mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
362 lines
12 KiB
362 lines
12 KiB
/* |
|
* 3calibration.cpp -- Calibrate 3 cameras in a horizontal line together. |
|
*/ |
|
|
|
#include "opencv2/3d.hpp" |
|
#include "opencv2/stereo.hpp" |
|
#include "opencv2/calib.hpp" |
|
#include "opencv2/imgproc.hpp" |
|
#include "opencv2/imgcodecs.hpp" |
|
#include "opencv2/highgui.hpp" |
|
#include "opencv2/core/utility.hpp" |
|
|
|
#include <stdio.h> |
|
#include <string.h> |
|
#include <time.h> |
|
|
|
using namespace cv; |
|
using namespace std; |
|
|
|
enum { DETECTION = 0, CAPTURING = 1, CALIBRATED = 2 }; |
|
|
|
static void help(char** argv) |
|
{ |
|
printf( "\nThis is a camera calibration sample that calibrates 3 horizontally placed cameras together.\n" |
|
"Usage: %s\n" |
|
" -w=<board_width> # the number of inner corners per one of board dimension\n" |
|
" -h=<board_height> # the number of inner corners per another board dimension\n" |
|
" [-s=<squareSize>] # square size in some user-defined units (1 by default)\n" |
|
" [-o=<out_camera_params>] # the output filename for intrinsic [and extrinsic] parameters\n" |
|
" [-zt] # assume zero tangential distortion\n" |
|
" [-a=<aspectRatio>] # fix aspect ratio (fx/fy)\n" |
|
" [-p] # fix the principal point at the center\n" |
|
" [input_data] # input data - text file with a list of the images of the board\n" |
|
"\n", argv[0] ); |
|
|
|
} |
|
|
|
static void calcChessboardCorners(Size boardSize, float squareSize, vector<Point3f>& corners) |
|
{ |
|
corners.resize(0); |
|
|
|
for( int i = 0; i < boardSize.height; i++ ) |
|
for( int j = 0; j < boardSize.width; j++ ) |
|
corners.push_back(Point3f(float(j*squareSize), |
|
float(i*squareSize), 0)); |
|
} |
|
|
|
static bool run3Calibration(vector<vector<Point2f> > imagePoints1, |
|
vector<vector<Point2f> > imagePoints2, |
|
vector<vector<Point2f> > imagePoints3, |
|
Size imageSize, Size boardSize, |
|
float squareSize, float aspectRatio, |
|
int flags, |
|
Mat& cameraMatrix1, Mat& distCoeffs1, |
|
Mat& cameraMatrix2, Mat& distCoeffs2, |
|
Mat& cameraMatrix3, Mat& distCoeffs3, |
|
Mat& R12, Mat& T12, Mat& R13, Mat& T13) |
|
{ |
|
int c, i; |
|
|
|
// step 1: calibrate each camera individually |
|
vector<vector<Point3f> > objpt(1); |
|
vector<vector<Point2f> > imgpt; |
|
calcChessboardCorners(boardSize, squareSize, objpt[0]); |
|
vector<Mat> rvecs, tvecs; |
|
|
|
for( c = 1; c <= 3; c++ ) |
|
{ |
|
const vector<vector<Point2f> >& imgpt0 = c == 1 ? imagePoints1 : c == 2 ? imagePoints2 : imagePoints3; |
|
imgpt.clear(); |
|
int N = 0; |
|
for( i = 0; i < (int)imgpt0.size(); i++ ) |
|
if( !imgpt0[i].empty() ) |
|
{ |
|
imgpt.push_back(imgpt0[i]); |
|
N += (int)imgpt0[i].size(); |
|
} |
|
|
|
if( imgpt.size() < 3 ) |
|
{ |
|
printf("Error: not enough views for camera %d\n", c); |
|
return false; |
|
} |
|
|
|
objpt.resize(imgpt.size(),objpt[0]); |
|
|
|
Mat cameraMatrix = Mat::eye(3, 3, CV_64F); |
|
if( flags & CALIB_FIX_ASPECT_RATIO ) |
|
cameraMatrix.at<double>(0,0) = aspectRatio; |
|
|
|
Mat distCoeffs = Mat::zeros(5, 1, CV_64F); |
|
|
|
double err = calibrateCamera(objpt, imgpt, imageSize, cameraMatrix, |
|
distCoeffs, rvecs, tvecs, |
|
flags|CALIB_FIX_K3/*|CALIB_FIX_K4|CALIB_FIX_K5|CALIB_FIX_K6*/); |
|
bool ok = checkRange(cameraMatrix) && checkRange(distCoeffs); |
|
if(!ok) |
|
{ |
|
printf("Error: camera %d was not calibrated\n", c); |
|
return false; |
|
} |
|
printf("Camera %d calibration reprojection error = %g\n", c, sqrt(err/N)); |
|
|
|
if( c == 1 ) |
|
cameraMatrix1 = cameraMatrix, distCoeffs1 = distCoeffs; |
|
else if( c == 2 ) |
|
cameraMatrix2 = cameraMatrix, distCoeffs2 = distCoeffs; |
|
else |
|
cameraMatrix3 = cameraMatrix, distCoeffs3 = distCoeffs; |
|
} |
|
|
|
vector<vector<Point2f> > imgpt_right; |
|
|
|
// step 2: calibrate (1,2) and (3,2) pairs |
|
for( c = 2; c <= 3; c++ ) |
|
{ |
|
const vector<vector<Point2f> >& imgpt0 = c == 2 ? imagePoints2 : imagePoints3; |
|
|
|
imgpt.clear(); |
|
imgpt_right.clear(); |
|
int N = 0; |
|
|
|
for( i = 0; i < (int)std::min(imagePoints1.size(), imgpt0.size()); i++ ) |
|
if( !imagePoints1.empty() && !imgpt0[i].empty() ) |
|
{ |
|
imgpt.push_back(imagePoints1[i]); |
|
imgpt_right.push_back(imgpt0[i]); |
|
N += (int)imgpt0[i].size(); |
|
} |
|
|
|
if( imgpt.size() < 3 ) |
|
{ |
|
printf("Error: not enough shared views for cameras 1 and %d\n", c); |
|
return false; |
|
} |
|
|
|
objpt.resize(imgpt.size(),objpt[0]); |
|
Mat cameraMatrix = c == 2 ? cameraMatrix2 : cameraMatrix3; |
|
Mat distCoeffs = c == 2 ? distCoeffs2 : distCoeffs3; |
|
Mat R, T, E, F; |
|
double err = stereoCalibrate(objpt, imgpt, imgpt_right, cameraMatrix1, distCoeffs1, |
|
cameraMatrix, distCoeffs, |
|
imageSize, R, T, E, F, |
|
CALIB_FIX_INTRINSIC, |
|
TermCriteria(TermCriteria::COUNT, 30, 0)); |
|
printf("Pair (1,%d) calibration reprojection error = %g\n", c, sqrt(err/(N*2))); |
|
if( c == 2 ) |
|
{ |
|
cameraMatrix2 = cameraMatrix; |
|
distCoeffs2 = distCoeffs; |
|
R12 = R; T12 = T; |
|
} |
|
else |
|
{ |
|
R13 = R; T13 = T; |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
static bool readStringList( const string& filename, vector<string>& l ) |
|
{ |
|
l.resize(0); |
|
FileStorage fs(filename, FileStorage::READ); |
|
if( !fs.isOpened() ) |
|
return false; |
|
FileNode n = fs.getFirstTopLevelNode(); |
|
if( n.type() != FileNode::SEQ ) |
|
return false; |
|
FileNodeIterator it = n.begin(), it_end = n.end(); |
|
for( ; it != it_end; ++it ) |
|
l.push_back((string)*it); |
|
return true; |
|
} |
|
|
|
|
|
int main( int argc, char** argv ) |
|
{ |
|
int i, k; |
|
int flags = 0; |
|
Size boardSize, imageSize; |
|
float squareSize, aspectRatio; |
|
string outputFilename; |
|
string inputFilename = ""; |
|
|
|
vector<vector<Point2f> > imgpt[3]; |
|
vector<string> imageList; |
|
|
|
cv::CommandLineParser parser(argc, argv, |
|
"{help ||}{w||}{h||}{s|1|}{o|out_camera_data.yml|}" |
|
"{zt||}{a|1|}{p||}{@input||}"); |
|
if (parser.has("help")) |
|
{ |
|
help(argv); |
|
return 0; |
|
} |
|
boardSize.width = parser.get<int>("w"); |
|
boardSize.height = parser.get<int>("h"); |
|
squareSize = parser.get<float>("s"); |
|
aspectRatio = parser.get<float>("a"); |
|
if (parser.has("a")) |
|
flags |= CALIB_FIX_ASPECT_RATIO; |
|
if (parser.has("zt")) |
|
flags |= CALIB_ZERO_TANGENT_DIST; |
|
if (parser.has("p")) |
|
flags |= CALIB_FIX_PRINCIPAL_POINT; |
|
outputFilename = parser.get<string>("o"); |
|
inputFilename = parser.get<string>("@input"); |
|
if (!parser.check()) |
|
{ |
|
help(argv); |
|
parser.printErrors(); |
|
return -1; |
|
} |
|
if (boardSize.width <= 0) |
|
return fprintf( stderr, "Invalid board width\n" ), -1; |
|
if (boardSize.height <= 0) |
|
return fprintf( stderr, "Invalid board height\n" ), -1; |
|
if (squareSize <= 0) |
|
return fprintf( stderr, "Invalid board square width\n" ), -1; |
|
if (aspectRatio <= 0) |
|
return printf("Invalid aspect ratio\n" ), -1; |
|
if( inputFilename.empty() || |
|
!readStringList(inputFilename, imageList) || |
|
imageList.size() == 0 || imageList.size() % 3 != 0 ) |
|
{ |
|
printf("Error: the input image list is not specified, or can not be read, or the number of files is not divisible by 3\n"); |
|
return -1; |
|
} |
|
|
|
Mat view, viewGray; |
|
Mat cameraMatrix[3], distCoeffs[3], R[3], P[3], R12, T12; |
|
for( k = 0; k < 3; k++ ) |
|
{ |
|
cameraMatrix[k] = Mat_<double>::eye(3,3); |
|
cameraMatrix[k].at<double>(0,0) = aspectRatio; |
|
cameraMatrix[k].at<double>(1,1) = 1; |
|
distCoeffs[k] = Mat_<double>::zeros(5,1); |
|
} |
|
Mat R13=Mat_<double>::eye(3,3), T13=Mat_<double>::zeros(3,1); |
|
|
|
FileStorage fs; |
|
namedWindow( "Image View", 0 ); |
|
|
|
for( k = 0; k < 3; k++ ) |
|
imgpt[k].resize(imageList.size()/3); |
|
|
|
for( i = 0; i < (int)(imageList.size()/3); i++ ) |
|
{ |
|
for( k = 0; k < 3; k++ ) |
|
{ |
|
int k1 = k == 0 ? 2 : k == 1 ? 0 : 1; |
|
printf("%s\n", imageList[i*3+k].c_str()); |
|
view = imread(imageList[i*3+k], IMREAD_COLOR); |
|
|
|
if(!view.empty()) |
|
{ |
|
vector<Point2f> ptvec; |
|
imageSize = view.size(); |
|
cvtColor(view, viewGray, COLOR_BGR2GRAY); |
|
bool found = findChessboardCorners( view, boardSize, ptvec, CALIB_CB_ADAPTIVE_THRESH ); |
|
|
|
drawChessboardCorners( view, boardSize, Mat(ptvec), found ); |
|
if( found ) |
|
{ |
|
imgpt[k1][i].resize(ptvec.size()); |
|
std::copy(ptvec.begin(), ptvec.end(), imgpt[k1][i].begin()); |
|
} |
|
//imshow("view", view); |
|
//int c = waitKey(0) & 255; |
|
//if( c == 27 || c == 'q' || c == 'Q' ) |
|
// return -1; |
|
} |
|
} |
|
} |
|
|
|
printf("Running calibration ...\n"); |
|
|
|
run3Calibration(imgpt[0], imgpt[1], imgpt[2], imageSize, |
|
boardSize, squareSize, aspectRatio, flags|CALIB_FIX_K4|CALIB_FIX_K5, |
|
cameraMatrix[0], distCoeffs[0], |
|
cameraMatrix[1], distCoeffs[1], |
|
cameraMatrix[2], distCoeffs[2], |
|
R12, T12, R13, T13); |
|
|
|
fs.open(outputFilename, FileStorage::WRITE); |
|
|
|
fs << "cameraMatrix1" << cameraMatrix[0]; |
|
fs << "cameraMatrix2" << cameraMatrix[1]; |
|
fs << "cameraMatrix3" << cameraMatrix[2]; |
|
|
|
fs << "distCoeffs1" << distCoeffs[0]; |
|
fs << "distCoeffs2" << distCoeffs[1]; |
|
fs << "distCoeffs3" << distCoeffs[2]; |
|
|
|
fs << "R12" << R12; |
|
fs << "T12" << T12; |
|
fs << "R13" << R13; |
|
fs << "T13" << T13; |
|
|
|
fs << "imageWidth" << imageSize.width; |
|
fs << "imageHeight" << imageSize.height; |
|
|
|
Mat Q; |
|
|
|
// step 3: find rectification transforms |
|
double ratio = rectify3Collinear(cameraMatrix[0], distCoeffs[0], cameraMatrix[1], |
|
distCoeffs[1], cameraMatrix[2], distCoeffs[2], |
|
imgpt[0], imgpt[2], |
|
imageSize, R12, T12, R13, T13, |
|
R[0], R[1], R[2], P[0], P[1], P[2], Q, -1., |
|
imageSize, 0, 0, CALIB_ZERO_DISPARITY); |
|
Mat map1[3], map2[3]; |
|
|
|
fs << "R1" << R[0]; |
|
fs << "R2" << R[1]; |
|
fs << "R3" << R[2]; |
|
|
|
fs << "P1" << P[0]; |
|
fs << "P2" << P[1]; |
|
fs << "P3" << P[2]; |
|
|
|
fs << "disparityRatio" << ratio; |
|
fs.release(); |
|
|
|
printf("Disparity ratio = %g\n", ratio); |
|
|
|
for( k = 0; k < 3; k++ ) |
|
initUndistortRectifyMap(cameraMatrix[k], distCoeffs[k], R[k], P[k], imageSize, CV_16SC2, map1[k], map2[k]); |
|
|
|
Mat canvas(imageSize.height, imageSize.width*3, CV_8UC3), small_canvas; |
|
destroyWindow("view"); |
|
canvas = Scalar::all(0); |
|
|
|
for( i = 0; i < (int)(imageList.size()/3); i++ ) |
|
{ |
|
canvas = Scalar::all(0); |
|
for( k = 0; k < 3; k++ ) |
|
{ |
|
int k1 = k == 0 ? 2 : k == 1 ? 0 : 1; |
|
int k2 = k == 0 ? 1 : k == 1 ? 0 : 2; |
|
view = imread(imageList[i*3+k], IMREAD_COLOR); |
|
|
|
if(view.empty()) |
|
continue; |
|
|
|
Mat rview = canvas.colRange(k2*imageSize.width, (k2+1)*imageSize.width); |
|
remap(view, rview, map1[k1], map2[k1], INTER_LINEAR); |
|
} |
|
printf("%s %s %s\n", imageList[i*3].c_str(), imageList[i*3+1].c_str(), imageList[i*3+2].c_str()); |
|
resize( canvas, small_canvas, Size(1500, 1500/3), 0, 0, INTER_LINEAR_EXACT ); |
|
for( k = 0; k < small_canvas.rows; k += 16 ) |
|
line(small_canvas, Point(0, k), Point(small_canvas.cols, k), Scalar(0,255,0), 1); |
|
imshow("rectified", small_canvas); |
|
char c = (char)waitKey(0); |
|
if( c == 27 || c == 'q' || c == 'Q' ) |
|
break; |
|
} |
|
|
|
return 0; |
|
}
|
|
|