Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

946 lines
33 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "test_precomp.hpp"
namespace opencv_test { namespace {
using namespace cv;
// that was easier than using CV_ENUM() macro
namespace
{
using namespace cv;
struct CullingModeEnum
{
static const std::array<TriangleCullingMode, 3> vals;
static const std::array<std::string, 3> svals;
CullingModeEnum(TriangleCullingMode v = RASTERIZE_CULLING_NONE) : val(v) {}
operator TriangleCullingMode() const { return val; }
void PrintTo(std::ostream *os) const
{
int v = int(val);
if (v >= 0 && v < (int)vals.size())
{
*os << svals[v];
}
else
{
*os << "UNKNOWN";
}
}
static ::testing::internal::ParamGenerator<CullingModeEnum> all()
{
return ::testing::Values(CullingModeEnum(vals[0]),
CullingModeEnum(vals[1]),
CullingModeEnum(vals[2]));
}
private:
TriangleCullingMode val;
};
const std::array<TriangleCullingMode, 3> CullingModeEnum::vals
{
RASTERIZE_CULLING_NONE,
RASTERIZE_CULLING_CW,
RASTERIZE_CULLING_CCW
};
const std::array<std::string, 3> CullingModeEnum::svals
{
std::string("None"),
std::string("CW"),
std::string("CCW")
};
static inline void PrintTo(const CullingModeEnum &t, std::ostream *os) { t.PrintTo(os); }
}
// that was easier than using CV_ENUM() macro
namespace
{
using namespace cv;
struct ShadingTypeEnum
{
static const std::array<TriangleShadingType, 3> vals;
static const std::array<std::string, 3> svals;
ShadingTypeEnum(TriangleShadingType v = RASTERIZE_SHADING_WHITE) : val(v) {}
operator TriangleShadingType() const { return val; }
void PrintTo(std::ostream *os) const
{
int v = int(val);
if (v >= 0 && v < (int)vals.size())
{
*os << svals[v];
}
else
{
*os << "UNKNOWN";
}
}
static ::testing::internal::ParamGenerator<ShadingTypeEnum> all()
{
return ::testing::Values(ShadingTypeEnum(vals[0]),
ShadingTypeEnum(vals[1]),
ShadingTypeEnum(vals[2]));
}
private:
TriangleShadingType val;
};
const std::array<TriangleShadingType, 3> ShadingTypeEnum::vals
{
RASTERIZE_SHADING_WHITE,
RASTERIZE_SHADING_FLAT,
RASTERIZE_SHADING_SHADED
};
const std::array<std::string, 3> ShadingTypeEnum::svals
{
std::string("White"),
std::string("Flat"),
std::string("Shaded")
};
static inline void PrintTo(const ShadingTypeEnum &t, std::ostream *os) { t.PrintTo(os); }
}
enum class ModelType
{
Empty = 0,
File = 1,
Clipping = 2,
Color = 3,
Centered = 4
};
// that was easier than using CV_ENUM() macro
namespace
{
using namespace cv;
struct ModelTypeEnum
{
static const std::array<ModelType, 5> vals;
static const std::array<std::string, 5> svals;
ModelTypeEnum(ModelType v = ModelType::Empty) : val(v) {}
operator ModelType() const { return val; }
void PrintTo(std::ostream *os) const
{
int v = int(val);
if (v >= 0 && v < (int)vals.size())
{
*os << svals[v];
}
else
{
*os << "UNKNOWN";
}
}
static ::testing::internal::ParamGenerator<ModelTypeEnum> all()
{
return ::testing::Values(ModelTypeEnum(vals[0]),
ModelTypeEnum(vals[1]),
ModelTypeEnum(vals[2]),
ModelTypeEnum(vals[3]),
ModelTypeEnum(vals[4]));
}
private:
ModelType val;
};
const std::array<ModelType, 5> ModelTypeEnum::vals
{
ModelType::Empty,
ModelType::File,
ModelType::Clipping,
ModelType::Color,
ModelType::Centered
};
const std::array<std::string, 5> ModelTypeEnum::svals
{
std::string("Empty"),
std::string("File"),
std::string("Clipping"),
std::string("Color"),
std::string("Centered")
};
static inline void PrintTo(const ModelTypeEnum &t, std::ostream *os) { t.PrintTo(os); }
}
template<typename T>
std::string printEnum(T v)
{
std::ostringstream ss;
v.PrintTo(&ss);
return ss.str();
}
static Matx44d lookAtMatrixCal(const Vec3d& position, const Vec3d& lookat, const Vec3d& upVector)
{
Vec3d w = cv::normalize(position - lookat);
Vec3d u = cv::normalize(upVector.cross(w));
Vec3d v = w.cross(u);
Matx44d res(u[0], u[1], u[2], 0,
v[0], v[1], v[2], 0,
w[0], w[1], w[2], 0,
0, 0, 0, 1.0);
Matx44d translate(1.0, 0, 0, -position[0],
0, 1.0, 0, -position[1],
0, 0, 1.0, -position[2],
0, 0, 0, 1.0);
res = res * translate;
return res;
}
static void generateNormals(const std::vector<Vec3f>& points, const std::vector<std::vector<int>>& indices,
std::vector<Vec3f>& normals)
{
std::vector<std::vector<Vec3f>> preNormals(points.size(), std::vector<Vec3f>());
for (const auto& tri : indices)
{
Vec3f p0 = points[tri[0]];
Vec3f p1 = points[tri[1]];
Vec3f p2 = points[tri[2]];
Vec3f cross = cv::normalize((p1 - p0).cross(p2 - p0));
for (int i = 0; i < 3; i++)
{
preNormals[tri[i]].push_back(cross);
}
}
normals.reserve(points.size());
for (const auto& pn : preNormals)
{
Vec3f sum { };
for (const auto& n : pn)
{
sum += n;
}
normals.push_back(cv::normalize(sum));
}
}
// load model once and keep it in static memory
static void getModelOnce(const std::string& objectPath, std::vector<Vec3f>& vertices,
std::vector<Vec3i>& indices, std::vector<Vec3f>& colors)
{
static bool load = false;
static std::vector<Vec3f> vert, col;
static std::vector<Vec3i> ind;
if (!load)
{
std::vector<vector<int>> indvec;
// using per-vertex normals as colors
loadMesh(objectPath, vert, indvec);
generateNormals(vert, indvec, col);
for (const auto &vec : indvec)
{
ind.push_back({vec[0], vec[1], vec[2]});
}
for (auto &color : col)
{
color = Vec3f(abs(color[0]), abs(color[1]), abs(color[2]));
}
load = true;
}
vertices = vert;
colors = col;
indices = ind;
}
class ModelData
{
public:
ModelData(ModelType type = ModelType::Empty)
{
switch (type)
{
case ModelType::Empty:
{
position = Vec3d(0.0, 0.0, 0.0);
lookat = Vec3d(0.0, 0.0, 0.0);
upVector = Vec3d(0.0, 1.0, 0.0);
fovy = 45.0;
vertices = std::vector<Vec3f>(4, {2.0f, 0, -2.0f});
colors = std::vector<Vec3f>(4, {0, 0, 1.0f});
indices = { };
}
break;
case ModelType::File:
{
string objectPath = findDataFile("viz/dragon.ply");
position = Vec3d( 1.9, 0.4, 1.3);
lookat = Vec3d( 0.0, 0.0, 0.0);
upVector = Vec3d( 0.0, 1.0, 0.0);
fovy = 45.0;
getModelOnce(objectPath, vertices, indices, colors);
}
break;
case ModelType::Clipping:
{
position = Vec3d(0.0, 0.0, 5.0);
lookat = Vec3d(0.0, 0.0, 0.0);
upVector = Vec3d(0.0, 1.0, 0.0);
fovy = 45.0;
vertices =
{
{ 2.0, 0.0, -2.0}, { 0.0, -6.0, -2.0}, {-2.0, 0.0, -2.0},
{ 3.5, -1.0, -5.0}, { 2.5, -2.5, -5.0}, {-1.0, 1.0, -5.0},
{-6.5, -1.0, -3.0}, {-2.5, -2.0, -3.0}, { 1.0, 1.0, -5.0},
};
indices = { {0, 1, 2}, {3, 4, 5}, {6, 7, 8} };
Vec3f col1(217.0, 238.0, 185.0);
Vec3f col2(185.0, 217.0, 238.0);
Vec3f col3(150.0, 10.0, 238.0);
col1 *= (1.f / 255.f);
col2 *= (1.f / 255.f);
col3 *= (1.f / 255.f);
colors =
{
col1, col2, col3,
col2, col3, col1,
col3, col1, col2,
};
}
break;
case ModelType::Centered:
{
position = Vec3d(0.0, 0.0, 5.0);
lookat = Vec3d(0.0, 0.0, 0.0);
upVector = Vec3d(0.0, 1.0, 0.0);
fovy = 45.0;
vertices =
{
{ 2.0, 0.0, -2.0}, { 0.0, -2.0, -2.0}, {-2.0, 0.0, -2.0},
{ 3.5, -1.0, -5.0}, { 2.5, -1.5, -5.0}, {-1.0, 0.5, -5.0},
};
indices = { {0, 1, 2}, {3, 4, 5} };
Vec3f col1(217.0, 238.0, 185.0);
Vec3f col2(185.0, 217.0, 238.0);
col1 *= (1.f / 255.f);
col2 *= (1.f / 255.f);
colors =
{
col1, col2, col1,
col2, col1, col2,
};
}
break;
case ModelType::Color:
{
position = Vec3d(0.0, 0.0, 5.0);
lookat = Vec3d(0.0, 0.0, 0.0);
upVector = Vec3d(0.0, 1.0, 0.0);
fovy = 60.0;
vertices =
{
{ 2.0, 0.0, -2.0},
{ 0.0, 2.0, -3.0},
{-2.0, 0.0, -2.0},
{ 0.0, -2.0, 1.0},
};
indices = { {0, 1, 2}, {0, 2, 3} };
colors =
{
{ 0.0f, 0.0f, 1.0f},
{ 0.0f, 1.0f, 0.0f},
{ 1.0f, 0.0f, 0.0f},
{ 0.0f, 1.0f, 0.0f},
};
}
break;
default:
CV_Error(Error::StsBadArg, "Unknown model type");
break;
}
}
Vec3d position;
Vec3d lookat;
Vec3d upVector;
double fovy;
std::vector<Vec3f> vertices;
std::vector<Vec3i> indices;
std::vector<Vec3f> colors;
};
void compareDepth(const cv::Mat& gt, const cv::Mat& mat, cv::Mat& diff, double zFar, double scale,
double maskThreshold, double normInfThreshold, double normL2Threshold)
{
ASSERT_EQ(CV_16UC1, gt.type());
ASSERT_EQ(CV_16UC1, mat.type());
ASSERT_EQ(gt.size(), mat.size());
Mat gtMask = gt < zFar*scale;
Mat matMask = mat < zFar*scale;
Mat diffMask = gtMask != matMask;
int nzDepthDiff = cv::countNonZero(diffMask);
EXPECT_LE(nzDepthDiff, maskThreshold);
Mat jointMask = gtMask & matMask;
int nzJointMask = cv::countNonZero(jointMask);
double normInfDepth = cv::norm(gt, mat, cv::NORM_INF, jointMask);
EXPECT_LE(normInfDepth, normInfThreshold);
double normL2Depth = nzJointMask ? (cv::norm(gt, mat, cv::NORM_L2, jointMask) / nzJointMask) : 0;
EXPECT_LE(normL2Depth, normL2Threshold);
// add --test_debug to output differences
if (debugLevel > 0)
{
std::cout << "nzDepthDiff: " << nzDepthDiff << " vs " << maskThreshold << std::endl;
std::cout << "normInfDepth: " << normInfDepth << " vs " << normInfThreshold << std::endl;
std::cout << "normL2Depth: " << normL2Depth << " vs " << normL2Threshold << std::endl;
}
diff = (gt - mat) + (1 << 15);
}
void compareRGB(const cv::Mat& gt, const cv::Mat& mat, cv::Mat& diff, double normInfThreshold, double normL2Threshold)
{
ASSERT_EQ(CV_32FC3, gt.type());
ASSERT_EQ(CV_32FC3, mat.type());
ASSERT_EQ(gt.size(), mat.size());
double normInfRgb = cv::norm(gt, mat, cv::NORM_INF);
EXPECT_LE(normInfRgb, normInfThreshold);
double normL2Rgb = cv::norm(gt, mat, cv::NORM_L2) / gt.total();
EXPECT_LE(normL2Rgb, normL2Threshold);
// add --test_debug to output differences
if (debugLevel > 0)
{
std::cout << "normInfRgb: " << normInfRgb << " vs " << normInfThreshold << std::endl;
std::cout << "normL2Rgb: " << normL2Rgb << " vs " << normL2Threshold << std::endl;
}
diff = (gt - mat) * 0.5 + 0.5;
}
struct RenderTestThresholds
{
RenderTestThresholds(
double _rgbInfThreshold,
double _rgbL2Threshold,
double _depthMaskThreshold,
double _depthInfThreshold,
double _depthL2Threshold) :
rgbInfThreshold(_rgbInfThreshold),
rgbL2Threshold(_rgbL2Threshold),
depthMaskThreshold(_depthMaskThreshold),
depthInfThreshold(_depthInfThreshold),
depthL2Threshold(_depthL2Threshold)
{ }
double rgbInfThreshold;
double rgbL2Threshold;
double depthMaskThreshold;
double depthInfThreshold;
double depthL2Threshold;
};
// resolution, shading type, culling mode, model type, float type, index type
typedef std::tuple<std::tuple<int, int>, ShadingTypeEnum, CullingModeEnum, ModelTypeEnum, MatDepth, MatDepth> RenderTestParamType;
class RenderingTest : public ::testing::TestWithParam<RenderTestParamType>
{
protected:
void SetUp() override
{
params = GetParam();
auto wh = std::get<0>(params);
width = std::get<0>(wh);
height = std::get<1>(wh);
shadingType = std::get<1>(params);
cullingMode = std::get<2>(params);
modelType = std::get<3>(params);
modelData = ModelData(modelType);
ftype = std::get<4>(params);
itype = std::get<5>(params);
zNear = 0.1, zFar = 50.0;
depthScale = 1000.0;
depth_buf = Mat(height, width, ftype, zFar);
color_buf = Mat(height, width, CV_MAKETYPE(ftype, 3), Scalar::all(0));
cameraPose = lookAtMatrixCal(modelData.position, modelData.lookat, modelData.upVector);
fovYradians = modelData.fovy * (CV_PI / 180.0);
verts = Mat(modelData.vertices);
verts.convertTo(verts, ftype);
if (shadingType != RASTERIZE_SHADING_WHITE)
{
// let vertices be in BGR format to avoid later color conversions
// mixChannels() does not support in-place operation
colors = Mat(modelData.colors);
colors.convertTo(colors, ftype);
cv::mixChannels(colors.clone(), colors, {0, 2, 1, 1, 2, 0});
}
indices = Mat(modelData.indices);
if (itype != CV_32S)
{
indices.convertTo(indices, itype);
}
settings = TriangleRasterizeSettings().setCullingMode(cullingMode).setShadingType(shadingType);
triangleRasterize(verts, indices, colors, color_buf, depth_buf,
cameraPose, fovYradians, zNear, zFar, settings);
}
public:
RenderTestParamType params;
int width, height;
double zNear, zFar, depthScale;
Mat depth_buf, color_buf;
Mat verts, colors, indices;
Matx44d cameraPose;
double fovYradians;
TriangleRasterizeSettings settings;
ModelData modelData;
ModelTypeEnum modelType;
ShadingTypeEnum shadingType;
CullingModeEnum cullingMode;
int ftype, itype;
};
// depth-only or RGB-only rendering should produce the same result as usual rendering
TEST_P(RenderingTest, noArrays)
{
Mat depthOnly(height, width, ftype, zFar);
Mat colorOnly(height, width, CV_MAKETYPE(ftype, 3), Scalar::all(0));
triangleRasterizeDepth(verts, indices, depthOnly, cameraPose, fovYradians, zNear, zFar, settings);
triangleRasterizeColor(verts, indices, colors, colorOnly, cameraPose, fovYradians, zNear, zFar, settings);
Mat rgbDiff, depthDiff;
compareRGB(color_buf, colorOnly, rgbDiff, 0, 0);
depth_buf.convertTo(depth_buf, CV_16U, depthScale);
depthOnly.convertTo(depthOnly, CV_16U, depthScale);
compareDepth(depth_buf, depthOnly, depthDiff, zFar, depthScale, 0, 0, 0);
// add --test_debug to output resulting images
if (debugLevel > 0)
{
std::string modelName = printEnum(modelType);
std::string shadingName = printEnum(shadingType);
std::string cullingName = printEnum(cullingMode);
std::string suffix = cv::format("%s_%dx%d_Cull%s", modelName.c_str(), width, height, cullingName.c_str());
std::string outColorPath = "noarray_color_image_" + suffix + "_" + shadingName + ".png";
std::string outDepthPath = "noarray_depth_image_" + suffix + "_" + shadingName + ".png";
imwrite(outColorPath, color_buf * 255.f);
imwrite(outDepthPath, depth_buf);
imwrite("diff_" + outColorPath, rgbDiff * 255.f);
imwrite("diff_" + outDepthPath, depthDiff);
}
}
// passing the same parameters in float should give the same result
TEST_P(RenderingTest, floatParams)
{
Mat depth_buf2(height, width, ftype, zFar);
Mat color_buf2(height, width, CV_MAKETYPE(ftype, 3), Scalar::all(0));
// cameraPose can also be float, checking it
triangleRasterize(verts, indices, colors, color_buf2, depth_buf2,
Matx44f(cameraPose), (float)fovYradians, (float)zNear, (float)zFar, settings);
RenderTestThresholds thr(0, 0, 0, 0, 0);
switch (modelType)
{
case ModelType::Empty: break;
case ModelType::Color: break;
case ModelType::Clipping:
if (width == 320 && height == 240 && shadingType == RASTERIZE_SHADING_FLAT && cullingMode == RASTERIZE_CULLING_CW)
{
thr.depthInfThreshold = 1;
thr.depthL2Threshold = 0.00127;
}
else if (width == 320 && height == 240 && shadingType == RASTERIZE_SHADING_SHADED && cullingMode == RASTERIZE_CULLING_NONE)
{
thr.rgbInfThreshold = 3e-7;
thr.rgbL2Threshold = 1.86e-10;
thr.depthInfThreshold = 1;
thr.depthL2Threshold = 0.000406;
}
else if (width == 256 && height == 256 && shadingType == RASTERIZE_SHADING_SHADED && cullingMode == RASTERIZE_CULLING_CW)
{
thr.rgbInfThreshold = 2.39e-07;
thr.rgbL2Threshold = 1.86e-10;
thr.depthInfThreshold = 1;
thr.depthL2Threshold = 0.0016;
}
else if (width == 256 && height == 256 && shadingType == RASTERIZE_SHADING_FLAT && cullingMode == RASTERIZE_CULLING_CCW)
{
thr.rgbInfThreshold = 0.934;
thr.rgbL2Threshold = 0.000102;
thr.depthMaskThreshold = 21;
}
else if (width == 640 && height == 480 && shadingType == RASTERIZE_SHADING_WHITE && cullingMode == RASTERIZE_CULLING_NONE)
{
thr.rgbL2Threshold = 1;
thr.depthInfThreshold = 1;
thr.depthL2Threshold = 0.000248;
}
else if (width == 700 && height == 700 && shadingType == RASTERIZE_SHADING_FLAT && cullingMode == RASTERIZE_CULLING_CCW)
{
thr.rgbInfThreshold = 0.934;
thr.rgbL2Threshold = 3.18e-5;
thr.depthMaskThreshold = 114;
}
break;
case ModelType::File:
thr.depthInfThreshold = 1;
if (width == 320 && height == 240 && shadingType == RASTERIZE_SHADING_SHADED && cullingMode == RASTERIZE_CULLING_CCW)
{
thr.rgbInfThreshold = 0.000229;
thr.rgbL2Threshold = 6.37e-09;
thr.depthL2Threshold = 0.000427;
}
else if (width == 700 && height == 700 && shadingType == RASTERIZE_SHADING_SHADED && cullingMode == RASTERIZE_CULLING_CW)
{
thr.rgbInfThreshold = 0.000277;
thr.rgbL2Threshold = 1.8e-09;
thr.depthL2Threshold = 0.000124;
}
else if (width == 700 && height == 700 && shadingType == RASTERIZE_SHADING_WHITE && cullingMode == RASTERIZE_CULLING_NONE)
{
thr.depthL2Threshold = 0.000124;
}
break;
case ModelType::Centered:
if (shadingType == RASTERIZE_SHADING_SHADED && cullingMode != RASTERIZE_CULLING_CW)
{
thr.rgbInfThreshold = 3.58e-07;
thr.rgbL2Threshold = 1.51e-10;
}
break;
}
Mat rgbDiff, depthDiff;
compareRGB(color_buf, color_buf2, rgbDiff, thr.rgbInfThreshold, thr.rgbL2Threshold);
depth_buf.convertTo(depth_buf, CV_16U, depthScale);
depth_buf2.convertTo(depth_buf2, CV_16U, depthScale);
compareDepth(depth_buf, depth_buf2, depthDiff, zFar, depthScale, thr.depthMaskThreshold, thr.depthInfThreshold, thr.depthL2Threshold);
// add --test_debug to output resulting images
if (debugLevel > 0)
{
std::string modelName = printEnum(modelType);
std::string shadingName = printEnum(shadingType);
std::string cullingName = printEnum(cullingMode);
std::string suffix = cv::format("%s_%dx%d_Cull%s", modelName.c_str(), width, height, cullingName.c_str());
std::string outColorPath = "float_color_image_" + suffix + "_" + shadingName + ".png";
std::string outDepthPath = "float_depth_image_" + suffix + "_" + shadingName + ".png";
imwrite(outColorPath, color_buf * 255.f);
imwrite(outDepthPath, depth_buf);
imwrite("diff_" + outColorPath, rgbDiff * 255.f);
imwrite("diff_" + outDepthPath, depthDiff);
}
}
// some culling options produce the same pictures, let's join them
TriangleCullingMode findSameCulling(ModelType modelType, TriangleShadingType shadingType, TriangleCullingMode cullingMode, bool forRgb)
{
TriangleCullingMode sameCullingMode = cullingMode;
if ((modelType == ModelType::Centered && cullingMode == RASTERIZE_CULLING_CCW) ||
(modelType == ModelType::Color && cullingMode == RASTERIZE_CULLING_CW) ||
(modelType == ModelType::File && shadingType == RASTERIZE_SHADING_WHITE && forRgb) ||
(modelType == ModelType::File && cullingMode == RASTERIZE_CULLING_CW))
{
sameCullingMode = RASTERIZE_CULLING_NONE;
}
return sameCullingMode;
}
// compare rendering results to the ones produced by samples/opengl/opengl_testdata_generator app
TEST_P(RenderingTest, accuracy)
{
depth_buf.convertTo(depth_buf, CV_16U, depthScale);
if (modelType == ModelType::Empty ||
(modelType == ModelType::Centered && cullingMode == RASTERIZE_CULLING_CW) ||
(modelType == ModelType::Color && cullingMode == RASTERIZE_CULLING_CCW))
{
// empty image case
EXPECT_EQ(0, cv::norm(color_buf, NORM_INF));
Mat depthDiff;
absdiff(depth_buf, Scalar(zFar * depthScale), depthDiff);
EXPECT_EQ(0, cv::norm(depthDiff, cv::NORM_INF));
}
else
{
RenderTestThresholds thr(0, 0, 0, 0, 0);
switch (modelType)
{
case ModelType::Centered:
if (shadingType == RASTERIZE_SHADING_SHADED)
{
thr.rgbInfThreshold = 0.00218;
thr.rgbL2Threshold = 2.85e-06;
}
break;
case ModelType::Clipping:
if (width == 320 && height == 240 && shadingType == RASTERIZE_SHADING_FLAT && cullingMode == RASTERIZE_CULLING_CW)
{
thr.depthInfThreshold = 1;
thr.depthL2Threshold = 0.00163;
}
else if (width == 320 && height == 240 && shadingType == RASTERIZE_SHADING_SHADED && cullingMode == RASTERIZE_CULLING_NONE)
{
thr.rgbInfThreshold = 0.934;
thr.rgbL2Threshold = 8.03E-05;
thr.depthMaskThreshold = 23;
thr.depthInfThreshold = 1;
thr.depthL2Threshold = 0.000555;
}
else if (width == 256 && height == 256 && shadingType == RASTERIZE_SHADING_SHADED && cullingMode == RASTERIZE_CULLING_CW)
{
thr.rgbInfThreshold = 0.0022;
thr.rgbL2Threshold = 2.54E-06;
thr.depthInfThreshold = 1;
thr.depthL2Threshold = 0.00175;
}
else if (width == 256 && height == 256 && shadingType == RASTERIZE_SHADING_FLAT && cullingMode == RASTERIZE_CULLING_CCW)
{
thr.rgbInfThreshold = 0.934;
thr.rgbL2Threshold = 0.000102;
thr.depthMaskThreshold = 21;
}
else if (width == 640 && height == 480 && shadingType == RASTERIZE_SHADING_WHITE && cullingMode == RASTERIZE_CULLING_NONE)
{
thr.rgbInfThreshold = 1;
thr.rgbL2Threshold = 3.95E-05;
thr.depthMaskThreshold = 49;
thr.depthInfThreshold = 1;
thr.depthL2Threshold = 0.000269;
}
else if (width == 700 && height == 700 && shadingType == RASTERIZE_SHADING_FLAT && cullingMode == RASTERIZE_CULLING_CCW)
{
thr.rgbInfThreshold = 0.934;
thr.rgbL2Threshold = 3.27e-5;
thr.depthMaskThreshold = 121;
}
break;
case ModelType::Color:
thr.depthInfThreshold = 1;
if (width == 320 && height == 240)
{
thr.depthL2Threshold = 0.00103;
}
else if (width == 256 && height == 256)
{
thr.depthL2Threshold = 0.000785;
}
if (shadingType == RASTERIZE_SHADING_SHADED)
{
thr.rgbInfThreshold = 0.0022;
thr.rgbL2Threshold = 3.13e-06;
}
break;
case ModelType::File:
if (width == 320 && height == 240 && shadingType == RASTERIZE_SHADING_SHADED && cullingMode == RASTERIZE_CULLING_CCW)
{
thr.rgbInfThreshold = 0.836;
thr.rgbL2Threshold = 2.08e-05;
thr.depthMaskThreshold = 1;
thr.depthInfThreshold = 99;
thr.depthL2Threshold = 0.00544;
}
else if (width == 700 && height == 700 && shadingType == RASTERIZE_SHADING_SHADED && cullingMode == RASTERIZE_CULLING_CW)
{
thr.rgbInfThreshold = 0.973;
thr.rgbL2Threshold = 5.2e-06;
thr.depthMaskThreshold = 4;
thr.depthInfThreshold = 258;
thr.depthL2Threshold = 0.00228;
}
else if (width == 700 && height == 700 && shadingType == RASTERIZE_SHADING_WHITE && cullingMode == RASTERIZE_CULLING_NONE)
{
thr.rgbInfThreshold = 1;
thr.rgbL2Threshold = 7.07e-06;
thr.depthMaskThreshold = 4;
thr.depthInfThreshold = 258;
thr.depthL2Threshold = 0.00228;
}
break;
default:
break;
}
CullingModeEnum cullingModeRgb = findSameCulling(modelType, shadingType, cullingMode, true);
CullingModeEnum cullingModeDepth = findSameCulling(modelType, shadingType, cullingMode, false);
std::string modelName = printEnum(modelType);
std::string shadingName = printEnum(shadingType);
std::string cullingName = printEnum(cullingMode);
std::string cullingRgbName = printEnum(cullingModeRgb);
std::string cullingDepthName = printEnum(cullingModeDepth);
std::string path = findDataDirectory("rendering");
std::string suffix = cv::format("%s_%dx%d_Cull%s", modelName.c_str(), width, height, cullingName.c_str());
std::string suffixRgb = cv::format("%s_%dx%d_Cull%s", modelName.c_str(), width, height, cullingRgbName.c_str());
std::string suffixDepth = cv::format("%s_%dx%d_Cull%s", modelName.c_str(), width, height, cullingDepthName.c_str());
std::string gtPathColor = path + "/example_image_" + suffixRgb + "_" + shadingName + ".png";
std::string gtPathDepth = path + "/depth_image_" + suffixDepth + ".png";
Mat rgbDiff, depthDiff;
Mat groundTruthColor = imread(gtPathColor);
groundTruthColor.convertTo(groundTruthColor, CV_32F, (1.f / 255.f));
compareRGB(groundTruthColor, color_buf, rgbDiff, thr.rgbInfThreshold, thr.rgbL2Threshold);
Mat groundTruthDepth = imread(gtPathDepth, cv::IMREAD_GRAYSCALE | cv::IMREAD_ANYDEPTH);
compareDepth(groundTruthDepth, depth_buf, depthDiff, zFar, depthScale, thr.depthMaskThreshold, thr.depthInfThreshold, thr.depthL2Threshold);
// add --test_debug to output resulting images
if (debugLevel > 0)
{
std::string outColorPath = "color_image_" + suffix + "_" + shadingName + ".png";
std::string outDepthPath = "depth_image_" + suffix + "_" + shadingName + ".png";
imwrite(outColorPath, color_buf * 255.f);
imwrite(outDepthPath, depth_buf);
imwrite("diff_" + outColorPath, rgbDiff * 255.f);
imwrite("diff_" + outDepthPath, depthDiff);
}
}
}
// drawing model as a whole or as two halves should give the same result
TEST_P(RenderingTest, keepDrawnData)
{
if (modelType != ModelType::Empty)
{
Mat depth_buf2(height, width, ftype, zFar);
Mat color_buf2(height, width, CV_MAKETYPE(ftype, 3), Scalar::all(0));
Mat idx1, idx2;
int nTriangles = (int)indices.total();
idx1 = indices.reshape(3, 1)(Range::all(), Range(0, nTriangles / 2));
idx2 = indices.reshape(3, 1)(Range::all(), Range(nTriangles / 2, nTriangles));
triangleRasterize(verts, idx1, colors, color_buf2, depth_buf2, cameraPose, fovYradians, zNear, zFar, settings);
triangleRasterize(verts, idx2, colors, color_buf2, depth_buf2, cameraPose, fovYradians, zNear, zFar, settings);
Mat rgbDiff, depthDiff;
compareRGB(color_buf, color_buf2, rgbDiff, 0, 0);
depth_buf.convertTo(depth_buf, CV_16U, depthScale);
depth_buf2.convertTo(depth_buf2, CV_16U, depthScale);
compareDepth(depth_buf, depth_buf2, depthDiff, zFar, depthScale, 0, 0, 0);
}
}
TEST_P(RenderingTest, glCompatibleDepth)
{
Mat depth_buf2(height, width, ftype, 1.0);
triangleRasterizeDepth(verts, indices, depth_buf2, cameraPose, fovYradians, zNear, zFar,
settings.setGlCompatibleMode(RASTERIZE_COMPAT_INVDEPTH));
Mat convertedDepth(height, width, ftype);
// map from [0, 1] to [zNear, zFar]
double scaleNear = (1.0 / zNear);
double scaleFar = (1.0 / zFar);
for (int y = 0; y < height; y++)
{
for (int x = 0; x < width; x++)
{
double z = (double)depth_buf2.at<float>(y, x);
convertedDepth.at<float>(y, x) = (float)(1.0 / ((1.0 - z) * scaleNear + z * scaleFar ));
}
}
double normL2Diff = cv::norm(depth_buf, convertedDepth, cv::NORM_L2) / (height * width);
const double normL2Threshold = 5.53e-10;
EXPECT_LE(normL2Diff, normL2Threshold);
// add --test_debug to output differences
if (debugLevel > 0)
{
std::cout << "normL2Diff: " << normL2Diff << " vs " << normL2Threshold << std::endl;
}
}
INSTANTIATE_TEST_CASE_P(Rendering, RenderingTest, ::testing::Values(
RenderTestParamType { std::make_tuple(320, 240), RASTERIZE_SHADING_SHADED, RASTERIZE_CULLING_NONE, ModelType::Centered, CV_32F, CV_32S },
RenderTestParamType { std::make_tuple(256, 256), RASTERIZE_SHADING_SHADED, RASTERIZE_CULLING_NONE, ModelType::Centered, CV_32F, CV_32S },
RenderTestParamType { std::make_tuple(256, 256), RASTERIZE_SHADING_WHITE, RASTERIZE_CULLING_NONE, ModelType::Centered, CV_32F, CV_32S },
RenderTestParamType { std::make_tuple(640, 480), RASTERIZE_SHADING_FLAT, RASTERIZE_CULLING_NONE, ModelType::Centered, CV_32F, CV_32S },
RenderTestParamType { std::make_tuple(320, 240), RASTERIZE_SHADING_FLAT, RASTERIZE_CULLING_CW, ModelType::Color, CV_32F, CV_32S },
RenderTestParamType { std::make_tuple(320, 240), RASTERIZE_SHADING_SHADED, RASTERIZE_CULLING_NONE, ModelType::Color, CV_32F, CV_32S },
RenderTestParamType { std::make_tuple(256, 256), RASTERIZE_SHADING_SHADED, RASTERIZE_CULLING_NONE, ModelType::Color, CV_32F, CV_32S },
RenderTestParamType { std::make_tuple(256, 256), RASTERIZE_SHADING_WHITE, RASTERIZE_CULLING_NONE, ModelType::Color, CV_32F, CV_32S },
RenderTestParamType { std::make_tuple(320, 240), RASTERIZE_SHADING_FLAT, RASTERIZE_CULLING_CW, ModelType::Clipping, CV_32F, CV_32S },
RenderTestParamType { std::make_tuple(320, 240), RASTERIZE_SHADING_SHADED, RASTERIZE_CULLING_NONE, ModelType::Clipping, CV_32F, CV_32S },
RenderTestParamType { std::make_tuple(256, 256), RASTERIZE_SHADING_FLAT, RASTERIZE_CULLING_CCW, ModelType::Clipping, CV_32F, CV_32S },
RenderTestParamType { std::make_tuple(256, 256), RASTERIZE_SHADING_SHADED, RASTERIZE_CULLING_CW, ModelType::Clipping, CV_32F, CV_32S },
RenderTestParamType { std::make_tuple(640, 480), RASTERIZE_SHADING_WHITE, RASTERIZE_CULLING_NONE, ModelType::Clipping, CV_32F, CV_32S },
RenderTestParamType { std::make_tuple(700, 700), RASTERIZE_SHADING_FLAT, RASTERIZE_CULLING_CCW, ModelType::Clipping, CV_32F, CV_32S },
RenderTestParamType { std::make_tuple(320, 240), RASTERIZE_SHADING_SHADED, RASTERIZE_CULLING_CCW, ModelType::File, CV_32F, CV_32S },
RenderTestParamType { std::make_tuple(700, 700), RASTERIZE_SHADING_SHADED, RASTERIZE_CULLING_CW, ModelType::File, CV_32F, CV_32S },
RenderTestParamType { std::make_tuple(700, 700), RASTERIZE_SHADING_WHITE, RASTERIZE_CULLING_NONE, ModelType::File, CV_32F, CV_32S }
));
} // namespace ::
} // namespace opencv_test