mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
158 lines
5.3 KiB
158 lines
5.3 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
using namespace cv; |
|
|
|
class OctreeTest: public testing::Test |
|
{ |
|
protected: |
|
void SetUp() override |
|
{ |
|
pointCloudSize = 1000; |
|
resolution = 0.0001; |
|
int scale; |
|
Point3i pmin, pmax; |
|
scale = 1 << 20; |
|
pmin = Point3i(-scale, -scale, -scale); |
|
pmax = Point3i(scale, scale, scale); |
|
|
|
RNG& rng_Point = theRNG(); // set random seed for fixing output 3D point. |
|
|
|
// Generate 3D PointCloud |
|
for(size_t i = 0; i < pointCloudSize; i++) |
|
{ |
|
float _x = 10 * (float)rng_Point.uniform(pmin.x, pmax.x)/scale; |
|
float _y = 10 * (float)rng_Point.uniform(pmin.y, pmax.y)/scale; |
|
float _z = 10 * (float)rng_Point.uniform(pmin.z, pmax.z)/scale; |
|
pointCloud.push_back(Point3f(_x, _y, _z)); |
|
} |
|
|
|
// Generate Octree From PointCloud |
|
treeTest = Octree::createWithResolution(resolution, pointCloud); |
|
|
|
// Randomly generate another 3D point. |
|
float _x = 10 * (float)rng_Point.uniform(pmin.x, pmax.x)/scale; |
|
float _y = 10 * (float)rng_Point.uniform(pmin.y, pmax.y)/scale; |
|
float _z = 10 * (float)rng_Point.uniform(pmin.z, pmax.z)/scale; |
|
restPoint = Point3f(_x, _y, _z); |
|
} |
|
|
|
public: |
|
//Origin point cloud data |
|
std::vector<Point3f> pointCloud; |
|
|
|
//Point cloud data from octree |
|
std::vector<Point3f> restorePointCloudData; |
|
|
|
//Color attribute of pointCloud from octree |
|
std::vector<Point3f> restorePointCloudColor; |
|
|
|
size_t pointCloudSize; |
|
Point3f restPoint; |
|
Ptr<Octree> treeTest; |
|
double resolution; |
|
}; |
|
|
|
TEST_F(OctreeTest, BasicFunctionTest) |
|
{ |
|
// Check if the point in Bound. |
|
EXPECT_TRUE(treeTest->isPointInBound(restPoint)); |
|
EXPECT_FALSE(treeTest->isPointInBound(restPoint + Point3f(60, 60, 60))); |
|
|
|
// insert, delete Test. |
|
EXPECT_FALSE(treeTest->deletePoint(restPoint)); |
|
EXPECT_FALSE(treeTest->insertPoint(restPoint + Point3f(60, 60, 60))); |
|
EXPECT_TRUE(treeTest->insertPoint(restPoint)); |
|
EXPECT_TRUE(treeTest->deletePoint(restPoint)); |
|
|
|
EXPECT_FALSE(treeTest->empty()); |
|
EXPECT_NO_THROW(treeTest->clear()); |
|
EXPECT_TRUE(treeTest->empty()); |
|
} |
|
|
|
TEST_F(OctreeTest, RadiusSearchTest) |
|
{ |
|
float radius = 2.0f; |
|
std::vector<Point3f> outputPoints; |
|
std::vector<float> outputSquareDist; |
|
EXPECT_NO_THROW(treeTest->radiusNNSearch(restPoint, radius, outputPoints, outputSquareDist)); |
|
EXPECT_EQ(outputPoints.size(),(unsigned int)5); |
|
|
|
// The output is unsorted, so let's sort it before checking |
|
std::map<float, Point3f> sortResults; |
|
for (int i = 0; i < (int)outputPoints.size(); i++) |
|
{ |
|
sortResults[outputSquareDist[i]] = outputPoints[i]; |
|
} |
|
|
|
std::vector<Point3f> goldVals = { |
|
{-8.1184864044189f, -0.528564453125f, 0.f}, |
|
{-8.405818939208f, -2.991247177124f, 0.f}, |
|
{-8.88461112976f, -1.881799697875f, 0.f}, |
|
{-6.551313400268f, -0.708484649658f, 0.f} |
|
}; |
|
|
|
auto it = sortResults.begin(); |
|
for (int i = 0; i < (int)goldVals.size(); i++, it++) |
|
{ |
|
Point3f p = it->second; |
|
EXPECT_FLOAT_EQ(goldVals[i].x, p.x); |
|
EXPECT_FLOAT_EQ(goldVals[i].y, p.y); |
|
} |
|
} |
|
|
|
TEST_F(OctreeTest, KNNSearchTest) |
|
{ |
|
int K = 10; |
|
std::vector<Point3f> outputPoints; |
|
std::vector<float> outputSquareDist; |
|
EXPECT_NO_THROW(treeTest->KNNSearch(restPoint, K, outputPoints, outputSquareDist)); |
|
|
|
// The output is unsorted, so let's sort it before checking |
|
std::map<float, Point3f> sortResults; |
|
for (int i = 0; i < (int)outputPoints.size(); i++) |
|
{ |
|
sortResults[outputSquareDist[i]] = outputPoints[i]; |
|
} |
|
|
|
std::vector<Point3f> goldVals = { |
|
{ -8.118486404418f, -0.528564453125f, 0.f }, |
|
{ -8.405818939208f, -2.991247177124f, 0.f }, |
|
{ -8.884611129760f, -1.881799697875f, 0.f }, |
|
{ -6.551313400268f, -0.708484649658f, 0.f } |
|
}; |
|
|
|
auto it = sortResults.begin(); |
|
for (int i = 0; i < (int)goldVals.size(); i++, it++) |
|
{ |
|
Point3f p = it->second; |
|
EXPECT_FLOAT_EQ(goldVals[i].x, p.x); |
|
EXPECT_FLOAT_EQ(goldVals[i].y, p.y); |
|
} |
|
} |
|
|
|
TEST_F(OctreeTest, restoreTest) { |
|
//restore the pointCloud data from octree. |
|
EXPECT_NO_THROW(treeTest->getPointCloudByOctree(restorePointCloudData,restorePointCloudColor)); |
|
|
|
//The points in same leaf node will be seen as the same point. So if the resolution is small, |
|
//it will work as a downSampling function. |
|
EXPECT_LE(restorePointCloudData.size(),pointCloudSize); |
|
|
|
//The distance between the restore point cloud data and origin data should less than resolution. |
|
std::vector<Point3f> outputPoints; |
|
std::vector<float> outputSquareDist; |
|
EXPECT_NO_THROW(treeTest->getPointCloudByOctree(restorePointCloudData,restorePointCloudColor)); |
|
EXPECT_NO_THROW(treeTest->KNNSearch(restorePointCloudData[0], 1, outputPoints, outputSquareDist)); |
|
EXPECT_LE(abs(outputPoints[0].x - restorePointCloudData[0].x), resolution); |
|
EXPECT_LE(abs(outputPoints[0].y - restorePointCloudData[0].y), resolution); |
|
EXPECT_LE(abs(outputPoints[0].z - restorePointCloudData[0].z), resolution); |
|
} |
|
|
|
} // namespace |
|
} // opencv_test
|