mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
271 lines
9.4 KiB
271 lines
9.4 KiB
#include <fstream> |
|
#include <sstream> |
|
#include <iostream> |
|
|
|
#include <opencv2/dnn.hpp> |
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/highgui.hpp> |
|
|
|
#include "common.hpp" |
|
|
|
using namespace cv; |
|
using namespace std; |
|
using namespace dnn; |
|
|
|
const string param_keys = |
|
"{ help h | | Print help message. }" |
|
"{ @alias | | An alias name of model to extract preprocessing parameters from models.yml file. }" |
|
"{ zoo | models.yml | An optional path to file with preprocessing parameters }" |
|
"{ device | 0 | camera device number. }" |
|
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera. }" |
|
"{ classes | | Optional path to a text file with names of classes. }" |
|
"{ colors | | Optional path to a text file with colors for an every class. " |
|
"Every color is represented with three values from 0 to 255 in BGR channels order. }"; |
|
|
|
const string backend_keys = format( |
|
"{ backend | 0 | Choose one of computation backends: " |
|
"%d: automatically (by default), " |
|
"%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), " |
|
"%d: OpenCV implementation, " |
|
"%d: VKCOM, " |
|
"%d: CUDA }", |
|
DNN_BACKEND_DEFAULT, DNN_BACKEND_INFERENCE_ENGINE, DNN_BACKEND_OPENCV, DNN_BACKEND_VKCOM, DNN_BACKEND_CUDA); |
|
|
|
const string target_keys = format( |
|
"{ target | 0 | Choose one of target computation devices: " |
|
"%d: CPU target (by default), " |
|
"%d: OpenCL, " |
|
"%d: OpenCL fp16 (half-float precision), " |
|
"%d: VPU, " |
|
"%d: Vulkan, " |
|
"%d: CUDA, " |
|
"%d: CUDA fp16 (half-float preprocess) }", |
|
DNN_TARGET_CPU, DNN_TARGET_OPENCL, DNN_TARGET_OPENCL_FP16, DNN_TARGET_MYRIAD, DNN_TARGET_VULKAN, DNN_TARGET_CUDA, DNN_TARGET_CUDA_FP16); |
|
|
|
string keys = param_keys + backend_keys + target_keys; |
|
vector<string> classes; |
|
vector<Vec3b> colors; |
|
|
|
void showLegend(); |
|
|
|
void colorizeSegmentation(const Mat &score, Mat &segm); |
|
|
|
int main(int argc, char **argv) |
|
{ |
|
CommandLineParser parser(argc, argv, keys); |
|
|
|
const string modelName = parser.get<String>("@alias"); |
|
const string zooFile = parser.get<String>("zoo"); |
|
|
|
keys += genPreprocArguments(modelName, zooFile); |
|
|
|
parser = CommandLineParser(argc, argv, keys); |
|
parser.about("Use this script to run semantic segmentation deep learning networks using OpenCV."); |
|
if (argc == 1 || parser.has("help")) |
|
{ |
|
parser.printMessage(); |
|
return 0; |
|
} |
|
|
|
float scale = parser.get<float>("scale"); |
|
Scalar mean = parser.get<Scalar>("mean"); |
|
bool swapRB = parser.get<bool>("rgb"); |
|
int inpWidth = parser.get<int>("width"); |
|
int inpHeight = parser.get<int>("height"); |
|
String model = findFile(parser.get<String>("model")); |
|
int backendId = parser.get<int>("backend"); |
|
int targetId = parser.get<int>("target"); |
|
|
|
// Open file with classes names. |
|
if (parser.has("classes")) |
|
{ |
|
string file = parser.get<String>("classes"); |
|
ifstream ifs(file.c_str()); |
|
if (!ifs.is_open()) |
|
CV_Error(Error::StsError, "File " + file + " not found"); |
|
string line; |
|
while (getline(ifs, line)) |
|
{ |
|
classes.push_back(line); |
|
} |
|
} |
|
// Open file with colors. |
|
if (parser.has("colors")) |
|
{ |
|
string file = parser.get<String>("colors"); |
|
ifstream ifs(file.c_str()); |
|
if (!ifs.is_open()) |
|
CV_Error(Error::StsError, "File " + file + " not found"); |
|
string line; |
|
while (getline(ifs, line)) |
|
{ |
|
istringstream colorStr(line.c_str()); |
|
|
|
Vec3b color; |
|
for (int i = 0; i < 3 && !colorStr.eof(); ++i) |
|
colorStr >> color[i]; |
|
colors.push_back(color); |
|
} |
|
} |
|
|
|
if (!parser.check()) |
|
{ |
|
parser.printErrors(); |
|
return 1; |
|
} |
|
|
|
CV_Assert(!model.empty()); |
|
//! [Read and initialize network] |
|
Net net = readNetFromONNX(model); |
|
net.setPreferableBackend(backendId); |
|
net.setPreferableTarget(targetId); |
|
//! [Read and initialize network] |
|
// Create a window |
|
static const string kWinName = "Deep learning semantic segmentation in OpenCV"; |
|
namedWindow(kWinName, WINDOW_NORMAL); |
|
|
|
//! [Open a video file or an image file or a camera stream] |
|
VideoCapture cap; |
|
if (parser.has("input")) |
|
cap.open(findFile(parser.get<String>("input"))); |
|
else |
|
cap.open(parser.get<int>("device")); |
|
//! [Open a video file or an image file or a camera stream] |
|
// Process frames. |
|
Mat frame, blob; |
|
while (waitKey(1) < 0) |
|
{ |
|
cap >> frame; |
|
if (frame.empty()) |
|
{ |
|
waitKey(); |
|
break; |
|
} |
|
imshow("Original Image", frame); |
|
//! [Create a 4D blob from a frame] |
|
blobFromImage(frame, blob, scale, Size(inpWidth, inpHeight), mean, swapRB, false); |
|
//! [Set input blob] |
|
net.setInput(blob); |
|
//! [Make forward pass] |
|
Mat score = net.forward(); |
|
if (modelName == "u2netp") |
|
{ |
|
Mat mask, thresholded_mask, foreground_overlay, background_overlay, foreground_segmented; |
|
mask = cv::Mat(score.size[2], score.size[3], CV_32F, score.ptr<float>(0, 0)); |
|
mask.convertTo(mask, CV_8U, 255); |
|
threshold(mask, thresholded_mask, 0, 255, THRESH_BINARY + THRESH_OTSU); |
|
resize(thresholded_mask, thresholded_mask, Size(frame.cols, frame.rows), 0, 0, INTER_AREA); |
|
// Create overlays for foreground and background |
|
foreground_overlay = Mat::zeros(frame.size(), frame.type()); |
|
background_overlay = Mat::zeros(frame.size(), frame.type()); |
|
// Set foreground (object) to red and background to blue |
|
foreground_overlay.setTo(Scalar(0, 0, 255), thresholded_mask); |
|
Mat inverted_mask; |
|
bitwise_not(thresholded_mask, inverted_mask); |
|
background_overlay.setTo(Scalar(255, 0, 0), inverted_mask); |
|
// Blend the overlays with the original frame |
|
addWeighted(frame, 1, foreground_overlay, 0.5, 0, foreground_segmented); |
|
addWeighted(foreground_segmented, 1, background_overlay, 0.5, 0, frame); |
|
} |
|
else |
|
{ |
|
Mat segm; |
|
colorizeSegmentation(score, segm); |
|
resize(segm, segm, frame.size(), 0, 0, INTER_NEAREST); |
|
addWeighted(frame, 0.1, segm, 0.9, 0.0, frame); |
|
} |
|
|
|
// Put efficiency information. |
|
vector<double> layersTimes; |
|
double freq = getTickFrequency() / 1000; |
|
double t = net.getPerfProfile(layersTimes) / freq; |
|
string label = format("Inference time: %.2f ms", t); |
|
putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0)); |
|
|
|
imshow(kWinName, frame); |
|
if (!classes.empty()) |
|
showLegend(); |
|
} |
|
return 0; |
|
} |
|
|
|
void colorizeSegmentation(const Mat &score, Mat &segm) |
|
{ |
|
const int rows = score.size[2]; |
|
const int cols = score.size[3]; |
|
const int chns = score.size[1]; |
|
|
|
if (colors.empty()) |
|
{ |
|
// Generate colors. |
|
colors.push_back(Vec3b()); |
|
for (int i = 1; i < chns; ++i) |
|
{ |
|
Vec3b color; |
|
for (int j = 0; j < 3; ++j) |
|
color[j] = (colors[i - 1][j] + rand() % 256) / 2; |
|
colors.push_back(color); |
|
} |
|
} |
|
else if (chns != (int)colors.size()) |
|
{ |
|
CV_Error(Error::StsError, format("Number of output classes does not match " |
|
"number of colors (%d != %zu)", |
|
chns, colors.size())); |
|
} |
|
|
|
Mat maxCl = Mat::zeros(rows, cols, CV_8UC1); |
|
Mat maxVal(rows, cols, CV_32FC1, score.data); |
|
for (int ch = 1; ch < chns; ch++) |
|
{ |
|
for (int row = 0; row < rows; row++) |
|
{ |
|
const float *ptrScore = score.ptr<float>(0, ch, row); |
|
uint8_t *ptrMaxCl = maxCl.ptr<uint8_t>(row); |
|
float *ptrMaxVal = maxVal.ptr<float>(row); |
|
for (int col = 0; col < cols; col++) |
|
{ |
|
if (ptrScore[col] > ptrMaxVal[col]) |
|
{ |
|
ptrMaxVal[col] = ptrScore[col]; |
|
ptrMaxCl[col] = (uchar)ch; |
|
} |
|
} |
|
} |
|
} |
|
segm.create(rows, cols, CV_8UC3); |
|
for (int row = 0; row < rows; row++) |
|
{ |
|
const uchar *ptrMaxCl = maxCl.ptr<uchar>(row); |
|
Vec3b *ptrSegm = segm.ptr<Vec3b>(row); |
|
for (int col = 0; col < cols; col++) |
|
{ |
|
ptrSegm[col] = colors[ptrMaxCl[col]]; |
|
} |
|
} |
|
} |
|
|
|
void showLegend() |
|
{ |
|
static const int kBlockHeight = 30; |
|
static Mat legend; |
|
if (legend.empty()) |
|
{ |
|
const int numClasses = (int)classes.size(); |
|
if ((int)colors.size() != numClasses) |
|
{ |
|
CV_Error(Error::StsError, format("Number of output classes does not match " |
|
"number of labels (%zu != %zu)", |
|
colors.size(), classes.size())); |
|
} |
|
legend.create(kBlockHeight * numClasses, 200, CV_8UC3); |
|
for (int i = 0; i < numClasses; i++) |
|
{ |
|
Mat block = legend.rowRange(i * kBlockHeight, (i + 1) * kBlockHeight); |
|
block.setTo(colors[i]); |
|
putText(block, classes[i], Point(0, kBlockHeight / 2), FONT_HERSHEY_SIMPLEX, 0.5, Vec3b(255, 255, 255)); |
|
} |
|
namedWindow("Legend", WINDOW_NORMAL); |
|
imshow("Legend", legend); |
|
} |
|
}
|
|
|