|
raise OSError("OpenPose proto not exist") |
|
if not os.path.isfile(findFile(args.openpose_model)): |
|
raise OSError("OpenPose model not exist") |
|
|
|
person_img = cv.imread(args.input_image) |
|
ratio = 256 / 192 |
|
inp_h, inp_w, _ = person_img.shape |
|
current_ratio = inp_h / inp_w |
|
if current_ratio > ratio: |
|
center_h = inp_h // 2 |
|
out_h = inp_w * ratio |
|
start = int(center_h - out_h // 2) |
|
end = int(center_h + out_h // 2) |
|
person_img = person_img[start:end, ...] |
|
else: |
|
center_w = inp_w // 2 |
|
out_w = inp_h / ratio |
|
start = int(center_w - out_w // 2) |
|
end = int(center_w + out_w // 2) |
|
person_img = person_img[:, start:end, :] |
|
|
|
cloth_img = cv.imread(args.input_cloth) |
|
pose = get_pose_map(person_img, findFile(args.openpose_proto), |
|
findFile(args.openpose_model), args.backend, args.target) |
|
segm_image = parse_human(person_img, args.segmentation_model) |
|
segm_image = cv.resize(segm_image, (192, 256), cv.INTER_LINEAR) |
|
|
|
cv.dnn_registerLayer('Correlation', CorrelationLayer) |
|
|
|
model = CpVton(args.gmm_model, args.tom_model, args.backend, args.target) |
|
agnostic = model.prepare_agnostic(segm_image, person_img, pose) |
|
warped_cloth = model.get_warped_cloth(cloth_img, agnostic) |
|
output = model.get_tryon(agnostic, warped_cloth) |
|
|
|
cv.dnn_unregisterLayer('Correlation') |
|
|
|
winName = 'Virtual Try-On' |
|
cv.namedWindow(winName, cv.WINDOW_AUTOSIZE) |
|
cv.imshow(winName, output) |
|
cv.waitKey()
|
|
|