Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

158 lines
5.3 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
namespace opencv_test { namespace {
using namespace cv;
class OctreeTest: public testing::Test
{
protected:
void SetUp() override
{
pointCloudSize = 1000;
resolution = 0.0001;
int scale;
Point3i pmin, pmax;
scale = 1 << 20;
pmin = Point3i(-scale, -scale, -scale);
pmax = Point3i(scale, scale, scale);
RNG& rng_Point = theRNG(); // set random seed for fixing output 3D point.
// Generate 3D PointCloud
for(size_t i = 0; i < pointCloudSize; i++)
{
float _x = 10 * (float)rng_Point.uniform(pmin.x, pmax.x)/scale;
float _y = 10 * (float)rng_Point.uniform(pmin.y, pmax.y)/scale;
float _z = 10 * (float)rng_Point.uniform(pmin.z, pmax.z)/scale;
pointCloud.push_back(Point3f(_x, _y, _z));
}
// Generate Octree From PointCloud
treeTest = Octree::createWithResolution(resolution, pointCloud);
// Randomly generate another 3D point.
float _x = 10 * (float)rng_Point.uniform(pmin.x, pmax.x)/scale;
float _y = 10 * (float)rng_Point.uniform(pmin.y, pmax.y)/scale;
float _z = 10 * (float)rng_Point.uniform(pmin.z, pmax.z)/scale;
restPoint = Point3f(_x, _y, _z);
}
public:
//Origin point cloud data
std::vector<Point3f> pointCloud;
//Point cloud data from octree
std::vector<Point3f> restorePointCloudData;
//Color attribute of pointCloud from octree
std::vector<Point3f> restorePointCloudColor;
size_t pointCloudSize;
Point3f restPoint;
Ptr<Octree> treeTest;
double resolution;
};
TEST_F(OctreeTest, BasicFunctionTest)
{
// Check if the point in Bound.
EXPECT_TRUE(treeTest->isPointInBound(restPoint));
EXPECT_FALSE(treeTest->isPointInBound(restPoint + Point3f(60, 60, 60)));
// insert, delete Test.
EXPECT_FALSE(treeTest->deletePoint(restPoint));
EXPECT_FALSE(treeTest->insertPoint(restPoint + Point3f(60, 60, 60)));
EXPECT_TRUE(treeTest->insertPoint(restPoint));
EXPECT_TRUE(treeTest->deletePoint(restPoint));
EXPECT_FALSE(treeTest->empty());
EXPECT_NO_THROW(treeTest->clear());
EXPECT_TRUE(treeTest->empty());
}
TEST_F(OctreeTest, RadiusSearchTest)
{
float radius = 2.0f;
std::vector<Point3f> outputPoints;
std::vector<float> outputSquareDist;
EXPECT_NO_THROW(treeTest->radiusNNSearch(restPoint, radius, outputPoints, outputSquareDist));
EXPECT_EQ(outputPoints.size(),(unsigned int)5);
// The output is unsorted, so let's sort it before checking
std::map<float, Point3f> sortResults;
for (int i = 0; i < (int)outputPoints.size(); i++)
{
sortResults[outputSquareDist[i]] = outputPoints[i];
}
std::vector<Point3f> goldVals = {
{-8.1184864044189f, -0.528564453125f, 0.f},
{-8.405818939208f, -2.991247177124f, 0.f},
{-8.88461112976f, -1.881799697875f, 0.f},
{-6.551313400268f, -0.708484649658f, 0.f}
};
auto it = sortResults.begin();
for (int i = 0; i < (int)goldVals.size(); i++, it++)
{
Point3f p = it->second;
EXPECT_FLOAT_EQ(goldVals[i].x, p.x);
EXPECT_FLOAT_EQ(goldVals[i].y, p.y);
}
}
TEST_F(OctreeTest, KNNSearchTest)
{
int K = 10;
std::vector<Point3f> outputPoints;
std::vector<float> outputSquareDist;
EXPECT_NO_THROW(treeTest->KNNSearch(restPoint, K, outputPoints, outputSquareDist));
// The output is unsorted, so let's sort it before checking
std::map<float, Point3f> sortResults;
for (int i = 0; i < (int)outputPoints.size(); i++)
{
sortResults[outputSquareDist[i]] = outputPoints[i];
}
std::vector<Point3f> goldVals = {
{ -8.118486404418f, -0.528564453125f, 0.f },
{ -8.405818939208f, -2.991247177124f, 0.f },
{ -8.884611129760f, -1.881799697875f, 0.f },
{ -6.551313400268f, -0.708484649658f, 0.f }
};
auto it = sortResults.begin();
for (int i = 0; i < (int)goldVals.size(); i++, it++)
{
Point3f p = it->second;
EXPECT_FLOAT_EQ(goldVals[i].x, p.x);
EXPECT_FLOAT_EQ(goldVals[i].y, p.y);
}
}
TEST_F(OctreeTest, restoreTest) {
//restore the pointCloud data from octree.
EXPECT_NO_THROW(treeTest->getPointCloudByOctree(restorePointCloudData,restorePointCloudColor));
//The points in same leaf node will be seen as the same point. So if the resolution is small,
//it will work as a downSampling function.
EXPECT_LE(restorePointCloudData.size(),pointCloudSize);
//The distance between the restore point cloud data and origin data should less than resolution.
std::vector<Point3f> outputPoints;
std::vector<float> outputSquareDist;
EXPECT_NO_THROW(treeTest->getPointCloudByOctree(restorePointCloudData,restorePointCloudColor));
EXPECT_NO_THROW(treeTest->KNNSearch(restorePointCloudData[0], 1, outputPoints, outputSquareDist));
EXPECT_LE(abs(outputPoints[0].x - restorePointCloudData[0].x), resolution);
EXPECT_LE(abs(outputPoints[0].y - restorePointCloudData[0].y), resolution);
EXPECT_LE(abs(outputPoints[0].z - restorePointCloudData[0].z), resolution);
}
} // namespace
} // opencv_test