Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
Gursimar Singh 48c31bddc4
Merge pull request #25559 from gursimarsingh:improved_segmentation_sample
8 months ago
..
dnn_model_runner/dnn_conversion Merge pull request #20290 from wjj19950828:add_paddle_humanseg_demo 3 years ago
face_detector
results Merge pull request #20422 from fengyuentau:dnn_face 3 years ago
.gitignore
CMakeLists.txt Merge pull request #20422 from fengyuentau:dnn_face 3 years ago
README.md Merge branch 4.x 1 year ago
action_recognition.py
classification.cpp Merge pull request #24231 from fengyuentau:halide_cleanup_5.x 1 year ago
classification.py Merge pull request #24294 from alexlyulkov:al/remove-torch7-from-dnn 1 year ago
colorization.cpp Merge pull request #25433 from gursimarsingh:colorization_onnx_sample 9 months ago
colorization.py Merge pull request #25433 from gursimarsingh:colorization_onnx_sample 9 months ago
common.hpp Merge pull request #24294 from alexlyulkov:al/remove-torch7-from-dnn 1 year ago
common.py Merge branch 4.x 12 months ago
custom_layers.hpp
dasiamrpn_tracker.cpp Merge pull request #24231 from fengyuentau:halide_cleanup_5.x 1 year ago
download_models.py Drop Python2 support. 2 years ago
edge_detection.py
face_detect.cpp Update documentation 3 years ago
face_detect.py Update documentation 3 years ago
fast_neural_style.py changed readNetFromONNX to readNet 1 year ago
human_parsing.cpp Merge pull request #24231 from fengyuentau:halide_cleanup_5.x 1 year ago
human_parsing.py
js_face_recognition.html Merge branch 4.x 1 year ago
mask_rcnn.py
mobilenet_ssd_accuracy.py
models.yml Merge pull request #25559 from gursimarsingh:improved_segmentation_sample 8 months ago
nanotrack_tracker.cpp Merge pull request #24231 from fengyuentau:halide_cleanup_5.x 1 year ago
object_detection.cpp Merge branch 4.x 12 months ago
object_detection.py Merge branch 4.x 12 months ago
openpose.cpp Merge branch 4.x 3 years ago
openpose.py
optical_flow.py Merge pull request #24913 from usyntest:optical-flow-sample-raft 11 months ago
person_reid.cpp Merge pull request #24231 from fengyuentau:halide_cleanup_5.x 1 year ago
person_reid.py
scene_text_detection.cpp
scene_text_recognition.cpp
scene_text_spotting.cpp solve Issue 23685 2 years ago
segmentation.cpp Merge pull request #25559 from gursimarsingh:improved_segmentation_sample 8 months ago
segmentation.py Merge pull request #25559 from gursimarsingh:improved_segmentation_sample 8 months ago
shrink_tf_graph_weights.py
siamrpnpp.py Merge pull request #24231 from fengyuentau:halide_cleanup_5.x 1 year ago
speech_recognition.cpp dnn: fix various dnn related typos 3 years ago
speech_recognition.py dnn: fix various dnn related typos 3 years ago
text_detection.cpp solve Issue I23683 2 years ago
text_detection.py Merge remote-tracking branch 'upstream/3.4' into merge-3.4 3 years ago
tf_text_graph_common.py
tf_text_graph_efficientdet.py
tf_text_graph_faster_rcnn.py
tf_text_graph_mask_rcnn.py
tf_text_graph_ssd.py Use ==/!= to compare constant literals (str, bytes, int, float, tuple) 3 years ago
virtual_try_on.py Merge pull request #24231 from fengyuentau:halide_cleanup_5.x 1 year ago
vit_tracker.cpp Merge pull request #24201 from lpylpy0514:4.x 1 year ago
yolo_detector.cpp Merge pull request #24898 from Abdurrahheem:ash/yolo_ducumentation 11 months ago

README.md

OpenCV deep learning module samples

Model Zoo

Check a wiki for a list of tested models.

If OpenCV is built with Intel's Inference Engine support you can use Intel's pre-trained models.

There are different preprocessing parameters such mean subtraction or scale factors for different models. You may check the most popular models and their parameters at models.yml configuration file. It might be also used for aliasing samples parameters. In example,

python object_detection.py opencv_fd --model /path/to/caffemodel --config /path/to/prototxt

Check -h option to know which values are used by default:

python object_detection.py opencv_fd -h

Sample models

You can download sample models using download_models.py. For example, the following command will download network weights for OpenCV Face Detector model and store them in FaceDetector folder:

python download_models.py --save_dir FaceDetector opencv_fd

You can use default configuration files adopted for OpenCV from here.

You also can use the script to download necessary files from your code. Assume you have the following code inside your_script.py:

from download_models import downloadFile

filepath1 = downloadFile("https://drive.google.com/uc?export=download&id=0B3gersZ2cHIxRm5PMWRoTkdHdHc", None, filename="MobileNetSSD_deploy.caffemodel", save_dir="save_dir_1")
filepath2 = downloadFile("https://drive.google.com/uc?export=download&id=0B3gersZ2cHIxRm5PMWRoTkdHdHc", "994d30a8afaa9e754d17d2373b2d62a7dfbaaf7a", filename="MobileNetSSD_deploy.caffemodel")
print(filepath1)
print(filepath2)
# Your code

By running the following commands, you will get MobileNetSSD_deploy.caffemodel file:

export OPENCV_DOWNLOAD_DATA_PATH=download_folder
python your_script.py

Note that you can provide a directory using save_dir parameter or via OPENCV_SAVE_DIR environment variable.

Face detection

An origin model with single precision floating point weights has been quantized using TensorFlow framework. To achieve the best accuracy run the model on BGR images resized to 300x300 applying mean subtraction of values (104, 177, 123) for each blue, green and red channels correspondingly.

The following are accuracy metrics obtained using COCO object detection evaluation tool on FDDB dataset (see script) applying resize to 300x300 and keeping an origin images' sizes.

AP - Average Precision                            | FP32/FP16 | UINT8          | FP32/FP16 | UINT8          |
AR - Average Recall                               | 300x300   | 300x300        | any size  | any size       |
--------------------------------------------------|-----------|----------------|-----------|----------------|
AP @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] | 0.408     | 0.408          | 0.378     | 0.328 (-0.050) |
AP @[ IoU=0.50      | area=   all | maxDets=100 ] | 0.849     | 0.849          | 0.797     | 0.790 (-0.007) |
AP @[ IoU=0.75      | area=   all | maxDets=100 ] | 0.251     | 0.251          | 0.208     | 0.140 (-0.068) |
AP @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.050     | 0.051 (+0.001) | 0.107     | 0.070 (-0.037) |
AP @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.381     | 0.379 (-0.002) | 0.380     | 0.368 (-0.012) |
AP @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.455     | 0.455          | 0.412     | 0.337 (-0.075) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] | 0.299     | 0.299          | 0.279     | 0.246 (-0.033) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] | 0.482     | 0.482          | 0.476     | 0.436 (-0.040) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] | 0.496     | 0.496          | 0.491     | 0.451 (-0.040) |
AR @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.189     | 0.193 (+0.004) | 0.284     | 0.232 (-0.052) |
AR @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.481     | 0.480 (-0.001) | 0.470     | 0.458 (-0.012) |
AR @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.528     | 0.528          | 0.520     | 0.462 (-0.058) |

References