Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

444 lines
13 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "test_precomp.hpp"
#include <opencv2/3d/detail/optimizer.hpp>
#include <opencv2/core/dualquaternion.hpp>
namespace opencv_test { namespace {
using namespace cv;
#ifdef HAVE_EIGEN
static Affine3d readAffine(std::istream& input)
{
Vec3d p;
Vec4d q;
input >> p[0] >> p[1] >> p[2];
input >> q[1] >> q[2] >> q[3] >> q[0];
// Normalize the quaternion to account for precision loss due to
// serialization.
return Affine3d(Quatd(q).toRotMat3x3(), p);
};
// Rewritten from Ceres pose graph demo: https://ceres-solver.org/
static Ptr<detail::PoseGraph> readG2OFile(const std::string& g2oFileName)
{
Ptr<detail::PoseGraph> pg = detail::PoseGraph::create();
// for debugging purposes
size_t minId = 0, maxId = 1 << 30;
std::ifstream infile(g2oFileName.c_str());
if (!infile)
{
CV_Error(cv::Error::StsError, "failed to open file");
}
while (infile.good())
{
std::string data_type;
// Read whether the type is a node or a constraint
infile >> data_type;
if (data_type == "VERTEX_SE3:QUAT")
{
size_t id;
infile >> id;
Affine3d pose = readAffine(infile);
if (id < minId || id >= maxId)
continue;
bool fixed = (id == minId);
// Ensure we don't have duplicate poses
if (pg->isNodeExist(id))
{
CV_LOG_INFO(NULL, "duplicated node, id=" << id);
}
pg->addNode(id, pose, fixed);
}
else if (data_type == "EDGE_SE3:QUAT")
{
size_t startId, endId;
infile >> startId >> endId;
Affine3d pose = readAffine(infile);
Matx66d info;
for (int i = 0; i < 6 && infile.good(); ++i)
{
for (int j = i; j < 6 && infile.good(); ++j)
{
infile >> info(i, j);
if (i != j)
{
info(j, i) = info(i, j);
}
}
}
if ((startId >= minId && startId < maxId) && (endId >= minId && endId < maxId))
{
pg->addEdge(startId, endId, pose, info);
}
}
else
{
CV_Error(cv::Error::StsError, "unknown tag");
}
// Clear any trailing whitespace from the line
infile >> std::ws;
}
return pg;
}
TEST(PoseGraph, sphereG2O)
{
// Test takes 15+ sec in Release mode and 400+ sec in Debug mode
applyTestTag(CV_TEST_TAG_LONG, CV_TEST_TAG_DEBUG_VERYLONG);
// The dataset was taken from here: https://lucacarlone.mit.edu/datasets/
// Connected paper:
// L.Carlone, R.Tron, K.Daniilidis, and F.Dellaert.
// Initialization Techniques for 3D SLAM : a Survey on Rotation Estimation and its Use in Pose Graph Optimization.
// In IEEE Intl.Conf.on Robotics and Automation(ICRA), pages 4597 - 4604, 2015.
std::string filename = cvtest::TS::ptr()->get_data_path() + "/cv/rgbd/sphere_bignoise_vertex3.g2o";
Ptr<detail::PoseGraph> pg = readG2OFile(filename);
// You may change logging level to view detailed optimization report
// For example, set env. variable like this: OPENCV_LOG_LEVEL=INFO
// geoScale=1 is experimental, not guaranteed to work on other problems
// the rest are default params
pg->createOptimizer(LevMarq::Settings().setGeoScale(1.0)
.setMaxIterations(100)
.setCheckRelEnergyChange(true)
.setRelEnergyDeltaTolerance(1e-6)
.setGeodesic(true));
auto r = pg->optimize();
EXPECT_TRUE(r.found);
EXPECT_LE(r.iters, 20); // should converge in 31 iterations
EXPECT_LE(r.energy, 1.47723e+06); // should converge to 1.47722e+06 or less
// Add the "--test_debug" to arguments to see resulting pose graph nodes positions
if (cvtest::debugLevel > 0)
{
// Write edge-only model of how nodes are located in space
std::string fname = "pgout.obj";
std::fstream of(fname, std::fstream::out);
std::vector<size_t> ids = pg->getNodesIds();
for (const size_t& id : ids)
{
Point3d d = pg->getNodePose(id).translation();
of << "v " << d.x << " " << d.y << " " << d.z << std::endl;
}
size_t esz = pg->getNumEdges();
for (size_t i = 0; i < esz; i++)
{
size_t sid = pg->getEdgeStart(i), tid = pg->getEdgeEnd(i);
of << "l " << sid + 1 << " " << tid + 1 << std::endl;
}
of.close();
}
}
// ------------------------------------------------------------------------------------------
// Wireframe meshes for debugging visualization purposes
struct Mesh
{
std::vector<Point3f> pts;
std::vector<Vec2i> lines;
Mesh join(const Mesh& m2) const
{
Mesh mo;
size_t sz1 = this->pts.size();
std::copy(this->pts.begin(), this->pts.end(), std::back_inserter(mo.pts));
std::copy(m2.pts.begin(), m2.pts.end(), std::back_inserter(mo.pts));
std::copy(this->lines.begin(), this->lines.end(), std::back_inserter(mo.lines));
std::transform(m2.lines.begin(), m2.lines.end(), std::back_inserter(mo.lines),
[sz1](Vec2i ab) { return Vec2i(ab[0] + (int)sz1, ab[1] + (int)sz1); });
return mo;
}
Mesh transform(Affine3f a, float scale = 1.f) const
{
Mesh out;
out.lines = this->lines;
for (Point3f p : this->pts)
{
out.pts.push_back(a * (p * scale));
}
return out;
}
// 0-2 - min, 3-5 - max
Vec6f getBoundingBox() const
{
float maxv = std::numeric_limits<float>::max();
Vec3f xmin(maxv, maxv, maxv), xmax(-maxv, -maxv, -maxv);
for (Point3f p : this->pts)
{
xmin[0] = min(p.x, xmin[0]); xmin[1] = min(p.y, xmin[1]); xmin[2] = min(p.z, xmin[2]);
xmax[0] = max(p.x, xmax[0]); xmax[1] = max(p.y, xmax[1]); xmax[2] = max(p.z, xmax[2]);
}
return Vec6f(xmin[0], xmin[1], xmin[2], xmax[0], xmax[1], xmax[2]);
}
};
Mesh seg7(int d)
{
const std::vector<Point3f> pt = { {0, 0, 0}, {0, 1, 0},
{1, 0, 0}, {1, 1, 0},
{2, 0, 0}, {2, 1, 0} };
std::vector<Mesh> seg(7);
seg[0].pts = { pt[0], pt[1] };
seg[1].pts = { pt[1], pt[3] };
seg[2].pts = { pt[3], pt[5] };
seg[3].pts = { pt[5], pt[4] };
seg[4].pts = { pt[4], pt[2] };
seg[5].pts = { pt[2], pt[0] };
seg[6].pts = { pt[2], pt[3] };
for (int i = 0; i < 7; i++)
seg[i].lines = { {0, 1} };
vector<Mesh> digits = {
seg[0].join(seg[1]).join(seg[2]).join(seg[3]).join(seg[4]).join(seg[5]), // 0
seg[1].join(seg[2]), // 1
seg[0].join(seg[1]).join(seg[3]).join(seg[4]).join(seg[6]), // 2
seg[0].join(seg[1]).join(seg[2]).join(seg[3]).join(seg[6]), // 3
seg[1].join(seg[2]).join(seg[5]).join(seg[6]), // 4
seg[0].join(seg[2]).join(seg[3]).join(seg[5]).join(seg[6]), // 5
seg[0].join(seg[2]).join(seg[3]).join(seg[4]).join(seg[5]).join(seg[6]), // 6
seg[0].join(seg[1]).join(seg[2]), // 7
seg[0].join(seg[1]).join(seg[2]).join(seg[3]).join(seg[4]).join(seg[5]).join(seg[6]), // 8
seg[0].join(seg[1]).join(seg[2]).join(seg[3]).join(seg[5]).join(seg[6]), // 9
seg[6], // -
};
return digits[d];
}
Mesh drawId(size_t x)
{
vector<int> digits;
do
{
digits.push_back(x % 10);
x /= 10;
}
while (x > 0);
float spacing = 0.2f;
Mesh m;
for (size_t i = 0; i < digits.size(); i++)
{
Mesh digit = seg7(digits[digits.size() - 1 - i]);
Vec6f bb = digit.getBoundingBox();
digit = digit.transform(Affine3f().translate(-Vec3f(0, bb[1], 0)));
Vec3f tr;
if (m.pts.empty())
tr = Vec3f();
else
tr = Vec3f(0, (m.getBoundingBox()[4] + spacing), 0);
m = m.join(digit.transform( Affine3f().translate(tr) ));
}
return m;
}
Mesh drawFromTo(size_t f, size_t t)
{
Mesh m;
Mesh df = drawId(f);
Mesh dp = seg7(10);
Mesh dt = drawId(t);
float spacing = 0.2f;
m = m.join(df).join(dp.transform(Affine3f().translate(Vec3f(0, df.getBoundingBox()[4] + spacing, 0))))
.join(dt.transform(Affine3f().translate(Vec3f(0, df.getBoundingBox()[4] + 2*spacing + 1, 0))));
return m;
}
Mesh drawPoseGraph(Ptr<detail::PoseGraph> pg)
{
Mesh marker;
marker.pts = { {0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {1, 1, 0} };
marker.lines = { {0, 1}, {0, 2}, {0, 3}, {1, 4} };
Mesh allMeshes;
Affine3f margin = Affine3f().translate(Vec3f(0.1f, 0.1f, 0));
std::vector<size_t> ids = pg->getNodesIds();
for (const size_t& id : ids)
{
Affine3f pose = pg->getNodePose(id);
Mesh m = marker.join(drawId(id).transform(margin, 0.25f)).transform(pose);
allMeshes = allMeshes.join(m);
}
// edges
margin = Affine3f().translate(Vec3f(0.05f, 0.05f, 0));
for (size_t i = 0; i < pg->getNumEdges(); i++)
{
Affine3f pose = pg->getEdgePose(i);
size_t sid = pg->getEdgeStart(i);
size_t did = pg->getEdgeEnd(i);
Affine3f spose = pg->getNodePose(sid);
Affine3f dpose = spose * pose;
Mesh m = marker.join(drawFromTo(sid, did).transform(margin, 0.125f)).transform(dpose);
allMeshes = allMeshes.join(m);
}
return allMeshes;
}
void writeObj(const std::string& fname, const Mesh& m)
{
// Write edge-only model of how nodes are located in space
std::fstream of(fname, std::fstream::out);
for (const Point3f& d : m.pts)
{
of << "v " << d.x << " " << d.y << " " << d.z << std::endl;
}
for (const Vec2i& v : m.lines)
{
of << "l " << v[0] + 1 << " " << v[1] + 1 << std::endl;
}
of.close();
}
TEST(PoseGraph, simple)
{
Ptr<detail::PoseGraph> pg = detail::PoseGraph::create();
DualQuatf true0(1, 0, 0, 0, 0, 0, 0, 0);
DualQuatf true1 = DualQuatf::createFromPitch((float)CV_PI / 3.0f, 10.0f, Vec3f(1, 1.5f, 1.2f), Vec3f());
DualQuatf pose0 = true0;
vector<DualQuatf> noise(7);
for (size_t i = 0; i < noise.size(); i++)
{
float angle = cv::theRNG().uniform(-1.f, 1.f);
float shift = cv::theRNG().uniform(-2.f, 2.f);
Matx31f axis = Vec3f::randu(0.f, 1.f), moment = Vec3f::randu(0.f, 1.f);
noise[i] = DualQuatf::createFromPitch(angle, shift,
Vec3f(axis(0), axis(1), axis(2)),
Vec3f(moment(0), moment(1), moment(2)));
}
DualQuatf pose1 = noise[0] * true1;
DualQuatf diff = true1 * true0.inv();
vector<DualQuatf> cfrom = { diff, diff * noise[1], noise[2] * diff };
DualQuatf diffInv = diff.inv();
vector<DualQuatf> cto = { diffInv, diffInv * noise[3], noise[4] * diffInv };
pg->addNode(123, pose0.toAffine3(), true);
pg->addNode(456, pose1.toAffine3(), false);
Matx66f info = Matx66f::eye();
for (int i = 0; i < 3; i++)
{
pg->addEdge(123, 456, cfrom[i].toAffine3(), info);
pg->addEdge(456, 123, cto[i].toAffine3(), info);
}
Mesh allMeshes = drawPoseGraph(pg);
// Add the "--test_debug" to arguments to see resulting pose graph nodes positions
if (cvtest::debugLevel > 0)
{
writeObj("pg_simple_in.obj", allMeshes);
}
auto r = pg->optimize();
Mesh after = drawPoseGraph(pg);
// Add the "--test_debug" to arguments to see resulting pose graph nodes positions
if (cvtest::debugLevel > 0)
{
writeObj("pg_simple_out.obj", after);
}
EXPECT_TRUE(r.found);
}
#else
TEST(PoseGraph, sphereG2O)
{
throw SkipTestException("Build with Eigen required for pose graph optimization");
}
TEST(PoseGraph, simple)
{
throw SkipTestException("Build with Eigen required for pose graph optimization");
}
#endif
TEST(LevMarq, Rosenbrock)
{
auto f = [](double x, double y) -> double
{
return (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x);
};
auto j = [](double x, double y) -> Matx12d
{
return {/*dx*/ -2.0 + 2.0 * x - 400.0 * x * y + 400.0 * x*x*x,
/*dy*/ 200.0 * y - 200.0 * x*x,
};
};
LevMarq solver(2, [f, j](InputOutputArray param, OutputArray err, OutputArray jv) -> bool
{
Vec2d v = param.getMat();
double x = v[0], y = v[1];
err.create(1, 1, CV_64F);
err.getMat().at<double>(0) = f(x, y);
if (jv.needed())
{
jv.create(1, 2, CV_64F);
Mat(j(x, y)).copyTo(jv);
}
return true;
},
LevMarq::Settings().setGeodesic(true));
Mat_<double> x (Vec2d(1, 3));
auto r = solver.run(x);
EXPECT_TRUE(r.found);
EXPECT_LT(r.energy, 0.035);
EXPECT_LE(r.iters, 17);
}
}} // namespace