mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1983 lines
68 KiB
1983 lines
68 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include "opencv2/core/core_c.h" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
class CV_DefaultNewCameraMatrixTest : public cvtest::ArrayTest |
|
{ |
|
public: |
|
CV_DefaultNewCameraMatrixTest(); |
|
protected: |
|
int prepare_test_case (int test_case_idx); |
|
void prepare_to_validation( int test_case_idx ); |
|
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ); |
|
void run_func(); |
|
|
|
private: |
|
cv::Size img_size; |
|
cv::Mat camera_mat; |
|
cv::Mat new_camera_mat; |
|
|
|
int matrix_type; |
|
|
|
bool center_principal_point; |
|
|
|
static const int MAX_X = 2048; |
|
static const int MAX_Y = 2048; |
|
//static const int MAX_VAL = 10000; |
|
}; |
|
|
|
CV_DefaultNewCameraMatrixTest::CV_DefaultNewCameraMatrixTest() |
|
{ |
|
test_array[INPUT].push_back(NULL); |
|
test_array[OUTPUT].push_back(NULL); |
|
test_array[REF_OUTPUT].push_back(NULL); |
|
|
|
matrix_type = 0; |
|
center_principal_point = false; |
|
} |
|
|
|
void CV_DefaultNewCameraMatrixTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ) |
|
{ |
|
cvtest::ArrayTest::get_test_array_types_and_sizes(test_case_idx,sizes,types); |
|
RNG& rng = ts->get_rng(); |
|
matrix_type = types[INPUT][0] = types[OUTPUT][0]= types[REF_OUTPUT][0] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; |
|
sizes[INPUT][0] = sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = cvSize(3,3); |
|
} |
|
|
|
int CV_DefaultNewCameraMatrixTest::prepare_test_case(int test_case_idx) |
|
{ |
|
int code = cvtest::ArrayTest::prepare_test_case( test_case_idx ); |
|
|
|
if (code <= 0) |
|
return code; |
|
|
|
RNG& rng = ts->get_rng(); |
|
|
|
img_size.width = cvtest::randInt(rng) % MAX_X + 1; |
|
img_size.height = cvtest::randInt(rng) % MAX_Y + 1; |
|
|
|
center_principal_point = ((cvtest::randInt(rng) % 2)!=0); |
|
|
|
// Generating camera_mat matrix |
|
double sz = MAX(img_size.width, img_size.height); |
|
double aspect_ratio = cvtest::randReal(rng)*0.6 + 0.7; |
|
double a[9] = {0,0,0,0,0,0,0,0,1}; |
|
Mat _a(3,3,CV_64F,a); |
|
a[2] = (img_size.width - 1)*0.5 + cvtest::randReal(rng)*10 - 5; |
|
a[5] = (img_size.height - 1)*0.5 + cvtest::randReal(rng)*10 - 5; |
|
a[0] = sz/(0.9 - cvtest::randReal(rng)*0.6); |
|
a[4] = aspect_ratio*a[0]; |
|
|
|
Mat& _a0 = test_mat[INPUT][0]; |
|
cvtest::convert(_a, _a0, _a0.type()); |
|
camera_mat = _a0; |
|
|
|
return code; |
|
|
|
} |
|
|
|
void CV_DefaultNewCameraMatrixTest::run_func() |
|
{ |
|
new_camera_mat = cv::getDefaultNewCameraMatrix(camera_mat,img_size,center_principal_point); |
|
} |
|
|
|
void CV_DefaultNewCameraMatrixTest::prepare_to_validation( int /*test_case_idx*/ ) |
|
{ |
|
const Mat& src = test_mat[INPUT][0]; |
|
Mat& dst = test_mat[REF_OUTPUT][0]; |
|
Mat& test_output = test_mat[OUTPUT][0]; |
|
Mat& output = new_camera_mat; |
|
cvtest::convert( output, test_output, test_output.type() ); |
|
if (!center_principal_point) |
|
{ |
|
cvtest::copy(src, dst); |
|
} |
|
else |
|
{ |
|
double a[9] = {0,0,0,0,0,0,0,0,1}; |
|
Mat _a(3,3,CV_64F,a); |
|
if (matrix_type == CV_64F) |
|
{ |
|
a[0] = src.at<double>(0,0); |
|
a[4] = src.at<double>(1,1); |
|
} |
|
else |
|
{ |
|
a[0] = src.at<float>(0,0); |
|
a[4] = src.at<float>(1,1); |
|
} |
|
a[2] = (img_size.width - 1)*0.5; |
|
a[5] = (img_size.height - 1)*0.5; |
|
cvtest::convert( _a, dst, dst.type() ); |
|
} |
|
} |
|
|
|
//--------- |
|
|
|
class CV_GetOptimalNewCameraMatrixNoDistortionTest : public cvtest::ArrayTest |
|
{ |
|
public: |
|
CV_GetOptimalNewCameraMatrixNoDistortionTest(); |
|
protected: |
|
int prepare_test_case (int test_case_idx); |
|
void prepare_to_validation(int test_case_idx); |
|
void get_test_array_types_and_sizes(int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types); |
|
void run_func(); |
|
|
|
private: |
|
cv::Mat camera_mat; |
|
cv::Mat distortion_coeffs; |
|
cv::Mat new_camera_mat; |
|
|
|
cv::Size img_size; |
|
double alpha; |
|
bool center_principal_point; |
|
|
|
int matrix_type; |
|
|
|
static const int MAX_X = 2048; |
|
static const int MAX_Y = 2048; |
|
}; |
|
|
|
CV_GetOptimalNewCameraMatrixNoDistortionTest::CV_GetOptimalNewCameraMatrixNoDistortionTest() |
|
{ |
|
test_array[INPUT].push_back(NULL); // camera_mat |
|
test_array[INPUT].push_back(NULL); // distortion_coeffs |
|
test_array[OUTPUT].push_back(NULL); // new_camera_mat |
|
test_array[REF_OUTPUT].push_back(NULL); |
|
|
|
alpha = 0.0; |
|
center_principal_point = false; |
|
matrix_type = 0; |
|
} |
|
|
|
void CV_GetOptimalNewCameraMatrixNoDistortionTest::get_test_array_types_and_sizes(int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types) |
|
{ |
|
cvtest::ArrayTest::get_test_array_types_and_sizes(test_case_idx, sizes, types); |
|
RNG& rng = ts->get_rng(); |
|
matrix_type = types[INPUT][0] = types[INPUT][1] = types[OUTPUT][0] = types[REF_OUTPUT][0] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; |
|
sizes[INPUT][0] = sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = cvSize(3,3); |
|
sizes[INPUT][1] = cvSize(1,4); |
|
} |
|
|
|
int CV_GetOptimalNewCameraMatrixNoDistortionTest::prepare_test_case(int test_case_idx) |
|
{ |
|
int code = cvtest::ArrayTest::prepare_test_case( test_case_idx ); |
|
|
|
if (code <= 0) |
|
return code; |
|
|
|
RNG& rng = ts->get_rng(); |
|
|
|
alpha = cvtest::randReal(rng); |
|
center_principal_point = ((cvtest::randInt(rng) % 2)!=0); |
|
|
|
// Generate random camera matrix. Use floating point precision for source to avoid precision loss |
|
img_size.width = cvtest::randInt(rng) % MAX_X + 1; |
|
img_size.height = cvtest::randInt(rng) % MAX_Y + 1; |
|
const float aspect_ratio = static_cast<float>(img_size.width) / img_size.height; |
|
float cam_array[9] = {0,0,0,0,0,0,0,0,1}; |
|
cam_array[2] = static_cast<float>((img_size.width - 1)*0.5); // center |
|
cam_array[5] = static_cast<float>((img_size.height - 1)*0.5); // center |
|
cam_array[0] = static_cast<float>(MAX(img_size.width, img_size.height)/(0.9 - cvtest::randReal(rng)*0.6)); |
|
cam_array[4] = aspect_ratio*cam_array[0]; |
|
|
|
Mat& input_camera_mat = test_mat[INPUT][0]; |
|
cvtest::convert(Mat(3, 3, CV_32F, cam_array), input_camera_mat, input_camera_mat.type()); |
|
camera_mat = input_camera_mat; |
|
|
|
// Generate zero distortion matrix |
|
const Mat zero_dist_coeffs = Mat::zeros(1, 4, CV_32F); |
|
Mat& input_dist_coeffs = test_mat[INPUT][1]; |
|
cvtest::convert(zero_dist_coeffs, input_dist_coeffs, input_dist_coeffs.type()); |
|
distortion_coeffs = input_dist_coeffs; |
|
|
|
return code; |
|
} |
|
|
|
void CV_GetOptimalNewCameraMatrixNoDistortionTest::run_func() |
|
{ |
|
new_camera_mat = cv::getOptimalNewCameraMatrix(camera_mat, distortion_coeffs, img_size, alpha, img_size, NULL, center_principal_point); |
|
} |
|
|
|
void CV_GetOptimalNewCameraMatrixNoDistortionTest::prepare_to_validation(int /*test_case_idx*/) |
|
{ |
|
const Mat& src = test_mat[INPUT][0]; |
|
Mat& dst = test_mat[REF_OUTPUT][0]; |
|
cvtest::copy(src, dst); |
|
|
|
Mat& output = test_mat[OUTPUT][0]; |
|
cvtest::convert(new_camera_mat, output, output.type()); |
|
} |
|
|
|
//--------- |
|
|
|
class CV_UndistortPointsTest : public cvtest::ArrayTest |
|
{ |
|
public: |
|
CV_UndistortPointsTest(); |
|
protected: |
|
int prepare_test_case (int test_case_idx); |
|
void prepare_to_validation( int test_case_idx ); |
|
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ); |
|
double get_success_error_level( int test_case_idx, int i, int j ); |
|
void run_func(); |
|
void distortPoints(const CvMat* _src, CvMat* _dst, const CvMat* _cameraMatrix, |
|
const CvMat* _distCoeffs, const CvMat* matR, const CvMat* matP); |
|
|
|
private: |
|
bool useDstMat; |
|
static const int N_POINTS = 10; |
|
static const int MAX_X = 2048; |
|
static const int MAX_Y = 2048; |
|
|
|
bool zero_new_cam; |
|
bool zero_distortion; |
|
bool zero_R; |
|
|
|
cv::Size img_size; |
|
cv::Mat dst_points_mat; |
|
|
|
cv::Mat camera_mat; |
|
cv::Mat R; |
|
cv::Mat P; |
|
cv::Mat distortion_coeffs; |
|
cv::Mat src_points; |
|
std::vector<cv::Point2f> dst_points; |
|
}; |
|
|
|
CV_UndistortPointsTest::CV_UndistortPointsTest() |
|
{ |
|
test_array[INPUT].push_back(NULL); // points matrix |
|
test_array[INPUT].push_back(NULL); // camera matrix |
|
test_array[INPUT].push_back(NULL); // distortion coeffs |
|
test_array[INPUT].push_back(NULL); // R matrix |
|
test_array[INPUT].push_back(NULL); // P matrix |
|
test_array[OUTPUT].push_back(NULL); // distorted dst points |
|
test_array[TEMP].push_back(NULL); // dst points |
|
test_array[REF_OUTPUT].push_back(NULL); |
|
|
|
useDstMat = false; |
|
zero_new_cam = zero_distortion = zero_R = false; |
|
} |
|
|
|
void CV_UndistortPointsTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ) |
|
{ |
|
cvtest::ArrayTest::get_test_array_types_and_sizes(test_case_idx,sizes,types); |
|
RNG& rng = ts->get_rng(); |
|
//rng.next(); |
|
types[INPUT][0] = types[OUTPUT][0] = types[REF_OUTPUT][0] = types[TEMP][0]= CV_32FC2; |
|
types[INPUT][1] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; |
|
types[INPUT][2] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; |
|
types[INPUT][3] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; |
|
types[INPUT][4] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; |
|
|
|
sizes[INPUT][0] = sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = sizes[TEMP][0]= cvtest::randInt(rng)%2 ? cvSize(1,N_POINTS) : cvSize(N_POINTS,1); |
|
sizes[INPUT][1] = sizes[INPUT][3] = cvSize(3,3); |
|
sizes[INPUT][4] = cvtest::randInt(rng)%2 ? cvSize(3,3) : cvSize(4,3); |
|
|
|
if (cvtest::randInt(rng)%2) |
|
{ |
|
if (cvtest::randInt(rng)%2) |
|
{ |
|
sizes[INPUT][2] = cvSize(1,4); |
|
} |
|
else |
|
{ |
|
sizes[INPUT][2] = cvSize(1,5); |
|
} |
|
} |
|
else |
|
{ |
|
if (cvtest::randInt(rng)%2) |
|
{ |
|
sizes[INPUT][2] = cvSize(4,1); |
|
} |
|
else |
|
{ |
|
sizes[INPUT][2] = cvSize(5,1); |
|
} |
|
} |
|
} |
|
|
|
int CV_UndistortPointsTest::prepare_test_case(int test_case_idx) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
int code = cvtest::ArrayTest::prepare_test_case( test_case_idx ); |
|
|
|
if (code <= 0) |
|
return code; |
|
|
|
useDstMat = (cvtest::randInt(rng) % 2) == 0; |
|
|
|
img_size.width = cvtest::randInt(rng) % MAX_X + 1; |
|
img_size.height = cvtest::randInt(rng) % MAX_Y + 1; |
|
int dist_size = test_mat[INPUT][2].cols > test_mat[INPUT][2].rows ? test_mat[INPUT][2].cols : test_mat[INPUT][2].rows; |
|
double cam[9] = {0,0,0,0,0,0,0,0,1}; |
|
vector<double> dist(dist_size); |
|
vector<double> proj(test_mat[INPUT][4].cols * test_mat[INPUT][4].rows); |
|
vector<Point2d> points(N_POINTS); |
|
|
|
Mat _camera(3,3,CV_64F,cam); |
|
Mat _distort(test_mat[INPUT][2].rows,test_mat[INPUT][2].cols,CV_64F,&dist[0]); |
|
Mat _proj(test_mat[INPUT][4].size(), CV_64F, &proj[0]); |
|
Mat _points(test_mat[INPUT][0].size(), CV_64FC2, &points[0]); |
|
|
|
_proj = Scalar::all(0); |
|
|
|
//Generating points |
|
for( int i = 0; i < N_POINTS; i++ ) |
|
{ |
|
points[i].x = cvtest::randReal(rng)*img_size.width; |
|
points[i].y = cvtest::randReal(rng)*img_size.height; |
|
} |
|
|
|
//Generating camera matrix |
|
double sz = MAX(img_size.width,img_size.height); |
|
double aspect_ratio = cvtest::randReal(rng)*0.6 + 0.7; |
|
cam[2] = (img_size.width - 1)*0.5 + cvtest::randReal(rng)*10 - 5; |
|
cam[5] = (img_size.height - 1)*0.5 + cvtest::randReal(rng)*10 - 5; |
|
cam[0] = sz/(0.9 - cvtest::randReal(rng)*0.6); |
|
cam[4] = aspect_ratio*cam[0]; |
|
|
|
//Generating distortion coeffs |
|
dist[0] = cvtest::randReal(rng)*0.06 - 0.03; |
|
dist[1] = cvtest::randReal(rng)*0.06 - 0.03; |
|
if( dist[0]*dist[1] > 0 ) |
|
dist[1] = -dist[1]; |
|
if( cvtest::randInt(rng)%4 != 0 ) |
|
{ |
|
dist[2] = cvtest::randReal(rng)*0.004 - 0.002; |
|
dist[3] = cvtest::randReal(rng)*0.004 - 0.002; |
|
if (dist_size > 4) |
|
dist[4] = cvtest::randReal(rng)*0.004 - 0.002; |
|
} |
|
else |
|
{ |
|
dist[2] = dist[3] = 0; |
|
if (dist_size > 4) |
|
dist[4] = 0; |
|
} |
|
|
|
//Generating P matrix (projection) |
|
if( test_mat[INPUT][4].cols != 4 ) |
|
{ |
|
proj[8] = 1; |
|
if (cvtest::randInt(rng)%2 == 0) // use identity new camera matrix |
|
{ |
|
proj[0] = 1; |
|
proj[4] = 1; |
|
} |
|
else |
|
{ |
|
proj[0] = cam[0] + (cvtest::randReal(rng) - (double)0.5)*0.2*cam[0]; //10% |
|
proj[4] = cam[4] + (cvtest::randReal(rng) - (double)0.5)*0.2*cam[4]; //10% |
|
proj[2] = cam[2] + (cvtest::randReal(rng) - (double)0.5)*0.3*img_size.width; //15% |
|
proj[5] = cam[5] + (cvtest::randReal(rng) - (double)0.5)*0.3*img_size.height; //15% |
|
} |
|
} |
|
else |
|
{ |
|
proj[10] = 1; |
|
proj[0] = cam[0] + (cvtest::randReal(rng) - (double)0.5)*0.2*cam[0]; //10% |
|
proj[5] = cam[4] + (cvtest::randReal(rng) - (double)0.5)*0.2*cam[4]; //10% |
|
proj[2] = cam[2] + (cvtest::randReal(rng) - (double)0.5)*0.3*img_size.width; //15% |
|
proj[6] = cam[5] + (cvtest::randReal(rng) - (double)0.5)*0.3*img_size.height; //15% |
|
|
|
proj[3] = (img_size.height + img_size.width - 1)*0.5 + cvtest::randReal(rng)*10 - 5; |
|
proj[7] = (img_size.height + img_size.width - 1)*0.5 + cvtest::randReal(rng)*10 - 5; |
|
proj[11] = (img_size.height + img_size.width - 1)*0.5 + cvtest::randReal(rng)*10 - 5; |
|
} |
|
|
|
//Generating R matrix |
|
Mat _rot(3,3,CV_64F); |
|
Mat rotation(1,3,CV_64F); |
|
rotation.at<double>(0) = CV_PI*(cvtest::randReal(rng) - (double)0.5); // phi |
|
rotation.at<double>(1) = CV_PI*(cvtest::randReal(rng) - (double)0.5); // ksi |
|
rotation.at<double>(2) = CV_PI*(cvtest::randReal(rng) - (double)0.5); //khi |
|
cvtest::Rodrigues(rotation, _rot); |
|
|
|
//copying data |
|
//src_points = &_points; |
|
_points.convertTo(test_mat[INPUT][0], test_mat[INPUT][0].type()); |
|
_camera.convertTo(test_mat[INPUT][1], test_mat[INPUT][1].type()); |
|
_distort.convertTo(test_mat[INPUT][2], test_mat[INPUT][2].type()); |
|
_rot.convertTo(test_mat[INPUT][3], test_mat[INPUT][3].type()); |
|
_proj.convertTo(test_mat[INPUT][4], test_mat[INPUT][4].type()); |
|
|
|
zero_distortion = (cvtest::randInt(rng)%2) == 0 ? false : true; |
|
zero_new_cam = (cvtest::randInt(rng)%2) == 0 ? false : true; |
|
zero_R = (cvtest::randInt(rng)%2) == 0 ? false : true; |
|
|
|
_points.convertTo(src_points, CV_32F); |
|
|
|
camera_mat = test_mat[INPUT][1]; |
|
distortion_coeffs = test_mat[INPUT][2]; |
|
R = test_mat[INPUT][3]; |
|
P = test_mat[INPUT][4]; |
|
|
|
return code; |
|
} |
|
|
|
void CV_UndistortPointsTest::prepare_to_validation(int /*test_case_idx*/) |
|
{ |
|
int dist_size = test_mat[INPUT][2].cols > test_mat[INPUT][2].rows ? test_mat[INPUT][2].cols : test_mat[INPUT][2].rows; |
|
double cam[9] = {0,0,0,0,0,0,0,0,1}; |
|
double rot[9] = {1,0,0,0,1,0,0,0,1}; |
|
|
|
double* dist = new double[dist_size ]; |
|
double* proj = new double[test_mat[INPUT][4].cols * test_mat[INPUT][4].rows]; |
|
double* points = new double[N_POINTS*2]; |
|
double* r_points = new double[N_POINTS*2]; |
|
//Run reference calculations |
|
CvMat ref_points= cvMat(test_mat[INPUT][0].rows,test_mat[INPUT][0].cols,CV_64FC2,r_points); |
|
CvMat _camera = cvMat(3,3,CV_64F,cam); |
|
CvMat _rot = cvMat(3,3,CV_64F,rot); |
|
CvMat _distort = cvMat(test_mat[INPUT][2].rows,test_mat[INPUT][2].cols,CV_64F,dist); |
|
CvMat _proj = cvMat(test_mat[INPUT][4].rows,test_mat[INPUT][4].cols,CV_64F,proj); |
|
CvMat _points= cvMat(test_mat[TEMP][0].rows,test_mat[TEMP][0].cols,CV_64FC2,points); |
|
|
|
Mat __camera = cvarrToMat(&_camera); |
|
Mat __distort = cvarrToMat(&_distort); |
|
Mat __rot = cvarrToMat(&_rot); |
|
Mat __proj = cvarrToMat(&_proj); |
|
Mat __points = cvarrToMat(&_points); |
|
Mat _ref_points = cvarrToMat(&ref_points); |
|
|
|
cvtest::convert(test_mat[INPUT][1], __camera, __camera.type()); |
|
cvtest::convert(test_mat[INPUT][2], __distort, __distort.type()); |
|
cvtest::convert(test_mat[INPUT][3], __rot, __rot.type()); |
|
cvtest::convert(test_mat[INPUT][4], __proj, __proj.type()); |
|
|
|
if (useDstMat) |
|
{ |
|
CvMat temp = cvMat(dst_points_mat); |
|
for (int i=0;i<N_POINTS*2;i++) |
|
{ |
|
points[i] = temp.data.fl[i]; |
|
} |
|
} |
|
else |
|
{ |
|
for (int i=0;i<N_POINTS;i++) |
|
{ |
|
points[2*i] = dst_points[i].x; |
|
points[2*i+1] = dst_points[i].y; |
|
} |
|
} |
|
|
|
CvMat* input2 = zero_distortion ? 0 : &_distort; |
|
CvMat* input3 = zero_R ? 0 : &_rot; |
|
CvMat* input4 = zero_new_cam ? 0 : &_proj; |
|
distortPoints(&_points,&ref_points,&_camera,input2,input3,input4); |
|
|
|
Mat& dst = test_mat[REF_OUTPUT][0]; |
|
cvtest::convert(_ref_points, dst, dst.type()); |
|
|
|
cvtest::copy(test_mat[INPUT][0], test_mat[OUTPUT][0]); |
|
|
|
delete[] dist; |
|
delete[] proj; |
|
delete[] points; |
|
delete[] r_points; |
|
} |
|
|
|
void CV_UndistortPointsTest::run_func() |
|
{ |
|
cv::Mat input2,input3,input4; |
|
input2 = zero_distortion ? cv::Mat() : cv::Mat(test_mat[INPUT][2]); |
|
input3 = zero_R ? cv::Mat() : cv::Mat(test_mat[INPUT][3]); |
|
input4 = zero_new_cam ? cv::Mat() : cv::Mat(test_mat[INPUT][4]); |
|
|
|
if (useDstMat) |
|
{ |
|
//cv::undistortPoints(src_points,dst_points_mat,camera_mat,distortion_coeffs,R,P); |
|
cv::undistortPoints(src_points,dst_points_mat,camera_mat,input2,input3,input4); |
|
} |
|
else |
|
{ |
|
//cv::undistortPoints(src_points,dst_points,camera_mat,distortion_coeffs,R,P); |
|
cv::undistortPoints(src_points,dst_points,camera_mat,input2,input3,input4); |
|
} |
|
} |
|
|
|
void CV_UndistortPointsTest::distortPoints(const CvMat* _src, CvMat* _dst, const CvMat* _cameraMatrix, |
|
const CvMat* _distCoeffs, |
|
const CvMat* matR, const CvMat* matP) |
|
{ |
|
double a[9]; |
|
|
|
CvMat* __P; |
|
if ((!matP)||(matP->cols == 3)) |
|
__P = cvCreateMat(3,3,CV_64F); |
|
else |
|
__P = cvCreateMat(3,4,CV_64F); |
|
if (matP) |
|
{ |
|
cvtest::convert(cvarrToMat(matP), cvarrToMat(__P), -1); |
|
} |
|
else |
|
{ |
|
cvZero(__P); |
|
__P->data.db[0] = 1; |
|
__P->data.db[4] = 1; |
|
__P->data.db[8] = 1; |
|
} |
|
CvMat* __R = cvCreateMat(3,3,CV_64F); |
|
if (matR) |
|
{ |
|
cvCopy(matR,__R); |
|
} |
|
else |
|
{ |
|
cvZero(__R); |
|
__R->data.db[0] = 1; |
|
__R->data.db[4] = 1; |
|
__R->data.db[8] = 1; |
|
} |
|
for (int i=0;i<N_POINTS;i++) |
|
{ |
|
int movement = __P->cols > 3 ? 1 : 0; |
|
double x = (_src->data.db[2*i]-__P->data.db[2])/__P->data.db[0]; |
|
double y = (_src->data.db[2*i+1]-__P->data.db[5+movement])/__P->data.db[4+movement]; |
|
CvMat inverse = cvMat(3,3,CV_64F,a); |
|
cvInvert(__R,&inverse); |
|
double w1 = x*inverse.data.db[6]+y*inverse.data.db[7]+inverse.data.db[8]; |
|
double _x = (x*inverse.data.db[0]+y*inverse.data.db[1]+inverse.data.db[2])/w1; |
|
double _y = (x*inverse.data.db[3]+y*inverse.data.db[4]+inverse.data.db[5])/w1; |
|
|
|
//Distortions |
|
|
|
double __x = _x; |
|
double __y = _y; |
|
if (_distCoeffs) |
|
{ |
|
double r2 = _x*_x+_y*_y; |
|
|
|
__x = _x*(1+_distCoeffs->data.db[0]*r2+_distCoeffs->data.db[1]*r2*r2)+ |
|
2*_distCoeffs->data.db[2]*_x*_y+_distCoeffs->data.db[3]*(r2+2*_x*_x); |
|
__y = _y*(1+_distCoeffs->data.db[0]*r2+_distCoeffs->data.db[1]*r2*r2)+ |
|
2*_distCoeffs->data.db[3]*_x*_y+_distCoeffs->data.db[2]*(r2+2*_y*_y); |
|
if ((_distCoeffs->cols > 4) || (_distCoeffs->rows > 4)) |
|
{ |
|
__x+=_x*_distCoeffs->data.db[4]*r2*r2*r2; |
|
__y+=_y*_distCoeffs->data.db[4]*r2*r2*r2; |
|
} |
|
} |
|
|
|
|
|
_dst->data.db[2*i] = __x*_cameraMatrix->data.db[0]+_cameraMatrix->data.db[2]; |
|
_dst->data.db[2*i+1] = __y*_cameraMatrix->data.db[4]+_cameraMatrix->data.db[5]; |
|
|
|
} |
|
|
|
cvReleaseMat(&__R); |
|
cvReleaseMat(&__P); |
|
|
|
} |
|
|
|
|
|
double CV_UndistortPointsTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ ) |
|
{ |
|
return 5e-2; |
|
} |
|
|
|
//------------------------------------------------------ |
|
|
|
class CV_InitUndistortRectifyMapTest : public cvtest::ArrayTest |
|
{ |
|
public: |
|
CV_InitUndistortRectifyMapTest(); |
|
protected: |
|
int prepare_test_case (int test_case_idx); |
|
void prepare_to_validation( int test_case_idx ); |
|
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ); |
|
double get_success_error_level( int test_case_idx, int i, int j ); |
|
void run_func(); |
|
|
|
private: |
|
static const int MAX_X = 1024; |
|
static const int MAX_Y = 1024; |
|
bool zero_new_cam; |
|
bool zero_distortion; |
|
bool zero_R; |
|
|
|
cv::Size img_size; |
|
int map_type; |
|
}; |
|
|
|
CV_InitUndistortRectifyMapTest::CV_InitUndistortRectifyMapTest() |
|
{ |
|
test_array[INPUT].push_back(NULL); // camera matrix |
|
test_array[INPUT].push_back(NULL); // distortion coeffs |
|
test_array[INPUT].push_back(NULL); // R matrix |
|
test_array[INPUT].push_back(NULL); // new camera matrix |
|
test_array[OUTPUT].push_back(NULL); // distorted mapx |
|
test_array[OUTPUT].push_back(NULL); // distorted mapy |
|
test_array[REF_OUTPUT].push_back(NULL); |
|
test_array[REF_OUTPUT].push_back(NULL); |
|
|
|
zero_distortion = zero_new_cam = zero_R = false; |
|
map_type = 0; |
|
} |
|
|
|
void CV_InitUndistortRectifyMapTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ) |
|
{ |
|
cvtest::ArrayTest::get_test_array_types_and_sizes(test_case_idx,sizes,types); |
|
RNG& rng = ts->get_rng(); |
|
//rng.next(); |
|
|
|
map_type = CV_32F; |
|
types[OUTPUT][0] = types[OUTPUT][1] = types[REF_OUTPUT][0] = types[REF_OUTPUT][1] = map_type; |
|
|
|
img_size.width = cvtest::randInt(rng) % MAX_X + 1; |
|
img_size.height = cvtest::randInt(rng) % MAX_Y + 1; |
|
|
|
types[INPUT][0] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; |
|
types[INPUT][1] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; |
|
types[INPUT][2] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; |
|
types[INPUT][3] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; |
|
|
|
sizes[OUTPUT][0] = sizes[OUTPUT][1] = sizes[REF_OUTPUT][0] = sizes[REF_OUTPUT][1] = img_size; |
|
sizes[INPUT][0] = sizes[INPUT][2] = sizes[INPUT][3] = cvSize(3,3); |
|
|
|
Size dsize; |
|
|
|
if (cvtest::randInt(rng)%2) |
|
{ |
|
if (cvtest::randInt(rng)%2) |
|
{ |
|
dsize = Size(1,4); |
|
} |
|
else |
|
{ |
|
dsize = Size(1,5); |
|
} |
|
} |
|
else |
|
{ |
|
if (cvtest::randInt(rng)%2) |
|
{ |
|
dsize = Size(4,1); |
|
} |
|
else |
|
{ |
|
dsize = Size(5,1); |
|
} |
|
} |
|
sizes[INPUT][1] = dsize; |
|
} |
|
|
|
|
|
int CV_InitUndistortRectifyMapTest::prepare_test_case(int test_case_idx) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
int code = cvtest::ArrayTest::prepare_test_case( test_case_idx ); |
|
|
|
if (code <= 0) |
|
return code; |
|
|
|
int dist_size = test_mat[INPUT][1].cols > test_mat[INPUT][1].rows ? test_mat[INPUT][1].cols : test_mat[INPUT][1].rows; |
|
double cam[9] = {0,0,0,0,0,0,0,0,1}; |
|
vector<double> dist(dist_size); |
|
vector<double> new_cam(test_mat[INPUT][3].cols * test_mat[INPUT][3].rows); |
|
|
|
Mat _camera(3,3,CV_64F,cam); |
|
Mat _distort(test_mat[INPUT][1].size(),CV_64F,&dist[0]); |
|
Mat _new_cam(test_mat[INPUT][3].size(),CV_64F,&new_cam[0]); |
|
|
|
//Generating camera matrix |
|
double sz = MAX(img_size.width,img_size.height); |
|
double aspect_ratio = cvtest::randReal(rng)*0.6 + 0.7; |
|
cam[2] = (img_size.width - 1)*0.5 + cvtest::randReal(rng)*10 - 5; |
|
cam[5] = (img_size.height - 1)*0.5 + cvtest::randReal(rng)*10 - 5; |
|
cam[0] = sz/(0.9 - cvtest::randReal(rng)*0.6); |
|
cam[4] = aspect_ratio*cam[0]; |
|
|
|
//Generating distortion coeffs |
|
dist[0] = cvtest::randReal(rng)*0.06 - 0.03; |
|
dist[1] = cvtest::randReal(rng)*0.06 - 0.03; |
|
if( dist[0]*dist[1] > 0 ) |
|
dist[1] = -dist[1]; |
|
if( cvtest::randInt(rng)%4 != 0 ) |
|
{ |
|
dist[2] = cvtest::randReal(rng)*0.004 - 0.002; |
|
dist[3] = cvtest::randReal(rng)*0.004 - 0.002; |
|
if (dist_size > 4) |
|
dist[4] = cvtest::randReal(rng)*0.004 - 0.002; |
|
} |
|
else |
|
{ |
|
dist[2] = dist[3] = 0; |
|
if (dist_size > 4) |
|
dist[4] = 0; |
|
} |
|
|
|
//Generating new camera matrix |
|
_new_cam = Scalar::all(0); |
|
new_cam[8] = 1; |
|
|
|
//new_cam[0] = cam[0]; |
|
//new_cam[4] = cam[4]; |
|
//new_cam[2] = cam[2]; |
|
//new_cam[5] = cam[5]; |
|
|
|
new_cam[0] = cam[0] + (cvtest::randReal(rng) - (double)0.5)*0.2*cam[0]; //10% |
|
new_cam[4] = cam[4] + (cvtest::randReal(rng) - (double)0.5)*0.2*cam[4]; //10% |
|
new_cam[2] = cam[2] + (cvtest::randReal(rng) - (double)0.5)*0.3*img_size.width; //15% |
|
new_cam[5] = cam[5] + (cvtest::randReal(rng) - (double)0.5)*0.3*img_size.height; //15% |
|
|
|
//Generating R matrix |
|
Mat _rot(3,3,CV_64F); |
|
Mat rotation(1,3,CV_64F); |
|
rotation.at<double>(0) = CV_PI/8*(cvtest::randReal(rng) - (double)0.5); // phi |
|
rotation.at<double>(1) = CV_PI/8*(cvtest::randReal(rng) - (double)0.5); // ksi |
|
rotation.at<double>(2) = CV_PI/3*(cvtest::randReal(rng) - (double)0.5); //khi |
|
cvtest::Rodrigues(rotation, _rot); |
|
|
|
//cvSetIdentity(_rot); |
|
//copying data |
|
cvtest::convert( _camera, test_mat[INPUT][0], test_mat[INPUT][0].type()); |
|
cvtest::convert( _distort, test_mat[INPUT][1], test_mat[INPUT][1].type()); |
|
cvtest::convert( _rot, test_mat[INPUT][2], test_mat[INPUT][2].type()); |
|
cvtest::convert( _new_cam, test_mat[INPUT][3], test_mat[INPUT][3].type()); |
|
|
|
zero_distortion = (cvtest::randInt(rng)%2) == 0 ? false : true; |
|
zero_new_cam = (cvtest::randInt(rng)%2) == 0 ? false : true; |
|
zero_R = (cvtest::randInt(rng)%2) == 0 ? false : true; |
|
|
|
return code; |
|
} |
|
|
|
void CV_InitUndistortRectifyMapTest::prepare_to_validation(int/* test_case_idx*/) |
|
{ |
|
cvtest::initUndistortMap(test_mat[INPUT][0], |
|
zero_distortion ? cv::Mat() : test_mat[INPUT][1], |
|
zero_R ? cv::Mat() : test_mat[INPUT][2], |
|
zero_new_cam ? test_mat[INPUT][0] : test_mat[INPUT][3], |
|
img_size, test_mat[REF_OUTPUT][0], test_mat[REF_OUTPUT][1], |
|
test_mat[REF_OUTPUT][0].type()); |
|
} |
|
|
|
void CV_InitUndistortRectifyMapTest::run_func() |
|
{ |
|
cv::Mat camera_mat = test_mat[INPUT][0]; |
|
cv::Mat dist = zero_distortion ? cv::Mat() : test_mat[INPUT][1]; |
|
cv::Mat R = zero_R ? cv::Mat() : test_mat[INPUT][2]; |
|
cv::Mat new_cam = zero_new_cam ? cv::Mat() : test_mat[INPUT][3]; |
|
cv::Mat& mapx = test_mat[OUTPUT][0], &mapy = test_mat[OUTPUT][1]; |
|
initUndistortRectifyMap(camera_mat,dist,R,new_cam,img_size,map_type,mapx,mapy); |
|
} |
|
|
|
double CV_InitUndistortRectifyMapTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ ) |
|
{ |
|
return 8; |
|
} |
|
|
|
//------------------------------------------------------ |
|
|
|
class CV_InitInverseRectificationMapTest : public cvtest::ArrayTest |
|
{ |
|
public: |
|
CV_InitInverseRectificationMapTest(); |
|
protected: |
|
int prepare_test_case (int test_case_idx); |
|
void prepare_to_validation( int test_case_idx ); |
|
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ); |
|
double get_success_error_level( int test_case_idx, int i, int j ); |
|
void run_func(); |
|
|
|
private: |
|
static const int MAX_X = 1024; |
|
static const int MAX_Y = 1024; |
|
bool zero_new_cam; |
|
bool zero_distortion; |
|
bool zero_R; |
|
|
|
cv::Size img_size; |
|
int map_type; |
|
}; |
|
|
|
CV_InitInverseRectificationMapTest::CV_InitInverseRectificationMapTest() |
|
{ |
|
test_array[INPUT].push_back(NULL); // camera matrix |
|
test_array[INPUT].push_back(NULL); // distortion coeffs |
|
test_array[INPUT].push_back(NULL); // R matrix |
|
test_array[INPUT].push_back(NULL); // new camera matrix |
|
test_array[OUTPUT].push_back(NULL); // inverse rectified mapx |
|
test_array[OUTPUT].push_back(NULL); // inverse rectified mapy |
|
test_array[REF_OUTPUT].push_back(NULL); |
|
test_array[REF_OUTPUT].push_back(NULL); |
|
|
|
zero_distortion = zero_new_cam = zero_R = false; |
|
map_type = 0; |
|
} |
|
|
|
void CV_InitInverseRectificationMapTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ) |
|
{ |
|
cvtest::ArrayTest::get_test_array_types_and_sizes(test_case_idx,sizes,types); |
|
RNG& rng = ts->get_rng(); |
|
//rng.next(); |
|
|
|
map_type = CV_32F; |
|
types[OUTPUT][0] = types[OUTPUT][1] = types[REF_OUTPUT][0] = types[REF_OUTPUT][1] = map_type; |
|
|
|
img_size.width = cvtest::randInt(rng) % MAX_X + 1; |
|
img_size.height = cvtest::randInt(rng) % MAX_Y + 1; |
|
|
|
types[INPUT][0] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; |
|
types[INPUT][1] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; |
|
types[INPUT][2] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; |
|
types[INPUT][3] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; |
|
|
|
sizes[OUTPUT][0] = sizes[OUTPUT][1] = sizes[REF_OUTPUT][0] = sizes[REF_OUTPUT][1] = img_size; |
|
sizes[INPUT][0] = sizes[INPUT][2] = sizes[INPUT][3] = cvSize(3,3); |
|
|
|
Size dsize; |
|
|
|
if (cvtest::randInt(rng)%2) |
|
{ |
|
if (cvtest::randInt(rng)%2) |
|
{ |
|
dsize = Size(1,4); |
|
} |
|
else |
|
{ |
|
dsize = Size(1,5); |
|
} |
|
} |
|
else |
|
{ |
|
if (cvtest::randInt(rng)%2) |
|
{ |
|
dsize = Size(4,1); |
|
} |
|
else |
|
{ |
|
dsize = Size(5,1); |
|
} |
|
} |
|
sizes[INPUT][1] = dsize; |
|
} |
|
|
|
|
|
int CV_InitInverseRectificationMapTest::prepare_test_case(int test_case_idx) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
int code = cvtest::ArrayTest::prepare_test_case( test_case_idx ); |
|
|
|
if (code <= 0) |
|
return code; |
|
|
|
int dist_size = test_mat[INPUT][1].cols > test_mat[INPUT][1].rows ? test_mat[INPUT][1].cols : test_mat[INPUT][1].rows; |
|
double cam[9] = {0,0,0,0,0,0,0,0,1}; |
|
vector<double> dist(dist_size); |
|
vector<double> new_cam(test_mat[INPUT][3].cols * test_mat[INPUT][3].rows); |
|
|
|
Mat _camera(3,3,CV_64F,cam); |
|
Mat _distort(test_mat[INPUT][1].size(),CV_64F,&dist[0]); |
|
Mat _new_cam(test_mat[INPUT][3].size(),CV_64F,&new_cam[0]); |
|
|
|
//Generating camera matrix |
|
double sz = MAX(img_size.width,img_size.height); |
|
double aspect_ratio = cvtest::randReal(rng)*0.6 + 0.7; |
|
cam[2] = (img_size.width - 1)*0.5 + cvtest::randReal(rng)*10 - 5; |
|
cam[5] = (img_size.height - 1)*0.5 + cvtest::randReal(rng)*10 - 5; |
|
cam[0] = sz/(0.9 - cvtest::randReal(rng)*0.6); |
|
cam[4] = aspect_ratio*cam[0]; |
|
|
|
//Generating distortion coeffs |
|
dist[0] = cvtest::randReal(rng)*0.06 - 0.03; |
|
dist[1] = cvtest::randReal(rng)*0.06 - 0.03; |
|
if( dist[0]*dist[1] > 0 ) |
|
dist[1] = -dist[1]; |
|
if( cvtest::randInt(rng)%4 != 0 ) |
|
{ |
|
dist[2] = cvtest::randReal(rng)*0.004 - 0.002; |
|
dist[3] = cvtest::randReal(rng)*0.004 - 0.002; |
|
if (dist_size > 4) |
|
dist[4] = cvtest::randReal(rng)*0.004 - 0.002; |
|
} |
|
else |
|
{ |
|
dist[2] = dist[3] = 0; |
|
if (dist_size > 4) |
|
dist[4] = 0; |
|
} |
|
|
|
//Generating new camera matrix |
|
_new_cam = Scalar::all(0); |
|
new_cam[8] = 1; |
|
|
|
// If P == K |
|
//new_cam[0] = cam[0]; |
|
//new_cam[4] = cam[4]; |
|
//new_cam[2] = cam[2]; |
|
//new_cam[5] = cam[5]; |
|
|
|
// If P != K |
|
new_cam[0] = cam[0] + (cvtest::randReal(rng) - (double)0.5)*0.2*cam[0]; //10% |
|
new_cam[4] = cam[4] + (cvtest::randReal(rng) - (double)0.5)*0.2*cam[4]; //10% |
|
new_cam[2] = cam[2] + (cvtest::randReal(rng) - (double)0.5)*0.3*img_size.width; //15% |
|
new_cam[5] = cam[5] + (cvtest::randReal(rng) - (double)0.5)*0.3*img_size.height; //15% |
|
|
|
//Generating R matrix |
|
Mat _rot(3,3,CV_64F); |
|
Mat rotation(1,3,CV_64F); |
|
rotation.at<double>(0) = CV_PI/8*(cvtest::randReal(rng) - (double)0.5); // phi |
|
rotation.at<double>(1) = CV_PI/8*(cvtest::randReal(rng) - (double)0.5); // ksi |
|
rotation.at<double>(2) = CV_PI/3*(cvtest::randReal(rng) - (double)0.5); //khi |
|
cvtest::Rodrigues(rotation, _rot); |
|
|
|
//cvSetIdentity(_rot); |
|
//copying data |
|
cvtest::convert( _camera, test_mat[INPUT][0], test_mat[INPUT][0].type()); |
|
cvtest::convert( _distort, test_mat[INPUT][1], test_mat[INPUT][1].type()); |
|
cvtest::convert( _rot, test_mat[INPUT][2], test_mat[INPUT][2].type()); |
|
cvtest::convert( _new_cam, test_mat[INPUT][3], test_mat[INPUT][3].type()); |
|
|
|
zero_distortion = (cvtest::randInt(rng)%2) == 0 ? false : true; |
|
zero_new_cam = (cvtest::randInt(rng)%2) == 0 ? false : true; |
|
zero_R = (cvtest::randInt(rng)%2) == 0 ? false : true; |
|
|
|
return code; |
|
} |
|
|
|
void CV_InitInverseRectificationMapTest::prepare_to_validation(int/* test_case_idx*/) |
|
{ |
|
// Configure Parameters |
|
Mat _a0 = test_mat[INPUT][0]; |
|
Mat _d0 = zero_distortion ? cv::Mat() : test_mat[INPUT][1]; |
|
Mat _R0 = zero_R ? cv::Mat() : test_mat[INPUT][2]; |
|
Mat _new_cam0 = zero_new_cam ? test_mat[INPUT][0] : test_mat[INPUT][3]; |
|
Mat _mapx(img_size, CV_32F), _mapy(img_size, CV_32F); |
|
|
|
double a[9], d[5]={0., 0., 0., 0. , 0.}, R[9]={1., 0., 0., 0., 1., 0., 0., 0., 1.}, a1[9]; |
|
Mat _a(3, 3, CV_64F, a), _a1(3, 3, CV_64F, a1); |
|
Mat _d(_d0.rows,_d0.cols, CV_MAKETYPE(CV_64F,_d0.channels()),d); |
|
Mat _R(3, 3, CV_64F, R); |
|
double fx, fy, cx, cy, ifx, ify, cxn, cyn; |
|
|
|
// Camera matrix |
|
CV_Assert(_a0.size() == Size(3, 3)); |
|
_a0.convertTo(_a, CV_64F); |
|
if( !_new_cam0.empty() ) |
|
{ |
|
CV_Assert(_new_cam0.size() == Size(3, 3)); |
|
_new_cam0.convertTo(_a1, CV_64F); |
|
} |
|
else |
|
{ |
|
_a.copyTo(_a1); |
|
} |
|
|
|
// Distortion |
|
CV_Assert(_d0.empty() || |
|
_d0.size() == Size(5, 1) || |
|
_d0.size() == Size(1, 5) || |
|
_d0.size() == Size(4, 1) || |
|
_d0.size() == Size(1, 4)); |
|
if( !_d0.empty() ) |
|
_d0.convertTo(_d, CV_64F); |
|
|
|
// Rotation |
|
if( !_R0.empty() ) |
|
{ |
|
CV_Assert(_R0.size() == Size(3, 3)); |
|
Mat tmp; |
|
_R0.convertTo(_R, CV_64F); |
|
} |
|
|
|
// Copy camera matrix |
|
fx = a[0]; fy = a[4]; cx = a[2]; cy = a[5]; |
|
|
|
// Copy new camera matrix |
|
ifx = a1[0]; ify = a1[4]; cxn = a1[2]; cyn = a1[5]; |
|
|
|
// Undistort |
|
for( int v = 0; v < img_size.height; v++ ) |
|
{ |
|
for( int u = 0; u < img_size.width; u++ ) |
|
{ |
|
// Convert from image to pin-hole coordinates |
|
double x = (u - cx)/fx; |
|
double y = (v - cy)/fy; |
|
|
|
// Undistort |
|
double x2 = x*x, y2 = y*y; |
|
double r2 = x2 + y2; |
|
double cdist = 1./(1. + (d[0] + (d[1] + d[4]*r2)*r2)*r2); // (1. + (d[5] + (d[6] + d[7]*r2)*r2)*r2) == 1 as d[5-7]=0; |
|
double x_ = (x - (d[2]*2.*x*y + d[3]*(r2 + 2.*x2)))*cdist; |
|
double y_ = (y - (d[3]*2.*x*y + d[2]*(r2 + 2.*y2)))*cdist; |
|
|
|
// Rectify |
|
double X = R[0]*x_ + R[1]*y_ + R[2]; |
|
double Y = R[3]*x_ + R[4]*y_ + R[5]; |
|
double Z = R[6]*x_ + R[7]*y_ + R[8]; |
|
double x__ = X/Z; |
|
double y__ = Y/Z; |
|
|
|
// Convert from pin-hole to image coordinates |
|
_mapy.at<float>(v, u) = (float)(y__*ify + cyn); |
|
_mapx.at<float>(v, u) = (float)(x__*ifx + cxn); |
|
} |
|
} |
|
|
|
// Convert |
|
_mapx.convertTo(test_mat[REF_OUTPUT][0], test_mat[REF_OUTPUT][0].type()); |
|
_mapy.convertTo(test_mat[REF_OUTPUT][1], test_mat[REF_OUTPUT][0].type()); |
|
} |
|
|
|
void CV_InitInverseRectificationMapTest::run_func() |
|
{ |
|
cv::Mat camera_mat = test_mat[INPUT][0]; |
|
cv::Mat dist = zero_distortion ? cv::Mat() : test_mat[INPUT][1]; |
|
cv::Mat R = zero_R ? cv::Mat() : test_mat[INPUT][2]; |
|
cv::Mat new_cam = zero_new_cam ? cv::Mat() : test_mat[INPUT][3]; |
|
cv::Mat& mapx = test_mat[OUTPUT][0], &mapy = test_mat[OUTPUT][1]; |
|
cv::initInverseRectificationMap(camera_mat,dist,R,new_cam,img_size,map_type,mapx,mapy); |
|
} |
|
|
|
double CV_InitInverseRectificationMapTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ ) |
|
{ |
|
return 8; |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
TEST(Calib3d_DefaultNewCameraMatrix, accuracy) { CV_DefaultNewCameraMatrixTest test; test.safe_run(); } |
|
TEST(Calib3d_GetOptimalNewCameraMatrixNoDistortion, accuracy) { CV_GetOptimalNewCameraMatrixNoDistortionTest test; test.safe_run(); } |
|
TEST(Calib3d_UndistortPoints, accuracy) { CV_UndistortPointsTest test; test.safe_run(); } |
|
TEST(Calib3d_InitUndistortRectifyMap, accuracy) { CV_InitUndistortRectifyMapTest test; test.safe_run(); } |
|
TEST(DISABLED_Calib3d_InitInverseRectificationMap, accuracy) { CV_InitInverseRectificationMapTest test; test.safe_run(); } |
|
|
|
////////////////////////////// undistort ///////////////////////////////// |
|
|
|
static void test_remap( const Mat& src, Mat& dst, const Mat& mapx, const Mat& mapy, |
|
Mat* mask=0, int interpolation=cv::INTER_LINEAR ) |
|
{ |
|
int x, y, k; |
|
int drows = dst.rows, dcols = dst.cols; |
|
int srows = src.rows, scols = src.cols; |
|
const uchar* sptr0 = src.ptr(); |
|
int depth = src.depth(), cn = src.channels(); |
|
int elem_size = (int)src.elemSize(); |
|
int step = (int)(src.step / CV_ELEM_SIZE(depth)); |
|
int delta; |
|
|
|
if( interpolation != cv::INTER_CUBIC ) |
|
{ |
|
delta = 0; |
|
scols -= 1; srows -= 1; |
|
} |
|
else |
|
{ |
|
delta = 1; |
|
scols = MAX(scols - 3, 0); |
|
srows = MAX(srows - 3, 0); |
|
} |
|
|
|
int scols1 = MAX(scols - 2, 0); |
|
int srows1 = MAX(srows - 2, 0); |
|
|
|
if( mask ) |
|
*mask = Scalar::all(0); |
|
|
|
for( y = 0; y < drows; y++ ) |
|
{ |
|
uchar* dptr = dst.ptr(y); |
|
const float* mx = mapx.ptr<float>(y); |
|
const float* my = mapy.ptr<float>(y); |
|
uchar* m = mask ? mask->ptr(y) : 0; |
|
|
|
for( x = 0; x < dcols; x++, dptr += elem_size ) |
|
{ |
|
float xs = mx[x]; |
|
float ys = my[x]; |
|
int ixs = cvFloor(xs); |
|
int iys = cvFloor(ys); |
|
|
|
if( (unsigned)(ixs - delta - 1) >= (unsigned)scols1 || |
|
(unsigned)(iys - delta - 1) >= (unsigned)srows1 ) |
|
{ |
|
if( m ) |
|
m[x] = 1; |
|
if( (unsigned)(ixs - delta) >= (unsigned)scols || |
|
(unsigned)(iys - delta) >= (unsigned)srows ) |
|
continue; |
|
} |
|
|
|
xs -= ixs; |
|
ys -= iys; |
|
|
|
switch( depth ) |
|
{ |
|
case CV_8U: |
|
{ |
|
const uchar* sptr = sptr0 + iys*step + ixs*cn; |
|
for( k = 0; k < cn; k++ ) |
|
{ |
|
float v00 = sptr[k]; |
|
float v01 = sptr[cn + k]; |
|
float v10 = sptr[step + k]; |
|
float v11 = sptr[step + cn + k]; |
|
|
|
v00 = v00 + xs*(v01 - v00); |
|
v10 = v10 + xs*(v11 - v10); |
|
v00 = v00 + ys*(v10 - v00); |
|
dptr[k] = (uchar)cvRound(v00); |
|
} |
|
} |
|
break; |
|
case CV_16U: |
|
{ |
|
const ushort* sptr = (const ushort*)sptr0 + iys*step + ixs*cn; |
|
for( k = 0; k < cn; k++ ) |
|
{ |
|
float v00 = sptr[k]; |
|
float v01 = sptr[cn + k]; |
|
float v10 = sptr[step + k]; |
|
float v11 = sptr[step + cn + k]; |
|
|
|
v00 = v00 + xs*(v01 - v00); |
|
v10 = v10 + xs*(v11 - v10); |
|
v00 = v00 + ys*(v10 - v00); |
|
((ushort*)dptr)[k] = (ushort)cvRound(v00); |
|
} |
|
} |
|
break; |
|
case CV_32F: |
|
{ |
|
const float* sptr = (const float*)sptr0 + iys*step + ixs*cn; |
|
for( k = 0; k < cn; k++ ) |
|
{ |
|
float v00 = sptr[k]; |
|
float v01 = sptr[cn + k]; |
|
float v10 = sptr[step + k]; |
|
float v11 = sptr[step + cn + k]; |
|
|
|
v00 = v00 + xs*(v01 - v00); |
|
v10 = v10 + xs*(v11 - v10); |
|
v00 = v00 + ys*(v10 - v00); |
|
((float*)dptr)[k] = (float)v00; |
|
} |
|
} |
|
break; |
|
default: |
|
CV_Assert(0); |
|
} |
|
} |
|
} |
|
} |
|
|
|
class CV_ImgWarpBaseTest : public cvtest::ArrayTest |
|
{ |
|
public: |
|
CV_ImgWarpBaseTest( bool warp_matrix ); |
|
|
|
protected: |
|
int read_params( const cv::FileStorage& fs ); |
|
int prepare_test_case( int test_case_idx ); |
|
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ); |
|
void get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high ); |
|
void fill_array( int test_case_idx, int i, int j, Mat& arr ); |
|
|
|
int interpolation; |
|
int max_interpolation; |
|
double spatial_scale_zoom, spatial_scale_decimate; |
|
}; |
|
|
|
|
|
CV_ImgWarpBaseTest::CV_ImgWarpBaseTest( bool warp_matrix ) |
|
{ |
|
test_array[INPUT].push_back(NULL); |
|
if( warp_matrix ) |
|
test_array[INPUT].push_back(NULL); |
|
test_array[INPUT_OUTPUT].push_back(NULL); |
|
test_array[REF_INPUT_OUTPUT].push_back(NULL); |
|
max_interpolation = 5; |
|
interpolation = 0; |
|
element_wise_relative_error = false; |
|
spatial_scale_zoom = 0.01; |
|
spatial_scale_decimate = 0.005; |
|
} |
|
|
|
|
|
int CV_ImgWarpBaseTest::read_params( const cv::FileStorage& fs ) |
|
{ |
|
int code = cvtest::ArrayTest::read_params( fs ); |
|
return code; |
|
} |
|
|
|
|
|
void CV_ImgWarpBaseTest::get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high ) |
|
{ |
|
cvtest::ArrayTest::get_minmax_bounds( i, j, type, low, high ); |
|
if( CV_MAT_DEPTH(type) == CV_32F ) |
|
{ |
|
low = Scalar::all(-10.); |
|
high = Scalar::all(10); |
|
} |
|
} |
|
|
|
|
|
void CV_ImgWarpBaseTest::get_test_array_types_and_sizes( int test_case_idx, |
|
vector<vector<Size> >& sizes, vector<vector<int> >& types ) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
int depth = cvtest::randInt(rng) % 3; |
|
int cn = cvtest::randInt(rng) % 3 + 1; |
|
cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); |
|
depth = depth == 0 ? CV_8U : depth == 1 ? CV_16U : CV_32F; |
|
cn += cn == 2; |
|
|
|
types[INPUT][0] = types[INPUT_OUTPUT][0] = types[REF_INPUT_OUTPUT][0] = CV_MAKETYPE(depth, cn); |
|
if( test_array[INPUT].size() > 1 ) |
|
types[INPUT][1] = cvtest::randInt(rng) & 1 ? CV_32FC1 : CV_64FC1; |
|
|
|
interpolation = cvtest::randInt(rng) % max_interpolation; |
|
} |
|
|
|
|
|
void CV_ImgWarpBaseTest::fill_array( int test_case_idx, int i, int j, Mat& arr ) |
|
{ |
|
if( i != INPUT || j != 0 ) |
|
cvtest::ArrayTest::fill_array( test_case_idx, i, j, arr ); |
|
} |
|
|
|
int CV_ImgWarpBaseTest::prepare_test_case( int test_case_idx ) |
|
{ |
|
int code = cvtest::ArrayTest::prepare_test_case( test_case_idx ); |
|
Mat& img = test_mat[INPUT][0]; |
|
int i, j, cols = img.cols; |
|
int type = img.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); |
|
double scale = depth == CV_16U ? 1000. : 255.*0.5; |
|
double space_scale = spatial_scale_decimate; |
|
vector<float> buffer(img.cols*cn); |
|
|
|
if( code <= 0 ) |
|
return code; |
|
|
|
if( test_mat[INPUT_OUTPUT][0].cols >= img.cols && |
|
test_mat[INPUT_OUTPUT][0].rows >= img.rows ) |
|
space_scale = spatial_scale_zoom; |
|
|
|
for( i = 0; i < img.rows; i++ ) |
|
{ |
|
uchar* ptr = img.ptr(i); |
|
switch( cn ) |
|
{ |
|
case 1: |
|
for( j = 0; j < cols; j++ ) |
|
buffer[j] = (float)((sin((i+1)*space_scale)*sin((j+1)*space_scale)+1.)*scale); |
|
break; |
|
case 2: |
|
for( j = 0; j < cols; j++ ) |
|
{ |
|
buffer[j*2] = (float)((sin((i+1)*space_scale)+1.)*scale); |
|
buffer[j*2+1] = (float)((sin((i+j)*space_scale)+1.)*scale); |
|
} |
|
break; |
|
case 3: |
|
for( j = 0; j < cols; j++ ) |
|
{ |
|
buffer[j*3] = (float)((sin((i+1)*space_scale)+1.)*scale); |
|
buffer[j*3+1] = (float)((sin(j*space_scale)+1.)*scale); |
|
buffer[j*3+2] = (float)((sin((i+j)*space_scale)+1.)*scale); |
|
} |
|
break; |
|
case 4: |
|
for( j = 0; j < cols; j++ ) |
|
{ |
|
buffer[j*4] = (float)((sin((i+1)*space_scale)+1.)*scale); |
|
buffer[j*4+1] = (float)((sin(j*space_scale)+1.)*scale); |
|
buffer[j*4+2] = (float)((sin((i+j)*space_scale)+1.)*scale); |
|
buffer[j*4+3] = (float)((sin((i-j)*space_scale)+1.)*scale); |
|
} |
|
break; |
|
default: |
|
CV_Assert(0); |
|
} |
|
|
|
/*switch( depth ) |
|
{ |
|
case CV_8U: |
|
for( j = 0; j < cols*cn; j++ ) |
|
ptr[j] = (uchar)cvRound(buffer[j]); |
|
break; |
|
case CV_16U: |
|
for( j = 0; j < cols*cn; j++ ) |
|
((ushort*)ptr)[j] = (ushort)cvRound(buffer[j]); |
|
break; |
|
case CV_32F: |
|
for( j = 0; j < cols*cn; j++ ) |
|
((float*)ptr)[j] = (float)buffer[j]; |
|
break; |
|
default: |
|
CV_Assert(0); |
|
}*/ |
|
cv::Mat src(1, cols*cn, CV_32F, &buffer[0]); |
|
cv::Mat dst(1, cols*cn, depth, ptr); |
|
src.convertTo(dst, dst.type()); |
|
} |
|
|
|
return code; |
|
} |
|
|
|
|
|
class CV_UndistortTest : public CV_ImgWarpBaseTest |
|
{ |
|
public: |
|
CV_UndistortTest(); |
|
|
|
protected: |
|
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ); |
|
void run_func(); |
|
int prepare_test_case( int test_case_idx ); |
|
void prepare_to_validation( int /*test_case_idx*/ ); |
|
double get_success_error_level( int test_case_idx, int i, int j ); |
|
void fill_array( int test_case_idx, int i, int j, Mat& arr ); |
|
|
|
private: |
|
cv::Mat input0; |
|
cv::Mat input1; |
|
cv::Mat input2; |
|
cv::Mat input_new_cam; |
|
cv::Mat input_output; |
|
|
|
bool zero_new_cam; |
|
bool zero_distortion; |
|
}; |
|
|
|
|
|
CV_UndistortTest::CV_UndistortTest() : CV_ImgWarpBaseTest( false ) |
|
{ |
|
//spatial_scale_zoom = spatial_scale_decimate; |
|
test_array[INPUT].push_back(NULL); |
|
test_array[INPUT].push_back(NULL); |
|
test_array[INPUT].push_back(NULL); |
|
|
|
spatial_scale_decimate = spatial_scale_zoom; |
|
} |
|
|
|
|
|
void CV_UndistortTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
CV_ImgWarpBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); |
|
int type = types[INPUT][0]; |
|
type = CV_MAKETYPE( CV_8U, CV_MAT_CN(type) ); |
|
types[INPUT][0] = types[INPUT_OUTPUT][0] = types[REF_INPUT_OUTPUT][0] = type; |
|
types[INPUT][1] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; |
|
types[INPUT][2] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; |
|
sizes[INPUT][1] = cvSize(3,3); |
|
sizes[INPUT][2] = cvtest::randInt(rng)%2 ? cvSize(4,1) : cvSize(1,4); |
|
types[INPUT][3] = types[INPUT][1]; |
|
sizes[INPUT][3] = sizes[INPUT][1]; |
|
interpolation = cv::INTER_LINEAR; |
|
} |
|
|
|
|
|
void CV_UndistortTest::fill_array( int test_case_idx, int i, int j, Mat& arr ) |
|
{ |
|
if( i != INPUT ) |
|
CV_ImgWarpBaseTest::fill_array( test_case_idx, i, j, arr ); |
|
} |
|
|
|
|
|
void CV_UndistortTest::run_func() |
|
{ |
|
if (zero_distortion) |
|
{ |
|
cv::undistort(input0,input_output,input1,cv::Mat()); |
|
} |
|
else |
|
{ |
|
cv::undistort(input0,input_output,input1,input2); |
|
} |
|
} |
|
|
|
|
|
double CV_UndistortTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ ) |
|
{ |
|
int depth = test_mat[INPUT][0].depth(); |
|
return depth == CV_8U ? 16 : depth == CV_16U ? 1024 : 5e-2; |
|
} |
|
|
|
|
|
int CV_UndistortTest::prepare_test_case( int test_case_idx ) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
int code = CV_ImgWarpBaseTest::prepare_test_case( test_case_idx ); |
|
|
|
const Mat& src = test_mat[INPUT][0]; |
|
double k[4], a[9] = {0,0,0,0,0,0,0,0,1}; |
|
double new_cam[9] = {0,0,0,0,0,0,0,0,1}; |
|
double sz = MAX(src.rows, src.cols); |
|
|
|
Mat& _new_cam0 = test_mat[INPUT][3]; |
|
Mat _new_cam(test_mat[INPUT][3].rows,test_mat[INPUT][3].cols,CV_64F,new_cam); |
|
Mat& _a0 = test_mat[INPUT][1]; |
|
Mat _a(3,3,CV_64F,a); |
|
Mat& _k0 = test_mat[INPUT][2]; |
|
Mat _k(_k0.rows,_k0.cols, CV_MAKETYPE(CV_64F,_k0.channels()),k); |
|
|
|
if( code <= 0 ) |
|
return code; |
|
|
|
double aspect_ratio = cvtest::randReal(rng)*0.6 + 0.7; |
|
a[2] = (src.cols - 1)*0.5 + cvtest::randReal(rng)*10 - 5; |
|
a[5] = (src.rows - 1)*0.5 + cvtest::randReal(rng)*10 - 5; |
|
a[0] = sz/(0.9 - cvtest::randReal(rng)*0.6); |
|
a[4] = aspect_ratio*a[0]; |
|
k[0] = cvtest::randReal(rng)*0.06 - 0.03; |
|
k[1] = cvtest::randReal(rng)*0.06 - 0.03; |
|
if( k[0]*k[1] > 0 ) |
|
k[1] = -k[1]; |
|
if( cvtest::randInt(rng)%4 != 0 ) |
|
{ |
|
k[2] = cvtest::randReal(rng)*0.004 - 0.002; |
|
k[3] = cvtest::randReal(rng)*0.004 - 0.002; |
|
} |
|
else |
|
k[2] = k[3] = 0; |
|
|
|
new_cam[0] = a[0] + (cvtest::randReal(rng) - (double)0.5)*0.2*a[0]; //10% |
|
new_cam[4] = a[4] + (cvtest::randReal(rng) - (double)0.5)*0.2*a[4]; //10% |
|
new_cam[2] = a[2] + (cvtest::randReal(rng) - (double)0.5)*0.3*test_mat[INPUT][0].rows; //15% |
|
new_cam[5] = a[5] + (cvtest::randReal(rng) - (double)0.5)*0.3*test_mat[INPUT][0].cols; //15% |
|
|
|
_a.convertTo(_a0, _a0.depth()); |
|
|
|
zero_distortion = (cvtest::randInt(rng)%2) == 0 ? false : true; |
|
_k.convertTo(_k0, _k0.depth()); |
|
|
|
zero_new_cam = (cvtest::randInt(rng)%2) == 0 ? false : true; |
|
_new_cam.convertTo(_new_cam0, _new_cam0.depth()); |
|
|
|
//Testing C++ code |
|
//useCPlus = ((cvtest::randInt(rng) % 2)!=0); |
|
input0 = test_mat[INPUT][0]; |
|
input1 = test_mat[INPUT][1]; |
|
input2 = test_mat[INPUT][2]; |
|
input_new_cam = test_mat[INPUT][3]; |
|
|
|
return code; |
|
} |
|
|
|
|
|
void CV_UndistortTest::prepare_to_validation( int /*test_case_idx*/ ) |
|
{ |
|
Mat& output = test_mat[INPUT_OUTPUT][0]; |
|
input_output.convertTo(output, output.type()); |
|
Mat& src = test_mat[INPUT][0]; |
|
Mat& dst = test_mat[REF_INPUT_OUTPUT][0]; |
|
Mat& dst0 = test_mat[INPUT_OUTPUT][0]; |
|
Mat mapx, mapy; |
|
cvtest::initUndistortMap( test_mat[INPUT][1], test_mat[INPUT][2], |
|
Mat(), Mat(), dst.size(), mapx, mapy, CV_32F ); |
|
Mat mask( dst.size(), CV_8U ); |
|
test_remap( src, dst, mapx, mapy, &mask, interpolation ); |
|
dst.setTo(Scalar::all(0), mask); |
|
dst0.setTo(Scalar::all(0), mask); |
|
} |
|
|
|
|
|
class CV_UndistortMapTest : public cvtest::ArrayTest |
|
{ |
|
public: |
|
CV_UndistortMapTest(); |
|
|
|
protected: |
|
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ); |
|
void run_func(); |
|
int prepare_test_case( int test_case_idx ); |
|
void prepare_to_validation( int /*test_case_idx*/ ); |
|
double get_success_error_level( int test_case_idx, int i, int j ); |
|
void fill_array( int test_case_idx, int i, int j, Mat& arr ); |
|
|
|
private: |
|
bool dualChannel; |
|
}; |
|
|
|
|
|
CV_UndistortMapTest::CV_UndistortMapTest() |
|
{ |
|
test_array[INPUT].push_back(NULL); |
|
test_array[INPUT].push_back(NULL); |
|
test_array[OUTPUT].push_back(NULL); |
|
test_array[OUTPUT].push_back(NULL); |
|
test_array[REF_OUTPUT].push_back(NULL); |
|
test_array[REF_OUTPUT].push_back(NULL); |
|
|
|
element_wise_relative_error = false; |
|
} |
|
|
|
|
|
void CV_UndistortMapTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); |
|
int depth = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; |
|
|
|
Size sz = sizes[OUTPUT][0]; |
|
types[INPUT][0] = types[INPUT][1] = depth; |
|
dualChannel = cvtest::randInt(rng)%2 == 0; |
|
types[OUTPUT][0] = types[OUTPUT][1] = |
|
types[REF_OUTPUT][0] = types[REF_OUTPUT][1] = dualChannel ? CV_32FC2 : CV_32F; |
|
sizes[INPUT][0] = cvSize(3,3); |
|
sizes[INPUT][1] = cvtest::randInt(rng)%2 ? cvSize(4,1) : cvSize(1,4); |
|
|
|
sz.width = MAX(sz.width,16); |
|
sz.height = MAX(sz.height,16); |
|
sizes[OUTPUT][0] = sizes[OUTPUT][1] = |
|
sizes[REF_OUTPUT][0] = sizes[REF_OUTPUT][1] = sz; |
|
} |
|
|
|
|
|
void CV_UndistortMapTest::fill_array( int test_case_idx, int i, int j, Mat& arr ) |
|
{ |
|
if( i != INPUT ) |
|
cvtest::ArrayTest::fill_array( test_case_idx, i, j, arr ); |
|
} |
|
|
|
|
|
void CV_UndistortMapTest::run_func() |
|
{ |
|
cv::Mat a = test_mat[INPUT][0], k = test_mat[INPUT][1]; |
|
cv::Mat &mapx = test_mat[OUTPUT][0], &mapy = !dualChannel ? test_mat[OUTPUT][1] : mapx; |
|
cv::Size mapsz = test_mat[OUTPUT][0].size(); |
|
|
|
cv::initUndistortRectifyMap(a, k, cv::Mat(), a, |
|
mapsz, dualChannel ? CV_32FC2 : CV_32FC1, |
|
mapx, !dualChannel ? cv::_InputOutputArray(mapy) : cv::noArray()); |
|
} |
|
|
|
|
|
double CV_UndistortMapTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ ) |
|
{ |
|
return 1e-3; |
|
} |
|
|
|
|
|
int CV_UndistortMapTest::prepare_test_case( int test_case_idx ) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
int code = cvtest::ArrayTest::prepare_test_case( test_case_idx ); |
|
const Mat& mapx = test_mat[OUTPUT][0]; |
|
double k[4], a[9] = {0,0,0,0,0,0,0,0,1}; |
|
double sz = MAX(mapx.rows, mapx.cols); |
|
Mat& _a0 = test_mat[INPUT][0], &_k0 = test_mat[INPUT][1]; |
|
Mat _a(3,3,CV_64F,a); |
|
Mat _k(_k0.rows,_k0.cols, CV_MAKETYPE(CV_64F,_k0.channels()),k); |
|
|
|
if( code <= 0 ) |
|
return code; |
|
|
|
double aspect_ratio = cvtest::randReal(rng)*0.6 + 0.7; |
|
a[2] = (mapx.cols - 1)*0.5 + cvtest::randReal(rng)*10 - 5; |
|
a[5] = (mapx.rows - 1)*0.5 + cvtest::randReal(rng)*10 - 5; |
|
a[0] = sz/(0.9 - cvtest::randReal(rng)*0.6); |
|
a[4] = aspect_ratio*a[0]; |
|
k[0] = cvtest::randReal(rng)*0.06 - 0.03; |
|
k[1] = cvtest::randReal(rng)*0.06 - 0.03; |
|
if( k[0]*k[1] > 0 ) |
|
k[1] = -k[1]; |
|
k[2] = cvtest::randReal(rng)*0.004 - 0.002; |
|
k[3] = cvtest::randReal(rng)*0.004 - 0.002; |
|
|
|
_a.convertTo(_a0, _a0.depth()); |
|
_k.convertTo(_k0, _k0.depth()); |
|
|
|
if (dualChannel) |
|
{ |
|
test_mat[REF_OUTPUT][1] = Scalar::all(0); |
|
test_mat[OUTPUT][1] = Scalar::all(0); |
|
} |
|
|
|
return code; |
|
} |
|
|
|
|
|
void CV_UndistortMapTest::prepare_to_validation( int ) |
|
{ |
|
Mat mapx, mapy; |
|
cvtest::initUndistortMap( test_mat[INPUT][0], test_mat[INPUT][1], Mat(), Mat(), |
|
test_mat[REF_OUTPUT][0].size(), mapx, mapy, CV_32F ); |
|
if( !dualChannel ) |
|
{ |
|
mapx.copyTo(test_mat[REF_OUTPUT][0]); |
|
mapy.copyTo(test_mat[REF_OUTPUT][1]); |
|
} |
|
else |
|
{ |
|
Mat p[2] = {mapx, mapy}; |
|
cv::merge(p, 2, test_mat[REF_OUTPUT][0]); |
|
} |
|
} |
|
|
|
TEST(Calib3d_UndistortImgproc, accuracy) { CV_UndistortTest test; test.safe_run(); } |
|
TEST(Calib3d_InitUndistortMap, accuracy) { CV_UndistortMapTest test; test.safe_run(); } |
|
|
|
TEST(Calib3d_UndistortPoints, inputShape) |
|
{ |
|
//https://github.com/opencv/opencv/issues/14423 |
|
Matx33d cameraMatrix = Matx33d::eye(); |
|
{ |
|
//2xN 1-channel |
|
Mat imagePoints(2, 3, CV_32FC1); |
|
imagePoints.at<float>(0,0) = 320; imagePoints.at<float>(1,0) = 240; |
|
imagePoints.at<float>(0,1) = 0; imagePoints.at<float>(1,1) = 240; |
|
imagePoints.at<float>(0,2) = 320; imagePoints.at<float>(1,2) = 0; |
|
|
|
vector<Point2f> normalized; |
|
undistortPoints(imagePoints, normalized, cameraMatrix, noArray()); |
|
EXPECT_EQ(static_cast<int>(normalized.size()), imagePoints.cols); |
|
for (int i = 0; i < static_cast<int>(normalized.size()); i++) { |
|
EXPECT_NEAR(normalized[i].x, imagePoints.at<float>(0,i), std::numeric_limits<float>::epsilon()); |
|
EXPECT_NEAR(normalized[i].y, imagePoints.at<float>(1,i), std::numeric_limits<float>::epsilon()); |
|
} |
|
} |
|
{ |
|
//Nx2 1-channel |
|
Mat imagePoints(3, 2, CV_32FC1); |
|
imagePoints.at<float>(0,0) = 320; imagePoints.at<float>(0,1) = 240; |
|
imagePoints.at<float>(1,0) = 0; imagePoints.at<float>(1,1) = 240; |
|
imagePoints.at<float>(2,0) = 320; imagePoints.at<float>(2,1) = 0; |
|
|
|
vector<Point2f> normalized; |
|
undistortPoints(imagePoints, normalized, cameraMatrix, noArray()); |
|
EXPECT_EQ(static_cast<int>(normalized.size()), imagePoints.rows); |
|
for (int i = 0; i < static_cast<int>(normalized.size()); i++) { |
|
EXPECT_NEAR(normalized[i].x, imagePoints.at<float>(i,0), std::numeric_limits<float>::epsilon()); |
|
EXPECT_NEAR(normalized[i].y, imagePoints.at<float>(i,1), std::numeric_limits<float>::epsilon()); |
|
} |
|
} |
|
{ |
|
//1xN 2-channel |
|
Mat imagePoints(1, 3, CV_32FC2); |
|
imagePoints.at<Vec2f>(0,0) = Vec2f(320, 240); |
|
imagePoints.at<Vec2f>(0,1) = Vec2f(0, 240); |
|
imagePoints.at<Vec2f>(0,2) = Vec2f(320, 0); |
|
|
|
vector<Point2f> normalized; |
|
undistortPoints(imagePoints, normalized, cameraMatrix, noArray()); |
|
EXPECT_EQ(static_cast<int>(normalized.size()), imagePoints.cols); |
|
for (int i = 0; i < static_cast<int>(normalized.size()); i++) { |
|
EXPECT_NEAR(normalized[i].x, imagePoints.at<Vec2f>(0,i)(0), std::numeric_limits<float>::epsilon()); |
|
EXPECT_NEAR(normalized[i].y, imagePoints.at<Vec2f>(0,i)(1), std::numeric_limits<float>::epsilon()); |
|
} |
|
} |
|
{ |
|
//Nx1 2-channel |
|
Mat imagePoints(3, 1, CV_32FC2); |
|
imagePoints.at<Vec2f>(0,0) = Vec2f(320, 240); |
|
imagePoints.at<Vec2f>(1,0) = Vec2f(0, 240); |
|
imagePoints.at<Vec2f>(2,0) = Vec2f(320, 0); |
|
|
|
vector<Point2f> normalized; |
|
undistortPoints(imagePoints, normalized, cameraMatrix, noArray()); |
|
EXPECT_EQ(static_cast<int>(normalized.size()), imagePoints.rows); |
|
for (int i = 0; i < static_cast<int>(normalized.size()); i++) { |
|
EXPECT_NEAR(normalized[i].x, imagePoints.at<Vec2f>(i,0)(0), std::numeric_limits<float>::epsilon()); |
|
EXPECT_NEAR(normalized[i].y, imagePoints.at<Vec2f>(i,0)(1), std::numeric_limits<float>::epsilon()); |
|
} |
|
} |
|
{ |
|
//vector<Point2f> |
|
vector<Point2f> imagePoints; |
|
imagePoints.push_back(Point2f(320, 240)); |
|
imagePoints.push_back(Point2f(0, 240)); |
|
imagePoints.push_back(Point2f(320, 0)); |
|
|
|
vector<Point2f> normalized; |
|
undistortPoints(imagePoints, normalized, cameraMatrix, noArray()); |
|
EXPECT_EQ(normalized.size(), imagePoints.size()); |
|
for (int i = 0; i < static_cast<int>(normalized.size()); i++) { |
|
EXPECT_NEAR(normalized[i].x, imagePoints[i].x, std::numeric_limits<float>::epsilon()); |
|
EXPECT_NEAR(normalized[i].y, imagePoints[i].y, std::numeric_limits<float>::epsilon()); |
|
} |
|
} |
|
{ |
|
//vector<Point2d> |
|
vector<Point2d> imagePoints; |
|
imagePoints.push_back(Point2d(320, 240)); |
|
imagePoints.push_back(Point2d(0, 240)); |
|
imagePoints.push_back(Point2d(320, 0)); |
|
|
|
vector<Point2d> normalized; |
|
undistortPoints(imagePoints, normalized, cameraMatrix, noArray()); |
|
EXPECT_EQ(normalized.size(), imagePoints.size()); |
|
for (int i = 0; i < static_cast<int>(normalized.size()); i++) { |
|
EXPECT_NEAR(normalized[i].x, imagePoints[i].x, std::numeric_limits<double>::epsilon()); |
|
EXPECT_NEAR(normalized[i].y, imagePoints[i].y, std::numeric_limits<double>::epsilon()); |
|
} |
|
} |
|
} |
|
|
|
TEST(Calib3d_UndistortPoints, outputShape) |
|
{ |
|
Matx33d cameraMatrix = Matx33d::eye(); |
|
{ |
|
vector<Point2f> imagePoints; |
|
imagePoints.push_back(Point2f(320, 240)); |
|
imagePoints.push_back(Point2f(0, 240)); |
|
imagePoints.push_back(Point2f(320, 0)); |
|
|
|
//Mat --> will be Nx1 2-channel |
|
Mat normalized; |
|
undistortPoints(imagePoints, normalized, cameraMatrix, noArray()); |
|
EXPECT_EQ(static_cast<int>(imagePoints.size()), normalized.rows); |
|
for (int i = 0; i < normalized.rows; i++) { |
|
EXPECT_NEAR(normalized.at<Vec2f>(i,0)(0), imagePoints[i].x, std::numeric_limits<float>::epsilon()); |
|
EXPECT_NEAR(normalized.at<Vec2f>(i,0)(1), imagePoints[i].y, std::numeric_limits<float>::epsilon()); |
|
} |
|
} |
|
{ |
|
vector<Point2f> imagePoints; |
|
imagePoints.push_back(Point2f(320, 240)); |
|
imagePoints.push_back(Point2f(0, 240)); |
|
imagePoints.push_back(Point2f(320, 0)); |
|
|
|
//Nx1 2-channel |
|
Mat normalized(static_cast<int>(imagePoints.size()), 1, CV_32FC2); |
|
undistortPoints(imagePoints, normalized, cameraMatrix, noArray()); |
|
EXPECT_EQ(static_cast<int>(imagePoints.size()), normalized.rows); |
|
for (int i = 0; i < normalized.rows; i++) { |
|
EXPECT_NEAR(normalized.at<Vec2f>(i,0)(0), imagePoints[i].x, std::numeric_limits<float>::epsilon()); |
|
EXPECT_NEAR(normalized.at<Vec2f>(i,0)(1), imagePoints[i].y, std::numeric_limits<float>::epsilon()); |
|
} |
|
} |
|
{ |
|
vector<Point2f> imagePoints; |
|
imagePoints.push_back(Point2f(320, 240)); |
|
imagePoints.push_back(Point2f(0, 240)); |
|
imagePoints.push_back(Point2f(320, 0)); |
|
|
|
//1xN 2-channel |
|
Mat normalized(1, static_cast<int>(imagePoints.size()), CV_32FC2); |
|
undistortPoints(imagePoints, normalized, cameraMatrix, noArray()); |
|
EXPECT_EQ(static_cast<int>(imagePoints.size()), normalized.cols); |
|
for (int i = 0; i < normalized.rows; i++) { |
|
EXPECT_NEAR(normalized.at<Vec2f>(0,i)(0), imagePoints[i].x, std::numeric_limits<float>::epsilon()); |
|
EXPECT_NEAR(normalized.at<Vec2f>(0,i)(1), imagePoints[i].y, std::numeric_limits<float>::epsilon()); |
|
} |
|
} |
|
{ |
|
vector<Point2f> imagePoints; |
|
imagePoints.push_back(Point2f(320, 240)); |
|
imagePoints.push_back(Point2f(0, 240)); |
|
imagePoints.push_back(Point2f(320, 0)); |
|
|
|
//vector<Point2f> |
|
vector<Point2f> normalized; |
|
undistortPoints(imagePoints, normalized, cameraMatrix, noArray()); |
|
EXPECT_EQ(imagePoints.size(), normalized.size()); |
|
for (int i = 0; i < static_cast<int>(normalized.size()); i++) { |
|
EXPECT_NEAR(normalized[i].x, imagePoints[i].x, std::numeric_limits<float>::epsilon()); |
|
EXPECT_NEAR(normalized[i].y, imagePoints[i].y, std::numeric_limits<float>::epsilon()); |
|
} |
|
} |
|
{ |
|
vector<Point2d> imagePoints; |
|
imagePoints.push_back(Point2d(320, 240)); |
|
imagePoints.push_back(Point2d(0, 240)); |
|
imagePoints.push_back(Point2d(320, 0)); |
|
|
|
//vector<Point2d> |
|
vector<Point2d> normalized; |
|
undistortPoints(imagePoints, normalized, cameraMatrix, noArray()); |
|
EXPECT_EQ(imagePoints.size(), normalized.size()); |
|
for (int i = 0; i < static_cast<int>(normalized.size()); i++) { |
|
EXPECT_NEAR(normalized[i].x, imagePoints[i].x, std::numeric_limits<double>::epsilon()); |
|
EXPECT_NEAR(normalized[i].y, imagePoints[i].y, std::numeric_limits<double>::epsilon()); |
|
} |
|
} |
|
} |
|
|
|
TEST(Imgproc_undistort, regression_15286) |
|
{ |
|
double kmat_data[9] = { 3217, 0, 1592, 0, 3217, 1201, 0, 0, 1 }; |
|
Mat kmat(3, 3, CV_64F, kmat_data); |
|
double dist_coeff_data[5] = { 0.04, -0.4, -0.01, 0.04, 0.7 }; |
|
Mat dist_coeffs(5, 1, CV_64F, dist_coeff_data); |
|
|
|
Mat img = Mat::zeros(512, 512, CV_8UC1); |
|
img.at<uchar>(128, 128) = 255; |
|
img.at<uchar>(128, 384) = 255; |
|
img.at<uchar>(384, 384) = 255; |
|
img.at<uchar>(384, 128) = 255; |
|
|
|
Mat ref = Mat::zeros(512, 512, CV_8UC1); |
|
ref.at<uchar>(Point(24, 98)) = 78; |
|
ref.at<uchar>(Point(24, 99)) = 114; |
|
ref.at<uchar>(Point(25, 98)) = 36; |
|
ref.at<uchar>(Point(25, 99)) = 60; |
|
ref.at<uchar>(Point(27, 361)) = 6; |
|
ref.at<uchar>(Point(28, 361)) = 188; |
|
ref.at<uchar>(Point(28, 362)) = 49; |
|
ref.at<uchar>(Point(29, 361)) = 44; |
|
ref.at<uchar>(Point(29, 362)) = 16; |
|
ref.at<uchar>(Point(317, 366)) = 134; |
|
ref.at<uchar>(Point(317, 367)) = 78; |
|
ref.at<uchar>(Point(318, 366)) = 40; |
|
ref.at<uchar>(Point(318, 367)) = 29; |
|
ref.at<uchar>(Point(310, 104)) = 106; |
|
ref.at<uchar>(Point(310, 105)) = 30; |
|
ref.at<uchar>(Point(311, 104)) = 112; |
|
ref.at<uchar>(Point(311, 105)) = 38; |
|
|
|
Mat img_undist; |
|
undistort(img, img_undist, kmat, dist_coeffs); |
|
|
|
ASSERT_EQ(0.0, cvtest::norm(img_undist, ref, cv::NORM_INF)); |
|
} |
|
|
|
TEST(Calib3d_initUndistortRectifyMap, regression_14467) |
|
{ |
|
Size size_w_h(512 + 3, 512); |
|
Matx33f k( |
|
6200, 0, size_w_h.width / 2.0f, |
|
0, 6200, size_w_h.height / 2.0f, |
|
0, 0, 1 |
|
); |
|
|
|
Mat mesh_uv(size_w_h, CV_32FC2); |
|
for (int i = 0; i < size_w_h.height; i++) |
|
{ |
|
for (int j = 0; j < size_w_h.width; j++) |
|
{ |
|
mesh_uv.at<Vec2f>(i, j) = Vec2f((float)j, (float)i); |
|
} |
|
} |
|
|
|
Matx<double, 1, 14> d( |
|
0, 0, 0, 0, 0, |
|
0, 0, 0, 0, 0, 0, 0, |
|
0.09, 0.0 |
|
); |
|
Mat mapxy, dst; |
|
initUndistortRectifyMap(k, d, noArray(), k, size_w_h, CV_32FC2, mapxy, noArray()); |
|
undistortPoints(mapxy.reshape(2, (int)mapxy.total()), dst, k, d, noArray(), k); |
|
dst = dst.reshape(2, mapxy.rows); |
|
EXPECT_LE(cvtest::norm(dst, mesh_uv, NORM_INF), 1e-3); |
|
} |
|
|
|
TEST(Calib3d_initInverseRectificationMap, regression_20165) |
|
{ |
|
Size size_w_h(1280, 800); |
|
Mat dst(size_w_h, CV_32FC2); // Reference for validation |
|
Mat mapxy; // Output of initInverseRectificationMap() |
|
|
|
// Camera Matrix |
|
double k[9]={ |
|
1.5393951443032472e+03, 0., 6.7491727003047140e+02, |
|
0., 1.5400748240626747e+03, 5.1226968329123963e+02, |
|
0., 0., 1. |
|
}; |
|
Mat _K(3, 3, CV_64F, k); |
|
|
|
// Distortion |
|
// double d[5]={0,0,0,0,0}; // Zero Distortion |
|
double d[5]={ // Non-zero distortion |
|
-3.4134571357400023e-03, 2.9733267766101856e-03, // K1, K2 |
|
3.6653586399031184e-03, -3.1960714017365702e-03, // P1, P2 |
|
0. // K3 |
|
}; |
|
Mat _d(1, 5, CV_64F, d); |
|
|
|
// Rotation |
|
//double R[9]={1., 0., 0., 0., 1., 0., 0., 0., 1.}; // Identity transform (none) |
|
double R[9]={ // Random transform |
|
9.6625486010428052e-01, 1.6055789378989216e-02, 2.5708706103628531e-01, |
|
-8.0300261706161002e-03, 9.9944797497929860e-01, -3.2237617614807819e-02, |
|
-2.5746274294459848e-01, 2.9085338870243265e-02, 9.6585039165403186e-01 |
|
}; |
|
Mat _R(3, 3, CV_64F, R); |
|
|
|
// --- Validation --- // |
|
initInverseRectificationMap(_K, _d, _R, _K, size_w_h, CV_32FC2, mapxy, noArray()); |
|
|
|
// Copy camera matrix |
|
double fx, fy, cx, cy, ifx, ify, cxn, cyn; |
|
fx = k[0]; fy = k[4]; cx = k[2]; cy = k[5]; |
|
|
|
// Copy new camera matrix |
|
ifx = k[0]; ify = k[4]; cxn = k[2]; cyn = k[5]; |
|
|
|
// Distort Points |
|
for( int v = 0; v < size_w_h.height; v++ ) |
|
{ |
|
for( int u = 0; u < size_w_h.width; u++ ) |
|
{ |
|
// Convert from image to pin-hole coordinates |
|
double x = (u - cx)/fx; |
|
double y = (v - cy)/fy; |
|
|
|
// Undistort |
|
double x2 = x*x, y2 = y*y; |
|
double r2 = x2 + y2; |
|
double cdist = 1./(1. + (d[0] + (d[1] + d[4]*r2)*r2)*r2); // (1. + (d[5] + (d[6] + d[7]*r2)*r2)*r2) == 1 as d[5-7]=0; |
|
double x_ = (x - (d[2]*2.*x*y + d[3]*(r2 + 2.*x2)))*cdist; |
|
double y_ = (y - (d[3]*2.*x*y + d[2]*(r2 + 2.*y2)))*cdist; |
|
|
|
// Rectify |
|
double X = R[0]*x_ + R[1]*y_ + R[2]; |
|
double Y = R[3]*x_ + R[4]*y_ + R[5]; |
|
double Z = R[6]*x_ + R[7]*y_ + R[8]; |
|
double x__ = X/Z; |
|
double y__ = Y/Z; |
|
|
|
// Convert from pin-hole to image coordinates |
|
dst.at<Vec2f>(v, u) = Vec2f((float)(x__*ifx + cxn), (float)(y__*ify + cyn)); |
|
} |
|
} |
|
|
|
// Check Result |
|
EXPECT_LE(cvtest::norm(dst, mapxy, NORM_INF), 2e-1); |
|
} |
|
|
|
}} // namespace
|
|
|