mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
444 lines
13 KiB
444 lines
13 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html |
|
|
|
#include "test_precomp.hpp" |
|
#include <opencv2/3d/detail/optimizer.hpp> |
|
|
|
#include <opencv2/core/dualquaternion.hpp> |
|
|
|
namespace opencv_test { namespace { |
|
|
|
using namespace cv; |
|
|
|
#ifdef HAVE_EIGEN |
|
|
|
static Affine3d readAffine(std::istream& input) |
|
{ |
|
Vec3d p; |
|
Vec4d q; |
|
input >> p[0] >> p[1] >> p[2]; |
|
input >> q[1] >> q[2] >> q[3] >> q[0]; |
|
// Normalize the quaternion to account for precision loss due to |
|
// serialization. |
|
return Affine3d(Quatd(q).toRotMat3x3(), p); |
|
}; |
|
|
|
// Rewritten from Ceres pose graph demo: https://ceres-solver.org/ |
|
static Ptr<detail::PoseGraph> readG2OFile(const std::string& g2oFileName) |
|
{ |
|
Ptr<detail::PoseGraph> pg = detail::PoseGraph::create(); |
|
|
|
// for debugging purposes |
|
size_t minId = 0, maxId = 1 << 30; |
|
|
|
std::ifstream infile(g2oFileName.c_str()); |
|
if (!infile) |
|
{ |
|
CV_Error(cv::Error::StsError, "failed to open file"); |
|
} |
|
|
|
while (infile.good()) |
|
{ |
|
std::string data_type; |
|
// Read whether the type is a node or a constraint |
|
infile >> data_type; |
|
if (data_type == "VERTEX_SE3:QUAT") |
|
{ |
|
size_t id; |
|
infile >> id; |
|
Affine3d pose = readAffine(infile); |
|
|
|
if (id < minId || id >= maxId) |
|
continue; |
|
|
|
bool fixed = (id == minId); |
|
|
|
// Ensure we don't have duplicate poses |
|
if (pg->isNodeExist(id)) |
|
{ |
|
CV_LOG_INFO(NULL, "duplicated node, id=" << id); |
|
} |
|
pg->addNode(id, pose, fixed); |
|
} |
|
else if (data_type == "EDGE_SE3:QUAT") |
|
{ |
|
size_t startId, endId; |
|
infile >> startId >> endId; |
|
Affine3d pose = readAffine(infile); |
|
|
|
Matx66d info; |
|
for (int i = 0; i < 6 && infile.good(); ++i) |
|
{ |
|
for (int j = i; j < 6 && infile.good(); ++j) |
|
{ |
|
infile >> info(i, j); |
|
if (i != j) |
|
{ |
|
info(j, i) = info(i, j); |
|
} |
|
} |
|
} |
|
|
|
if ((startId >= minId && startId < maxId) && (endId >= minId && endId < maxId)) |
|
{ |
|
pg->addEdge(startId, endId, pose, info); |
|
} |
|
} |
|
else |
|
{ |
|
CV_Error(cv::Error::StsError, "unknown tag"); |
|
} |
|
|
|
// Clear any trailing whitespace from the line |
|
infile >> std::ws; |
|
} |
|
|
|
return pg; |
|
} |
|
|
|
|
|
TEST(PoseGraph, sphereG2O) |
|
{ |
|
// Test takes 15+ sec in Release mode and 400+ sec in Debug mode |
|
applyTestTag(CV_TEST_TAG_LONG, CV_TEST_TAG_DEBUG_VERYLONG); |
|
|
|
// The dataset was taken from here: https://lucacarlone.mit.edu/datasets/ |
|
// Connected paper: |
|
// L.Carlone, R.Tron, K.Daniilidis, and F.Dellaert. |
|
// Initialization Techniques for 3D SLAM : a Survey on Rotation Estimation and its Use in Pose Graph Optimization. |
|
// In IEEE Intl.Conf.on Robotics and Automation(ICRA), pages 4597 - 4604, 2015. |
|
|
|
std::string filename = cvtest::TS::ptr()->get_data_path() + "/cv/rgbd/sphere_bignoise_vertex3.g2o"; |
|
|
|
Ptr<detail::PoseGraph> pg = readG2OFile(filename); |
|
|
|
// You may change logging level to view detailed optimization report |
|
// For example, set env. variable like this: OPENCV_LOG_LEVEL=INFO |
|
|
|
// geoScale=1 is experimental, not guaranteed to work on other problems |
|
// the rest are default params |
|
pg->createOptimizer(LevMarq::Settings().setGeoScale(1.0) |
|
.setMaxIterations(100) |
|
.setCheckRelEnergyChange(true) |
|
.setRelEnergyDeltaTolerance(1e-6) |
|
.setGeodesic(true)); |
|
|
|
auto r = pg->optimize(); |
|
|
|
EXPECT_TRUE(r.found); |
|
EXPECT_LE(r.iters, 20); // should converge in 31 iterations |
|
|
|
EXPECT_LE(r.energy, 1.47723e+06); // should converge to 1.47722e+06 or less |
|
|
|
// Add the "--test_debug" to arguments to see resulting pose graph nodes positions |
|
if (cvtest::debugLevel > 0) |
|
{ |
|
// Write edge-only model of how nodes are located in space |
|
std::string fname = "pgout.obj"; |
|
std::fstream of(fname, std::fstream::out); |
|
std::vector<size_t> ids = pg->getNodesIds(); |
|
for (const size_t& id : ids) |
|
{ |
|
Point3d d = pg->getNodePose(id).translation(); |
|
of << "v " << d.x << " " << d.y << " " << d.z << std::endl; |
|
} |
|
|
|
size_t esz = pg->getNumEdges(); |
|
for (size_t i = 0; i < esz; i++) |
|
{ |
|
size_t sid = pg->getEdgeStart(i), tid = pg->getEdgeEnd(i); |
|
of << "l " << sid + 1 << " " << tid + 1 << std::endl; |
|
} |
|
|
|
of.close(); |
|
} |
|
} |
|
|
|
// ------------------------------------------------------------------------------------------ |
|
|
|
// Wireframe meshes for debugging visualization purposes |
|
struct Mesh |
|
{ |
|
std::vector<Point3f> pts; |
|
std::vector<Vec2i> lines; |
|
|
|
Mesh join(const Mesh& m2) const |
|
{ |
|
Mesh mo; |
|
|
|
size_t sz1 = this->pts.size(); |
|
std::copy(this->pts.begin(), this->pts.end(), std::back_inserter(mo.pts)); |
|
std::copy(m2.pts.begin(), m2.pts.end(), std::back_inserter(mo.pts)); |
|
|
|
std::copy(this->lines.begin(), this->lines.end(), std::back_inserter(mo.lines)); |
|
std::transform(m2.lines.begin(), m2.lines.end(), std::back_inserter(mo.lines), |
|
[sz1](Vec2i ab) { return Vec2i(ab[0] + (int)sz1, ab[1] + (int)sz1); }); |
|
|
|
return mo; |
|
} |
|
|
|
Mesh transform(Affine3f a, float scale = 1.f) const |
|
{ |
|
Mesh out; |
|
out.lines = this->lines; |
|
for (Point3f p : this->pts) |
|
{ |
|
out.pts.push_back(a * (p * scale)); |
|
} |
|
return out; |
|
} |
|
|
|
// 0-2 - min, 3-5 - max |
|
Vec6f getBoundingBox() const |
|
{ |
|
float maxv = std::numeric_limits<float>::max(); |
|
Vec3f xmin(maxv, maxv, maxv), xmax(-maxv, -maxv, -maxv); |
|
for (Point3f p : this->pts) |
|
{ |
|
xmin[0] = min(p.x, xmin[0]); xmin[1] = min(p.y, xmin[1]); xmin[2] = min(p.z, xmin[2]); |
|
xmax[0] = max(p.x, xmax[0]); xmax[1] = max(p.y, xmax[1]); xmax[2] = max(p.z, xmax[2]); |
|
} |
|
return Vec6f(xmin[0], xmin[1], xmin[2], xmax[0], xmax[1], xmax[2]); |
|
} |
|
}; |
|
|
|
|
|
Mesh seg7(int d) |
|
{ |
|
const std::vector<Point3f> pt = { {0, 0, 0}, {0, 1, 0}, |
|
{1, 0, 0}, {1, 1, 0}, |
|
{2, 0, 0}, {2, 1, 0} }; |
|
|
|
std::vector<Mesh> seg(7); |
|
seg[0].pts = { pt[0], pt[1] }; |
|
seg[1].pts = { pt[1], pt[3] }; |
|
seg[2].pts = { pt[3], pt[5] }; |
|
seg[3].pts = { pt[5], pt[4] }; |
|
seg[4].pts = { pt[4], pt[2] }; |
|
seg[5].pts = { pt[2], pt[0] }; |
|
seg[6].pts = { pt[2], pt[3] }; |
|
for (int i = 0; i < 7; i++) |
|
seg[i].lines = { {0, 1} }; |
|
|
|
vector<Mesh> digits = { |
|
seg[0].join(seg[1]).join(seg[2]).join(seg[3]).join(seg[4]).join(seg[5]), // 0 |
|
seg[1].join(seg[2]), // 1 |
|
seg[0].join(seg[1]).join(seg[3]).join(seg[4]).join(seg[6]), // 2 |
|
seg[0].join(seg[1]).join(seg[2]).join(seg[3]).join(seg[6]), // 3 |
|
seg[1].join(seg[2]).join(seg[5]).join(seg[6]), // 4 |
|
seg[0].join(seg[2]).join(seg[3]).join(seg[5]).join(seg[6]), // 5 |
|
seg[0].join(seg[2]).join(seg[3]).join(seg[4]).join(seg[5]).join(seg[6]), // 6 |
|
seg[0].join(seg[1]).join(seg[2]), // 7 |
|
seg[0].join(seg[1]).join(seg[2]).join(seg[3]).join(seg[4]).join(seg[5]).join(seg[6]), // 8 |
|
seg[0].join(seg[1]).join(seg[2]).join(seg[3]).join(seg[5]).join(seg[6]), // 9 |
|
seg[6], // - |
|
}; |
|
|
|
return digits[d]; |
|
} |
|
|
|
Mesh drawId(size_t x) |
|
{ |
|
vector<int> digits; |
|
do |
|
{ |
|
digits.push_back(x % 10); |
|
x /= 10; |
|
} |
|
while (x > 0); |
|
float spacing = 0.2f; |
|
Mesh m; |
|
for (size_t i = 0; i < digits.size(); i++) |
|
{ |
|
Mesh digit = seg7(digits[digits.size() - 1 - i]); |
|
Vec6f bb = digit.getBoundingBox(); |
|
digit = digit.transform(Affine3f().translate(-Vec3f(0, bb[1], 0))); |
|
Vec3f tr; |
|
if (m.pts.empty()) |
|
tr = Vec3f(); |
|
else |
|
tr = Vec3f(0, (m.getBoundingBox()[4] + spacing), 0); |
|
m = m.join(digit.transform( Affine3f().translate(tr) )); |
|
} |
|
return m; |
|
} |
|
|
|
|
|
Mesh drawFromTo(size_t f, size_t t) |
|
{ |
|
Mesh m; |
|
|
|
Mesh df = drawId(f); |
|
Mesh dp = seg7(10); |
|
Mesh dt = drawId(t); |
|
|
|
float spacing = 0.2f; |
|
m = m.join(df).join(dp.transform(Affine3f().translate(Vec3f(0, df.getBoundingBox()[4] + spacing, 0)))) |
|
.join(dt.transform(Affine3f().translate(Vec3f(0, df.getBoundingBox()[4] + 2*spacing + 1, 0)))); |
|
|
|
return m; |
|
} |
|
|
|
Mesh drawPoseGraph(Ptr<detail::PoseGraph> pg) |
|
{ |
|
Mesh marker; |
|
marker.pts = { {0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {1, 1, 0} }; |
|
marker.lines = { {0, 1}, {0, 2}, {0, 3}, {1, 4} }; |
|
|
|
Mesh allMeshes; |
|
Affine3f margin = Affine3f().translate(Vec3f(0.1f, 0.1f, 0)); |
|
std::vector<size_t> ids = pg->getNodesIds(); |
|
for (const size_t& id : ids) |
|
{ |
|
Affine3f pose = pg->getNodePose(id); |
|
|
|
Mesh m = marker.join(drawId(id).transform(margin, 0.25f)).transform(pose); |
|
allMeshes = allMeshes.join(m); |
|
} |
|
|
|
// edges |
|
margin = Affine3f().translate(Vec3f(0.05f, 0.05f, 0)); |
|
for (size_t i = 0; i < pg->getNumEdges(); i++) |
|
{ |
|
Affine3f pose = pg->getEdgePose(i); |
|
size_t sid = pg->getEdgeStart(i); |
|
size_t did = pg->getEdgeEnd(i); |
|
Affine3f spose = pg->getNodePose(sid); |
|
Affine3f dpose = spose * pose; |
|
|
|
Mesh m = marker.join(drawFromTo(sid, did).transform(margin, 0.125f)).transform(dpose); |
|
allMeshes = allMeshes.join(m); |
|
} |
|
|
|
return allMeshes; |
|
} |
|
|
|
void writeObj(const std::string& fname, const Mesh& m) |
|
{ |
|
// Write edge-only model of how nodes are located in space |
|
std::fstream of(fname, std::fstream::out); |
|
for (const Point3f& d : m.pts) |
|
{ |
|
of << "v " << d.x << " " << d.y << " " << d.z << std::endl; |
|
} |
|
|
|
for (const Vec2i& v : m.lines) |
|
{ |
|
of << "l " << v[0] + 1 << " " << v[1] + 1 << std::endl; |
|
} |
|
|
|
of.close(); |
|
} |
|
|
|
|
|
TEST(PoseGraph, simple) |
|
{ |
|
|
|
Ptr<detail::PoseGraph> pg = detail::PoseGraph::create(); |
|
|
|
DualQuatf true0(1, 0, 0, 0, 0, 0, 0, 0); |
|
DualQuatf true1 = DualQuatf::createFromPitch((float)CV_PI / 3.0f, 10.0f, Vec3f(1, 1.5f, 1.2f), Vec3f()); |
|
|
|
DualQuatf pose0 = true0; |
|
vector<DualQuatf> noise(7); |
|
for (size_t i = 0; i < noise.size(); i++) |
|
{ |
|
float angle = cv::theRNG().uniform(-1.f, 1.f); |
|
float shift = cv::theRNG().uniform(-2.f, 2.f); |
|
Matx31f axis = Vec3f::randu(0.f, 1.f), moment = Vec3f::randu(0.f, 1.f); |
|
noise[i] = DualQuatf::createFromPitch(angle, shift, |
|
Vec3f(axis(0), axis(1), axis(2)), |
|
Vec3f(moment(0), moment(1), moment(2))); |
|
} |
|
|
|
DualQuatf pose1 = noise[0] * true1; |
|
|
|
DualQuatf diff = true1 * true0.inv(); |
|
vector<DualQuatf> cfrom = { diff, diff * noise[1], noise[2] * diff }; |
|
DualQuatf diffInv = diff.inv(); |
|
vector<DualQuatf> cto = { diffInv, diffInv * noise[3], noise[4] * diffInv }; |
|
|
|
pg->addNode(123, pose0.toAffine3(), true); |
|
pg->addNode(456, pose1.toAffine3(), false); |
|
|
|
Matx66f info = Matx66f::eye(); |
|
for (int i = 0; i < 3; i++) |
|
{ |
|
pg->addEdge(123, 456, cfrom[i].toAffine3(), info); |
|
pg->addEdge(456, 123, cto[i].toAffine3(), info); |
|
} |
|
|
|
Mesh allMeshes = drawPoseGraph(pg); |
|
|
|
// Add the "--test_debug" to arguments to see resulting pose graph nodes positions |
|
if (cvtest::debugLevel > 0) |
|
{ |
|
writeObj("pg_simple_in.obj", allMeshes); |
|
} |
|
|
|
auto r = pg->optimize(); |
|
|
|
Mesh after = drawPoseGraph(pg); |
|
|
|
// Add the "--test_debug" to arguments to see resulting pose graph nodes positions |
|
if (cvtest::debugLevel > 0) |
|
{ |
|
writeObj("pg_simple_out.obj", after); |
|
} |
|
|
|
EXPECT_TRUE(r.found); |
|
} |
|
#else |
|
|
|
TEST(PoseGraph, sphereG2O) |
|
{ |
|
throw SkipTestException("Build with Eigen required for pose graph optimization"); |
|
} |
|
|
|
TEST(PoseGraph, simple) |
|
{ |
|
throw SkipTestException("Build with Eigen required for pose graph optimization"); |
|
} |
|
#endif |
|
|
|
TEST(LevMarq, Rosenbrock) |
|
{ |
|
auto f = [](double x, double y) -> double |
|
{ |
|
return (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x); |
|
}; |
|
|
|
auto j = [](double x, double y) -> Matx12d |
|
{ |
|
return {/*dx*/ -2.0 + 2.0 * x - 400.0 * x * y + 400.0 * x*x*x, |
|
/*dy*/ 200.0 * y - 200.0 * x*x, |
|
}; |
|
}; |
|
|
|
LevMarq solver(2, [f, j](InputOutputArray param, OutputArray err, OutputArray jv) -> bool |
|
{ |
|
Vec2d v = param.getMat(); |
|
double x = v[0], y = v[1]; |
|
err.create(1, 1, CV_64F); |
|
err.getMat().at<double>(0) = f(x, y); |
|
if (jv.needed()) |
|
{ |
|
jv.create(1, 2, CV_64F); |
|
Mat(j(x, y)).copyTo(jv); |
|
} |
|
return true; |
|
}, |
|
LevMarq::Settings().setGeodesic(true)); |
|
|
|
Mat_<double> x (Vec2d(1, 3)); |
|
|
|
auto r = solver.run(x); |
|
|
|
EXPECT_TRUE(r.found); |
|
EXPECT_LT(r.energy, 0.035); |
|
EXPECT_LE(r.iters, 17); |
|
} |
|
|
|
|
|
}} // namespace
|
|
|