Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1206 lines
36 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "test_precomp.hpp"
namespace opencv_test {
namespace {
using namespace cv;
/** Reprojects screen point to camera space given z coord. */
struct Reprojector
{
Reprojector() {}
inline Reprojector(Matx33f intr)
{
fxinv = 1.f / intr(0, 0), fyinv = 1.f / intr(1, 1);
cx = intr(0, 2), cy = intr(1, 2);
}
template<typename T>
inline cv::Point3_<T> operator()(cv::Point3_<T> p) const
{
T x = p.z * (p.x - cx) * fxinv;
T y = p.z * (p.y - cy) * fyinv;
return cv::Point3_<T>(x, y, p.z);
}
float fxinv, fyinv, cx, cy;
};
template<class Scene>
struct RenderInvoker : ParallelLoopBody
{
RenderInvoker(Mat_<float>& _frame, Affine3f _pose,
Reprojector _reproj, float _depthFactor, bool _onlySemisphere)
: ParallelLoopBody(),
frame(_frame),
pose(_pose),
reproj(_reproj),
depthFactor(_depthFactor),
onlySemisphere(_onlySemisphere)
{ }
virtual void operator ()(const cv::Range& r) const
{
for (int y = r.start; y < r.end; y++)
{
float* frameRow = frame[y];
for (int x = 0; x < frame.cols; x++)
{
float pix = 0;
Point3f orig = pose.translation();
// direction through pixel
Point3f screenVec = reproj(Point3f((float)x, (float)y, 1.f));
float xyt = 1.f / (screenVec.x * screenVec.x +
screenVec.y * screenVec.y + 1.f);
Point3f dir = cv::normalize(Vec3f(pose.rotation() * screenVec));
// screen space axis
dir.y = -dir.y;
const float maxDepth = 20.f;
const float maxSteps = 256;
float t = 0.f;
for (int step = 0; step < maxSteps && t < maxDepth; step++)
{
Point3f p = orig + dir * t;
float d = Scene::map(p, onlySemisphere);
if (d < 0.000001f)
{
float depth = std::sqrt(t * t * xyt);
pix = depth * depthFactor;
break;
}
t += d;
}
frameRow[x] = pix;
}
}
}
Mat_<float>& frame;
Affine3f pose;
Reprojector reproj;
float depthFactor;
bool onlySemisphere;
};
template<class Scene>
struct RenderColorInvoker : ParallelLoopBody
{
RenderColorInvoker(Mat_<Vec3f>& _frame, Affine3f _pose,
Reprojector _reproj,
float _depthFactor, bool _onlySemisphere) : ParallelLoopBody(),
frame(_frame),
pose(_pose),
reproj(_reproj),
depthFactor(_depthFactor),
onlySemisphere(_onlySemisphere)
{ }
virtual void operator ()(const cv::Range& r) const
{
for (int y = r.start; y < r.end; y++)
{
Vec3f* frameRow = frame[y];
for (int x = 0; x < frame.cols; x++)
{
Vec3f pix = 0;
Point3f orig = pose.translation();
// direction through pixel
Point3f screenVec = reproj(Point3f((float)x, (float)y, 1.f));
Point3f dir = cv::normalize(Vec3f(pose.rotation() * screenVec));
// screen space axis
dir.y = -dir.y;
const float maxDepth = 20.f;
const float maxSteps = 256;
float t = 0.f;
for (int step = 0; step < maxSteps && t < maxDepth; step++)
{
Point3f p = orig + dir * t;
float d = Scene::map(p, onlySemisphere);
if (d < 0.000001f)
{
float m = 0.25f;
float p0 = float(abs(fmod(p.x, m)) > m / 2.f);
float p1 = float(abs(fmod(p.y, m)) > m / 2.f);
float p2 = float(abs(fmod(p.z, m)) > m / 2.f);
pix[0] = p0 + p1;
pix[1] = p1 + p2;
pix[2] = p0 + p2;
pix *= 128.f;
break;
}
t += d;
}
frameRow[x] = pix;
}
}
}
Mat_<Vec3f>& frame;
Affine3f pose;
Reprojector reproj;
float depthFactor;
bool onlySemisphere;
};
struct Scene
{
virtual ~Scene() {}
static Ptr<Scene> create(Size sz, Matx33f _intr, float _depthFactor, bool onlySemisphere);
virtual Mat depth(Affine3f pose) = 0;
virtual Mat rgb(Affine3f pose) = 0;
virtual std::vector<Affine3f> getPoses() = 0;
};
struct SemisphereScene : Scene
{
const int framesPerCycle = 72;
const float nCycles = 0.25f;
const Affine3f startPose = Affine3f(Vec3f(0.f, 0.f, 0.f), Vec3f(1.5f, 0.3f, -2.1f));
Size frameSize;
Matx33f intr;
float depthFactor;
bool onlySemisphere;
SemisphereScene(Size sz, Matx33f _intr, float _depthFactor, bool _onlySemisphere) :
frameSize(sz), intr(_intr), depthFactor(_depthFactor), onlySemisphere(_onlySemisphere)
{ }
static float map(Point3f p, bool onlySemisphere)
{
float plane = p.y + 0.5f;
Point3f spherePose = p - Point3f(-0.0f, 0.3f, 1.1f);
float sphereRadius = 0.5f;
float sphere = (float)cv::norm(spherePose) - sphereRadius;
float sphereMinusBox = sphere;
float subSphereRadius = 0.05f;
Point3f subSpherePose = p - Point3f(0.3f, -0.1f, -0.3f);
float subSphere = (float)cv::norm(subSpherePose) - subSphereRadius;
float res;
if (!onlySemisphere)
res = min({ sphereMinusBox, subSphere, plane });
else
res = sphereMinusBox;
return res;
}
Mat depth(Affine3f pose) override
{
Mat_<float> frame(frameSize);
Reprojector reproj(intr);
Range range(0, frame.rows);
parallel_for_(range, RenderInvoker<SemisphereScene>(frame, pose, reproj, depthFactor, onlySemisphere));
return std::move(frame);
}
Mat rgb(Affine3f pose) override
{
Mat_<Vec3f> frame(frameSize);
Reprojector reproj(intr);
Range range(0, frame.rows);
parallel_for_(range, RenderColorInvoker<SemisphereScene>(frame, pose, reproj, depthFactor, onlySemisphere));
return std::move(frame);
}
std::vector<Affine3f> getPoses() override
{
std::vector<Affine3f> poses;
for (int i = 0; i < framesPerCycle * nCycles; i++)
{
float angle = (float)(CV_2PI * i / framesPerCycle);
Affine3f pose;
pose = pose.rotate(startPose.rotation());
pose = pose.rotate(Vec3f(0.f, -0.5f, 0.f) * angle);
pose = pose.translate(Vec3f(startPose.translation()[0] * sin(angle),
startPose.translation()[1],
startPose.translation()[2] * cos(angle)));
poses.push_back(pose);
}
return poses;
}
};
Ptr<Scene> Scene::create(Size sz, Matx33f _intr, float _depthFactor, bool _onlySemisphere)
{
return makePtr<SemisphereScene>(sz, _intr, _depthFactor, _onlySemisphere);
}
// this is a temporary solution
// ----------------------------
typedef cv::Vec4f ptype;
typedef cv::Mat_< ptype > Points;
typedef cv::Mat_< ptype > Colors;
typedef Points Normals;
typedef Size2i Size;
template<int p>
inline float specPow(float x)
{
if (p % 2 == 0)
{
float v = specPow<p / 2>(x);
return v * v;
}
else
{
float v = specPow<(p - 1) / 2>(x);
return v * v * x;
}
}
template<>
inline float specPow<0>(float /*x*/)
{
return 1.f;
}
template<>
inline float specPow<1>(float x)
{
return x;
}
inline cv::Vec3f fromPtype(const ptype& x)
{
return cv::Vec3f(x[0], x[1], x[2]);
}
void renderPointsNormals(InputArray _points, InputArray _normals, OutputArray image, Affine3f lightPose)
{
Size sz = _points.size();
image.create(sz, CV_8UC4);
Points points = _points.getMat();
Normals normals = _normals.getMat();
Mat goods;
finiteMask(points, goods);
Mat_<Vec4b> img = image.getMat();
Range range(0, sz.height);
const int nstripes = -1;
parallel_for_(range, [&](const Range&)
{
for (int y = range.start; y < range.end; y++)
{
Vec4b* imgRow = img[y];
const ptype* ptsRow = points[y];
const ptype* nrmRow = normals[y];
const uchar* goodRow = goods.ptr<uchar>(y);
for (int x = 0; x < sz.width; x++)
{
Point3f p = fromPtype(ptsRow[x]);
Point3f n = fromPtype(nrmRow[x]);
Vec4b color;
if (!goodRow[x])
{
color = Vec4b(0, 32, 0, 0);
}
else
{
const float Ka = 0.3f; //ambient coeff
const float Kd = 0.5f; //diffuse coeff
const float Ks = 0.2f; //specular coeff
const int sp = 20; //specular power
const float Ax = 1.f; //ambient color, can be RGB
const float Dx = 1.f; //diffuse color, can be RGB
const float Sx = 1.f; //specular color, can be RGB
const float Lx = 1.f; //light color
Point3f l = cv::normalize(lightPose.translation() - Vec3f(p));
Point3f v = cv::normalize(-Vec3f(p));
Point3f r = cv::normalize(Vec3f(2.f * n * n.dot(l) - l));
uchar ix = (uchar)((Ax * Ka * Dx + Lx * Kd * Dx * max(0.f, n.dot(l)) +
Lx * Ks * Sx * specPow<sp>(max(0.f, r.dot(v)))) * 255.f);
color = Vec4b(ix, ix, ix, 0);
}
imgRow[x] = color;
}
}
}, nstripes);
}
void renderPointsNormalsColors(InputArray _points, InputArray, InputArray _colors, OutputArray image, Affine3f)
{
Size sz = _points.size();
image.create(sz, CV_8UC4);
Points points = _points.getMat();
Colors colors = _colors.getMat();
Mat goods, goodc, goodp;
finiteMask(points, goodp);
finiteMask(colors, goodc);
goods = goodp & goodc;
Mat_<Vec4b> img = image.getMat();
Range range(0, sz.height);
const int nstripes = -1;
parallel_for_(range, [&](const Range&)
{
for (int y = range.start; y < range.end; y++)
{
Vec4b* imgRow = img[y];
const ptype* clrRow = colors[y];
const uchar* goodRow = goods.ptr<uchar>(y);
for (int x = 0; x < sz.width; x++)
{
Point3f c = fromPtype(clrRow[x]);
Vec4b color;
if (!goodRow[x])
{
color = Vec4b(0, 32, 0, 0);
}
else
{
color = Vec4b((uchar)c.x, (uchar)c.y, (uchar)c.z, (uchar)0);
}
imgRow[x] = color;
}
}
}, nstripes);
}
// ----------------------------
void displayImage(Mat depth, Mat points, Mat normals, float depthFactor, Vec3f lightPose)
{
Mat image;
patchNaNs(points);
imshow("depth", depth * (1.f / depthFactor / 4.f));
renderPointsNormals(points, normals, image, lightPose);
imshow("render", image);
waitKey(2000);
destroyAllWindows();
}
void displayColorImage(Mat depth, Mat rgb, Mat points, Mat normals, Mat colors, float depthFactor, Vec3f lightPose)
{
Mat image;
patchNaNs(points);
imshow("depth", depth * (1.f / depthFactor / 4.f));
imshow("rgb", rgb * (1.f / 255.f));
renderPointsNormalsColors(points, normals, colors, image, lightPose);
imshow("render", image);
waitKey(2000);
destroyAllWindows();
}
void normalsCheck(Mat normals)
{
Vec4f vector;
int counter = 0;
for (auto pvector = normals.begin<Vec4f>(); pvector < normals.end<Vec4f>(); pvector++)
{
vector = *pvector;
if (!(cvIsNaN(vector[0]) || cvIsNaN(vector[1]) || cvIsNaN(vector[2])))
{
counter++;
float l2 = vector[0] * vector[0] +
vector[1] * vector[1] +
vector[2] * vector[2];
ASSERT_LT(abs(1.f - l2), 0.0001f) << "There is normal with length != 1";
}
}
ASSERT_GT(counter, 0) << "There are no normals";
}
int counterOfValid(Mat points)
{
Vec4f* v;
int i, j;
int count = 0;
for (i = 0; i < points.rows; ++i)
{
v = (points.ptr<Vec4f>(i));
for (j = 0; j < points.cols; ++j)
{
if ((v[j])[0] != 0 ||
(v[j])[1] != 0 ||
(v[j])[2] != 0)
{
count++;
}
}
}
return count;
}
enum class VolumeTestFunction
{
RAYCAST = 0,
FETCH_NORMALS = 1,
FETCH_POINTS_NORMALS = 2
};
enum class VolumeTestSrcType
{
MAT = 0,
ODOMETRY_FRAME = 1
};
enum class FrameSizeType
{
DEFAULT = 0,
CUSTOM = 1
};
void debugVolumeDraw(const Volume &volume, Affine3f pose, Mat depth, float depthFactor, std::string objFname)
{
Vec3f lightPose = Vec3f::all(0.f);
Mat points, normals;
volume.raycast(pose.matrix, points, normals);
Mat ptsList, ptsList3, nrmList, nrmList3;
volume.fetchPointsNormals(ptsList, nrmList);
// transform 4 channels to 3 channels
cvtColor(ptsList, ptsList3, COLOR_BGRA2BGR);
cvtColor(ptsList, nrmList3, COLOR_BGRA2BGR);
savePointCloud(objFname, ptsList3, nrmList3);
displayImage(depth, points, normals, depthFactor, lightPose);
}
// For fixed volumes which are TSDF and ColorTSDF
void staticBoundingBoxTest(VolumeType volumeType)
{
VolumeSettings vs(volumeType);
Volume volume(volumeType, vs);
Vec3i res;
vs.getVolumeResolution(res);
float voxelSize = vs.getVoxelSize();
Matx44f pose;
vs.getVolumePose(pose);
Vec3f end = voxelSize * Vec3f(res);
Vec6f truebb(0, 0, 0, end[0], end[1], end[2]);
Vec6f bb;
volume.getBoundingBox(bb, Volume::BoundingBoxPrecision::VOLUME_UNIT);
Vec6f diff = bb - truebb;
double normdiff = std::sqrt(diff.ddot(diff));
ASSERT_LE(normdiff, std::numeric_limits<double>::epsilon());
}
// For HashTSDF only
void boundingBoxGrowthTest(bool enableGrowth)
{
VolumeSettings vs(VolumeType::HashTSDF);
Volume volume(VolumeType::HashTSDF, vs);
Size frameSize(vs.getRaycastWidth(), vs.getRaycastHeight());
Matx33f intrIntegrate, intrRaycast;
vs.getCameraIntegrateIntrinsics(intrIntegrate);
vs.getCameraRaycastIntrinsics(intrRaycast);
bool onlySemisphere = false;
float depthFactor = vs.getDepthFactor();
Ptr<Scene> scene = Scene::create(frameSize, intrIntegrate, depthFactor, onlySemisphere);
std::vector<Affine3f> poses = scene->getPoses();
Mat depth = scene->depth(poses[0]);
UMat udepth;
depth.copyTo(udepth);
// depth is integrated with multiple weight
// TODO: add weight parameter to integrate() call (both scalar and array of 8u/32f)
const int nIntegrations = 1;
for (int i = 0; i < nIntegrations; i++)
volume.integrate(udepth, poses[0].matrix);
Vec6f bb;
volume.getBoundingBox(bb, Volume::BoundingBoxPrecision::VOLUME_UNIT);
Vec6f truebb(-0.9375f, 1.3125f, -0.8906f, 3.9375f, 2.6133f, 1.4004f);
Vec6f diff = bb - truebb;
double bbnorm = std::sqrt(diff.ddot(diff));
Vec3f vuRes;
vs.getVolumeResolution(vuRes);
double vuSize = vs.getVoxelSize() * vuRes[0];
// it's OK to have such big difference since this is volume unit size-grained BB calculation
// Theoretical max difference can be sqrt(6) =(approx)= 2.4494
EXPECT_LE(bbnorm, vuSize * 2.38);
if (cvtest::debugLevel > 0)
{
debugVolumeDraw(volume, poses[0], depth, depthFactor, "pts.obj");
}
// Integrate another depth growth changed
Mat depth2 = scene->depth(poses[0].translate(Vec3f(0, -0.25f, 0)));
UMat udepth2;
depth2.copyTo(udepth2);
volume.setEnableGrowth(enableGrowth);
for (int i = 0; i < nIntegrations; i++)
volume.integrate(udepth2, poses[0].matrix);
Vec6f bb2;
volume.getBoundingBox(bb2, Volume::BoundingBoxPrecision::VOLUME_UNIT);
Vec6f truebb2 = truebb + Vec6f(0, -(1.3125f - 1.0723f), -(-0.8906f - (-1.4238f)), 0, 0, 0);
Vec6f diff2 = enableGrowth ? bb2 - truebb2 : bb2 - bb;
double bbnorm2 = std::sqrt(diff2.ddot(diff2));
EXPECT_LE(bbnorm2, enableGrowth ? (vuSize * 2.3) : std::numeric_limits<double>::epsilon());
if (cvtest::debugLevel > 0)
{
debugVolumeDraw(volume, poses[0], depth, depthFactor, enableGrowth ? "pts_growth.obj" : "pts_no_growth.obj");
}
// Reset check
volume.reset();
Vec6f bb3;
volume.getBoundingBox(bb3, Volume::BoundingBoxPrecision::VOLUME_UNIT);
double bbnorm3 = std::sqrt(bb3.ddot(bb3));
EXPECT_LE(bbnorm3, std::numeric_limits<double>::epsilon());
}
template <typename VT>
static Mat_<typename VT::value_type> normalsErrorT(Mat_<VT> srcNormals, Mat_<VT> dstNormals)
{
typedef typename VT::value_type Val;
Mat out(srcNormals.size(), cv::traits::Depth<Val>::value, Scalar(0));
for (int y = 0; y < srcNormals.rows; y++)
{
VT *srcrow = srcNormals[y];
VT *dstrow = dstNormals[y];
Val *outrow = out.ptr<Val>(y);
for (int x = 0; x < srcNormals.cols; x++)
{
VT sn = srcrow[x];
VT dn = dstrow[x];
Val dot = sn.dot(dn);
Val v(0.0);
// Just for rounding errors
if (std::abs(dot) < 1)
v = std::min(std::acos(dot), std::acos(-dot));
outrow[x] = v;
}
}
return out;
}
static Mat normalsError(Mat srcNormals, Mat dstNormals)
{
int depth = srcNormals.depth();
int channels = srcNormals.channels();
if (depth == CV_32F)
{
if (channels == 3)
{
return normalsErrorT<Vec3f>(srcNormals, dstNormals);
}
else if (channels == 4)
{
return normalsErrorT<Vec4f>(srcNormals, dstNormals);
}
}
else if (depth == CV_64F)
{
if (channels == 3)
{
return normalsErrorT<Vec3d>(srcNormals, dstNormals);
}
else if (channels == 4)
{
return normalsErrorT<Vec4d>(srcNormals, dstNormals);
}
}
else
{
CV_Error(Error::StsInternal, "This type is unsupported");
}
return Mat();
}
void regressionVolPoseRot()
{
// Make 2 volumes which differ only in their pose (especially rotation)
VolumeSettings vs(VolumeType::HashTSDF);
Volume volume0(VolumeType::HashTSDF, vs);
VolumeSettings vsRot(vs);
Matx44f pose;
vsRot.getVolumePose(pose);
pose = Affine3f(Vec3f(1, 1, 1), Vec3f()).matrix;
vsRot.setVolumePose(pose);
Volume volumeRot(VolumeType::HashTSDF, vsRot);
Size frameSize(vs.getRaycastWidth(), vs.getRaycastHeight());
Matx33f intrIntegrate, intrRaycast;
vs.getCameraIntegrateIntrinsics(intrIntegrate);
vs.getCameraRaycastIntrinsics(intrRaycast);
bool onlySemisphere = false;
float depthFactor = vs.getDepthFactor();
Vec3f lightPose = Vec3f::all(0.f);
Ptr<Scene> scene = Scene::create(frameSize, intrIntegrate, depthFactor, onlySemisphere);
std::vector<Affine3f> poses = scene->getPoses();
Mat depth = scene->depth(poses[0]);
UMat udepth;
depth.copyTo(udepth);
volume0.integrate(udepth, poses[0].matrix);
volumeRot.integrate(udepth, poses[0].matrix);
UMat upts, unrm, uptsRot, unrmRot;
volume0.raycast(poses[0].matrix, upts, unrm);
volumeRot.raycast(poses[0].matrix, uptsRot, unrmRot);
Mat mpts = upts.getMat(ACCESS_READ), mnrm = unrm.getMat(ACCESS_READ);
Mat mptsRot = uptsRot.getMat(ACCESS_READ), mnrmRot = unrmRot.getMat(ACCESS_READ);
if (cvtest::debugLevel > 0)
{
displayImage(depth, mpts, mnrm, depthFactor, lightPose);
displayImage(depth, mptsRot, mnrmRot, depthFactor, lightPose);
}
std::vector<Mat> ptsCh(3), ptsRotCh(3);
split(mpts, ptsCh);
split(uptsRot, ptsRotCh);
Mat maskPts0 = ptsCh[2] > 0;
Mat maskPtsRot = ptsRotCh[2] > 0;
Mat maskNrm0, maskNrmRot;
finiteMask(mnrm, maskNrm0);
finiteMask(mnrmRot, maskNrmRot);
Mat maskPtsDiff, maskNrmDiff;
cv::bitwise_xor(maskPts0, maskPtsRot, maskPtsDiff);
cv::bitwise_xor(maskNrm0, maskNrmRot, maskNrmDiff);
double ptsDiffNorm = cv::sum(maskPtsDiff)[0]/255.0;
double nrmDiffNorm = cv::sum(maskNrmDiff)[0]/255.0;
EXPECT_LE(ptsDiffNorm, 786);
EXPECT_LE(nrmDiffNorm, 786);
double normPts = cv::norm(mpts, mptsRot, NORM_INF, (maskPts0 & maskPtsRot));
Mat absdot = normalsError(mnrm, mnrmRot);
double normNrm = cv::norm(absdot, NORM_L2, (maskNrm0 & maskNrmRot));
EXPECT_LE(normPts, 2.0);
EXPECT_LE(normNrm, 73.08);
}
///////// Parametrized tests
enum PlatformType
{
CPU = 0, GPU = 1
};
CV_ENUM(PlatformTypeEnum, PlatformType::CPU, PlatformType::GPU);
// used to store current OpenCL status (on/off) and revert it after test is done
// works even after exceptions thrown in test body
struct OpenCLStatusRevert
{
#ifdef HAVE_OPENCL
OpenCLStatusRevert()
{
originalOpenCLStatus = cv::ocl::useOpenCL();
}
~OpenCLStatusRevert()
{
cv::ocl::setUseOpenCL(originalOpenCLStatus);
}
void off()
{
cv::ocl::setUseOpenCL(false);
}
bool originalOpenCLStatus;
#else
void off() { }
#endif
};
// CV_ENUM does not support enum class types, so let's implement the class explicitly
namespace
{
struct VolumeTypeEnum
{
static const std::array<VolumeType, 3> vals;
static const std::array<std::string, 3> svals;
VolumeTypeEnum(VolumeType v = VolumeType::TSDF) : val(v) {}
operator VolumeType() const { return val; }
void PrintTo(std::ostream *os) const
{
int v = int(val);
if (v >= 0 && v < 3)
{
*os << svals[v];
}
else
{
*os << "UNKNOWN";
}
}
static ::testing::internal::ParamGenerator<VolumeTypeEnum> all()
{
return ::testing::Values(VolumeTypeEnum(vals[0]), VolumeTypeEnum(vals[1]), VolumeTypeEnum(vals[2]));
}
private:
VolumeType val;
};
const std::array<VolumeType, 3> VolumeTypeEnum::vals{VolumeType::TSDF, VolumeType::HashTSDF, VolumeType::ColorTSDF};
const std::array<std::string, 3> VolumeTypeEnum::svals{std::string("TSDF"), std::string("HashTSDF"), std::string("ColorTSDF")};
static inline void PrintTo(const VolumeTypeEnum &t, std::ostream *os) { t.PrintTo(os); }
struct VolumeTestSrcTypeEnum
{
static const std::array<VolumeTestSrcType, 2> vals;
static const std::array<std::string, 2> svals;
VolumeTestSrcTypeEnum(VolumeTestSrcType v = VolumeTestSrcType::MAT) : val(v) {}
operator VolumeTestSrcType() const { return val; }
void PrintTo(std::ostream *os) const
{
int v = int(val);
if (v >= 0 && v < 3)
{
*os << svals[v];
}
else
{
*os << "UNKNOWN";
}
}
static ::testing::internal::ParamGenerator<VolumeTestSrcTypeEnum> all()
{
return ::testing::Values(VolumeTestSrcTypeEnum(vals[0]), VolumeTestSrcTypeEnum(vals[1]));
}
private:
VolumeTestSrcType val;
};
const std::array<VolumeTestSrcType, 2> VolumeTestSrcTypeEnum::vals{VolumeTestSrcType::MAT, VolumeTestSrcType::ODOMETRY_FRAME};
const std::array<std::string, 2> VolumeTestSrcTypeEnum::svals{std::string("UMat"), std::string("OdometryFrame")};
static inline void PrintTo(const VolumeTestSrcTypeEnum &t, std::ostream *os) { t.PrintTo(os); }
struct FrameSizeTypeEnum
{
static const std::array<FrameSizeType, 2> vals;
static const std::array<std::string, 2> svals;
FrameSizeTypeEnum(FrameSizeType v = FrameSizeType::DEFAULT) : val(v) {}
operator FrameSizeType() const { return val; }
void PrintTo(std::ostream *os) const
{
int v = int(val);
if (v >= 0 && v < 3)
{
*os << svals[v];
}
else
{
*os << "UNKNOWN";
}
}
static ::testing::internal::ParamGenerator<FrameSizeTypeEnum> all()
{
return ::testing::Values(FrameSizeTypeEnum(vals[0]), FrameSizeTypeEnum(vals[1]));
}
private:
FrameSizeType val;
};
const std::array<FrameSizeType, 2> FrameSizeTypeEnum::vals{FrameSizeType::DEFAULT, FrameSizeType::CUSTOM};
const std::array<std::string, 2> FrameSizeTypeEnum::svals{std::string("DefaultSize"), std::string("CustomSize")};
static inline void PrintTo(const FrameSizeTypeEnum &t, std::ostream *os) { t.PrintTo(os); }
}
typedef std::tuple<PlatformTypeEnum, VolumeTypeEnum> PlatformVolumeType;
struct VolumeTestFixture : public ::testing::TestWithParam<std::tuple<PlatformVolumeType, VolumeTestSrcTypeEnum, FrameSizeTypeEnum>>
{
protected:
void SetUp() override
{
auto p = GetParam();
gpu = (std::get<0>(std::get<0>(p)) == PlatformType::GPU);
volumeType = std::get<1>(std::get<0>(p));
testSrcType = std::get<1>(p);
frameSizeSpecified = std::get<2>(p);
if (!gpu)
oclStatus.off();
vs = makePtr<VolumeSettings>(volumeType);
volume = makePtr<Volume>(volumeType, *vs);
frameSize = Size(vs->getRaycastWidth(), vs->getRaycastHeight());
vs->getCameraIntegrateIntrinsics(intrIntegrate);
vs->getCameraRaycastIntrinsics(intrRaycast);
bool onlySemisphere = true; //TODO: check both
depthFactor = vs->getDepthFactor();
lightPose = Vec3f::all(0.f);
scene = Scene::create(frameSize, intrIntegrate, depthFactor, onlySemisphere);
poses = scene->getPoses();
depth = scene->depth(poses[0]);
rgb = scene->rgb(poses[0]);
UMat udepth, urgb;
depth.copyTo(udepth);
rgb.copyTo(urgb);
OdometryFrame odf(udepth, urgb);
if (testSrcType == VolumeTestSrcType::MAT)
{
if (volumeType == VolumeType::ColorTSDF)
volume->integrate(udepth, urgb, poses[0].matrix);
else
volume->integrate(udepth, poses[0].matrix);
}
else if (testSrcType == VolumeTestSrcType::ODOMETRY_FRAME)
{
volume->integrate(odf, poses[0].matrix);
}
}
void saveObj(std::string funcName, Mat points, Mat normals);
void raycast_test();
void fetch_points_normals_test();
void fetch_normals_test();
void valid_points_test();
bool gpu;
VolumeType volumeType;
VolumeTestSrcType testSrcType;
FrameSizeType frameSizeSpecified;
OpenCLStatusRevert oclStatus;
Ptr<Volume> volume;
Ptr<VolumeSettings> vs;
Size frameSize;
Matx33f intrIntegrate, intrRaycast;
Ptr<Scene> scene;
std::vector<Affine3f> poses;
float depthFactor;
Vec3f lightPose;
Mat depth, rgb;
};
void VolumeTestFixture::saveObj(std::string funcName, Mat points, Mat normals)
{
Mat pts3, nrm3;
cvtColor(points, pts3, COLOR_RGBA2RGB);
cvtColor(normals, nrm3, COLOR_RGBA2RGB);
string platformString = gpu ? "GPU" : "CPU";
string volumeTypeString = volumeType == VolumeType::TSDF ? "TSDF" :
volumeType == VolumeType::HashTSDF ? "HashTSDF" :
volumeType == VolumeType::ColorTSDF ? "ColorTSDF" : "";
string testSrcTypeString = testSrcType == VolumeTestSrcType::MAT ? "MAT" :
testSrcType == VolumeTestSrcType::ODOMETRY_FRAME ? "OFRAME" : "";
string frameSizeSpecifiedString = frameSizeSpecified == FrameSizeType::DEFAULT ? "DefaultSize" :
frameSizeSpecified == FrameSizeType::CUSTOM ? "CustomSize" : "";
savePointCloud(cv::format("pts_%s_%s_%s_%s_%s.obj", funcName.c_str(), platformString.c_str(), volumeTypeString.c_str(),
testSrcTypeString.c_str(), frameSizeSpecifiedString.c_str()),
pts3.reshape(3, 1), nrm3.reshape(3, 1));
}
void VolumeTestFixture::raycast_test()
{
UMat upoints, unormals, ucolors;
if (frameSizeSpecified == FrameSizeType::CUSTOM)
{
if (volumeType == VolumeType::ColorTSDF)
volume->raycast(poses[0].matrix, frameSize.height, frameSize.width, intrRaycast, upoints, unormals, ucolors);
else
volume->raycast(poses[0].matrix, frameSize.height, frameSize.width, intrRaycast, upoints, unormals);
}
else if (frameSizeSpecified == FrameSizeType::DEFAULT)
{
if (volumeType == VolumeType::ColorTSDF)
volume->raycast(poses[0].matrix, upoints, unormals, ucolors);
else
volume->raycast(poses[0].matrix, upoints, unormals);
}
Mat points, normals, colors;
points = upoints.getMat(ACCESS_READ);
normals = unormals.getMat(ACCESS_READ);
colors = ucolors.getMat(ACCESS_READ);
if (cvtest::debugLevel > 0)
{
if (volumeType == VolumeType::ColorTSDF)
displayColorImage(depth, rgb, points, normals, colors, depthFactor, lightPose);
else
displayImage(depth, points, normals, depthFactor, lightPose);
saveObj("raycast", points, normals);
}
normalsCheck(normals);
}
void VolumeTestFixture::fetch_normals_test()
{
UMat upoints, unormals;
volume->fetchPointsNormals(upoints, noArray());
volume->fetchNormals(upoints, unormals);
Mat points, normals;
points = upoints.getMat(ACCESS_READ);
normals = unormals.getMat(ACCESS_READ);
if (cvtest::debugLevel > 0)
{
saveObj("fetch_normals", points, normals);
}
normalsCheck(normals);
}
void VolumeTestFixture::fetch_points_normals_test()
{
UMat upoints, unormals;
volume->fetchPointsNormals(upoints, unormals);
Mat points, normals;
points = upoints.getMat(ACCESS_READ);
normals = unormals.getMat(ACCESS_READ);
if (cvtest::debugLevel > 0)
{
saveObj("fetch_points_normals", points, normals);
}
normalsCheck(normals);
}
void VolumeTestFixture::valid_points_test()
{
UMat upoints, unormals, ucolors;
if (frameSizeSpecified == FrameSizeType::CUSTOM)
{
if (volumeType == VolumeType::ColorTSDF)
volume->raycast(poses[0].matrix, frameSize.height, frameSize.width, intrRaycast, upoints, unormals, ucolors);
else
volume->raycast(poses[0].matrix, frameSize.height, frameSize.width, intrRaycast, upoints, unormals);
}
else if (frameSizeSpecified == FrameSizeType::DEFAULT)
{
if (volumeType == VolumeType::ColorTSDF)
volume->raycast(poses[0].matrix, upoints, unormals, ucolors);
else
volume->raycast(poses[0].matrix, upoints, unormals);
}
Mat points, normals, colors;
points = upoints.getMat(ACCESS_READ);
normals = unormals.getMat(ACCESS_READ);
colors = ucolors.getMat(ACCESS_READ);
patchNaNs(points);
int enface = counterOfValid(points);
if (cvtest::debugLevel > 0)
{
if (volumeType == VolumeType::ColorTSDF)
displayColorImage(depth, rgb, points, normals, colors, depthFactor, lightPose);
else
displayImage(depth, points, normals, depthFactor, lightPose);
}
UMat upoints2, unormals2, ucolors2;
Mat points2, normals2, colors2;
if (frameSizeSpecified == FrameSizeType::CUSTOM)
{
if (volumeType == VolumeType::ColorTSDF)
volume->raycast(poses[17].matrix, frameSize.height, frameSize.width, intrRaycast, upoints2, unormals2, ucolors2);
else
volume->raycast(poses[17].matrix, frameSize.height, frameSize.width, intrRaycast, upoints2, unormals2);
}
else
{
if (volumeType == VolumeType::ColorTSDF)
volume->raycast(poses[17].matrix, upoints2, unormals2, ucolors2);
else
volume->raycast(poses[17].matrix, upoints2, unormals2);
}
points2 = upoints2.getMat(ACCESS_READ);
normals2 = unormals2.getMat(ACCESS_READ);
colors2 = ucolors2.getMat(ACCESS_READ);
patchNaNs(points2);
int profile = counterOfValid(points2);
if (cvtest::debugLevel > 0)
{
if (volumeType == VolumeType::ColorTSDF)
displayColorImage(depth, rgb, points2, normals2, colors2, depthFactor, lightPose);
else
displayImage(depth, points2, normals2, depthFactor, lightPose);
}
ASSERT_GT(profile, 0) << "There are no points in profile";
ASSERT_GT(enface, 0) << "There are no points in enface";
// TODO: why profile == 2*enface ?
float percentValidity = float(enface) / float(profile) * 100;
ASSERT_NEAR(percentValidity, 50, 6);
}
TEST_P(VolumeTestFixture, valid_points)
{
valid_points_test();
}
TEST_P(VolumeTestFixture, raycast_normals)
{
raycast_test();
}
//TODO: this test should run just 1 time, not 4
TEST_P(VolumeTestFixture, fetch_points_normals)
{
fetch_points_normals_test();
}
//TODO: this test should run just 1 time, not 4
TEST_P(VolumeTestFixture, fetch_normals)
{
fetch_normals_test();
}
//TODO: fix it when ColorTSDF gets GPU version
INSTANTIATE_TEST_CASE_P(Volume, VolumeTestFixture, /*::testing::Combine(PlatformTypeEnum::all(), VolumeTypeEnum::all())*/
::testing::Combine(
::testing::Values(PlatformVolumeType {PlatformType::CPU, VolumeType::TSDF},
PlatformVolumeType {PlatformType::CPU, VolumeType::HashTSDF},
PlatformVolumeType {PlatformType::CPU, VolumeType::ColorTSDF},
PlatformVolumeType {PlatformType::GPU, VolumeType::TSDF},
PlatformVolumeType {PlatformType::GPU, VolumeType::HashTSDF}),
VolumeTestSrcTypeEnum::all(), FrameSizeTypeEnum::all()));
class StaticVolumeBoundingBox : public ::testing::TestWithParam<PlatformVolumeType>
{ };
TEST_P(StaticVolumeBoundingBox, staticBoundingBox)
{
auto p = GetParam();
bool gpu = (std::get<0>(p) == PlatformType::GPU);
VolumeType volumeType = std::get<1>(p);
OpenCLStatusRevert oclStatus;
if (!gpu)
oclStatus.off();
staticBoundingBoxTest(volumeType);
}
//TODO: edit this list when ColorTSDF gets GPU support
INSTANTIATE_TEST_CASE_P(Volume, StaticVolumeBoundingBox, ::testing::Values(
PlatformVolumeType {PlatformType::CPU, VolumeType::TSDF},
PlatformVolumeType {PlatformType::CPU, VolumeType::ColorTSDF},
PlatformVolumeType {PlatformType::GPU, VolumeType::TSDF}));
class ReproduceVolPoseRotTest : public ::testing::TestWithParam<PlatformTypeEnum>
{ };
TEST_P(ReproduceVolPoseRotTest, reproduce_volPoseRot)
{
bool gpu = (GetParam() == PlatformType::GPU);
OpenCLStatusRevert oclStatus;
if (!gpu)
oclStatus.off();
regressionVolPoseRot();
}
INSTANTIATE_TEST_CASE_P(Volume, ReproduceVolPoseRotTest, PlatformTypeEnum::all());
enum Growth
{
OFF = 0, ON = 1
};
CV_ENUM(GrowthEnum, Growth::OFF, Growth::ON);
class BoundingBoxEnableGrowthTest : public ::testing::TestWithParam<std::tuple<PlatformTypeEnum, GrowthEnum>>
{ };
TEST_P(BoundingBoxEnableGrowthTest, boundingBoxEnableGrowth)
{
auto p = GetParam();
bool gpu = (std::get<0>(p) == PlatformType::GPU);
bool enableGrowth = (std::get<1>(p) == Growth::ON);
OpenCLStatusRevert oclStatus;
if (!gpu)
oclStatus.off();
boundingBoxGrowthTest(enableGrowth);
}
INSTANTIATE_TEST_CASE_P(Volume, BoundingBoxEnableGrowthTest, ::testing::Combine(PlatformTypeEnum::all(), GrowthEnum::all()));
}
} // namespace