mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1734 lines
50 KiB
1734 lines
50 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. |
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. |
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// @Authors |
|
// Niko Li, newlife20080214@gmail.com |
|
// Jia Haipeng, jiahaipeng95@gmail.com |
|
// Shengen Yan, yanshengen@gmail.com |
|
// Jiang Liyuan, lyuan001.good@163.com |
|
// Rock Li, Rock.Li@amd.com |
|
// Wu Zailong, bullet@yeah.net |
|
// Xu Pang, pangxu010@163.com |
|
// Sen Liu, swjtuls1987@126.com |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other oclMaterials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
using namespace cvtest; |
|
using namespace testing; |
|
using namespace std; |
|
|
|
MatType nulltype = -1; |
|
|
|
#define ONE_TYPE(type) testing::ValuesIn(typeVector(type)) |
|
#define NULL_TYPE testing::ValuesIn(typeVector(nulltype)) |
|
|
|
vector<MatType> typeVector(MatType type) |
|
{ |
|
vector<MatType> v; |
|
v.push_back(type); |
|
return v; |
|
} |
|
|
|
typedef struct |
|
{ |
|
short x; |
|
short y; |
|
} COOR; |
|
|
|
COOR do_meanShift(int x0, int y0, uchar *sptr, uchar *dptr, int sstep, cv::Size size, int sp, int sr, int maxIter, float eps, int *tab) |
|
{ |
|
|
|
int isr2 = sr * sr; |
|
int c0, c1, c2, c3; |
|
int iter; |
|
uchar *ptr = NULL; |
|
uchar *pstart = NULL; |
|
int revx = 0, revy = 0; |
|
c0 = sptr[0]; |
|
c1 = sptr[1]; |
|
c2 = sptr[2]; |
|
c3 = sptr[3]; |
|
// iterate meanshift procedure |
|
for(iter = 0; iter < maxIter; iter++ ) |
|
{ |
|
int count = 0; |
|
int s0 = 0, s1 = 0, s2 = 0, sx = 0, sy = 0; |
|
|
|
//mean shift: process pixels in window (p-sigmaSp)x(p+sigmaSp) |
|
int minx = x0 - sp; |
|
int miny = y0 - sp; |
|
int maxx = x0 + sp; |
|
int maxy = y0 + sp; |
|
|
|
//deal with the image boundary |
|
if(minx < 0) minx = 0; |
|
if(miny < 0) miny = 0; |
|
if(maxx >= size.width) maxx = size.width - 1; |
|
if(maxy >= size.height) maxy = size.height - 1; |
|
if(iter == 0) |
|
{ |
|
pstart = sptr; |
|
} |
|
else |
|
{ |
|
pstart = pstart + revy * sstep + (revx << 2); //point to the new position |
|
} |
|
ptr = pstart; |
|
ptr = ptr + (miny - y0) * sstep + ((minx - x0) << 2); //point to the start in the row |
|
|
|
for( int y = miny; y <= maxy; y++, ptr += sstep - ((maxx - minx + 1) << 2)) |
|
{ |
|
int rowCount = 0; |
|
int x = minx; |
|
#if CV_ENABLE_UNROLLED |
|
for( ; x + 4 <= maxx; x += 4, ptr += 16) |
|
{ |
|
int t0, t1, t2; |
|
t0 = ptr[0], t1 = ptr[1], t2 = ptr[2]; |
|
if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2) |
|
{ |
|
s0 += t0; |
|
s1 += t1; |
|
s2 += t2; |
|
sx += x; |
|
rowCount++; |
|
} |
|
t0 = ptr[4], t1 = ptr[5], t2 = ptr[6]; |
|
if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2) |
|
{ |
|
s0 += t0; |
|
s1 += t1; |
|
s2 += t2; |
|
sx += x + 1; |
|
rowCount++; |
|
} |
|
t0 = ptr[8], t1 = ptr[9], t2 = ptr[10]; |
|
if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2) |
|
{ |
|
s0 += t0; |
|
s1 += t1; |
|
s2 += t2; |
|
sx += x + 2; |
|
rowCount++; |
|
} |
|
t0 = ptr[12], t1 = ptr[13], t2 = ptr[14]; |
|
if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2) |
|
{ |
|
s0 += t0; |
|
s1 += t1; |
|
s2 += t2; |
|
sx += x + 3; |
|
rowCount++; |
|
} |
|
} |
|
#endif |
|
for(; x <= maxx; x++, ptr += 4) |
|
{ |
|
int t0 = ptr[0], t1 = ptr[1], t2 = ptr[2]; |
|
if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2) |
|
{ |
|
s0 += t0; |
|
s1 += t1; |
|
s2 += t2; |
|
sx += x; |
|
rowCount++; |
|
} |
|
} |
|
if(rowCount == 0) |
|
continue; |
|
count += rowCount; |
|
sy += y * rowCount; |
|
} |
|
|
|
if( count == 0 ) |
|
break; |
|
|
|
int x1 = sx / count; |
|
int y1 = sy / count; |
|
s0 = s0 / count; |
|
s1 = s1 / count; |
|
s2 = s2 / count; |
|
|
|
bool stopFlag = (x0 == x1 && y0 == y1) || (abs(x1 - x0) + abs(y1 - y0) + |
|
tab[s0 - c0 + 255] + tab[s1 - c1 + 255] + tab[s2 - c2 + 255] <= eps); |
|
|
|
//revise the pointer corresponding to the new (y0,x0) |
|
revx = x1 - x0; |
|
revy = y1 - y0; |
|
|
|
x0 = x1; |
|
y0 = y1; |
|
c0 = s0; |
|
c1 = s1; |
|
c2 = s2; |
|
|
|
if( stopFlag ) |
|
break; |
|
} //for iter |
|
|
|
dptr[0] = (uchar)c0; |
|
dptr[1] = (uchar)c1; |
|
dptr[2] = (uchar)c2; |
|
dptr[3] = (uchar)c3; |
|
|
|
COOR coor; |
|
coor.x = (short)x0; |
|
coor.y = (short)y0; |
|
return coor; |
|
} |
|
|
|
void meanShiftFiltering_(const Mat &src_roi, Mat &dst_roi, int sp, int sr, cv::TermCriteria crit) |
|
{ |
|
if( src_roi.empty() ) |
|
CV_Error(cv::Error::StsBadArg, "The input image is empty" ); |
|
|
|
if( src_roi.depth() != CV_8U || src_roi.channels() != 4 ) |
|
CV_Error(cv::Error::StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" ); |
|
|
|
CV_Assert( (src_roi.cols == dst_roi.cols) && (src_roi.rows == dst_roi.rows) ); |
|
CV_Assert( !(dst_roi.step & 0x3) ); |
|
|
|
if( !(crit.type & cv::TermCriteria::MAX_ITER) ) |
|
crit.maxCount = 5; |
|
int maxIter = std::min(std::max(crit.maxCount, 1), 100); |
|
float eps; |
|
if( !(crit.type & cv::TermCriteria::EPS) ) |
|
eps = 1.f; |
|
eps = (float)std::max(crit.epsilon, 0.0); |
|
|
|
int tab[512]; |
|
for(int i = 0; i < 512; i++) |
|
tab[i] = (i - 255) * (i - 255); |
|
uchar *sptr = src_roi.data; |
|
uchar *dptr = dst_roi.data; |
|
int sstep = (int)src_roi.step; |
|
int dstep = (int)dst_roi.step; |
|
cv::Size size = src_roi.size(); |
|
|
|
for(int i = 0; i < size.height; i++, sptr += sstep - (size.width << 2), |
|
dptr += dstep - (size.width << 2)) |
|
{ |
|
for(int j = 0; j < size.width; j++, sptr += 4, dptr += 4) |
|
{ |
|
do_meanShift(j, i, sptr, dptr, sstep, size, sp, sr, maxIter, eps, tab); |
|
} |
|
} |
|
} |
|
|
|
void meanShiftProc_(const Mat &src_roi, Mat &dst_roi, Mat &dstCoor_roi, int sp, int sr, cv::TermCriteria crit) |
|
{ |
|
|
|
if( src_roi.empty() ) |
|
CV_Error(cv::Error::StsBadArg, "The input image is empty" ); |
|
if( src_roi.depth() != CV_8U || src_roi.channels() != 4 ) |
|
CV_Error(cv::Error::StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" ); |
|
CV_Assert( (src_roi.cols == dst_roi.cols) && (src_roi.rows == dst_roi.rows) && |
|
(src_roi.cols == dstCoor_roi.cols) && (src_roi.rows == dstCoor_roi.rows)); |
|
CV_Assert( !(dstCoor_roi.step & 0x3) ); |
|
|
|
if( !(crit.type & cv::TermCriteria::MAX_ITER) ) |
|
crit.maxCount = 5; |
|
int maxIter = std::min(std::max(crit.maxCount, 1), 100); |
|
float eps; |
|
if( !(crit.type & cv::TermCriteria::EPS) ) |
|
eps = 1.f; |
|
eps = (float)std::max(crit.epsilon, 0.0); |
|
|
|
int tab[512]; |
|
for(int i = 0; i < 512; i++) |
|
tab[i] = (i - 255) * (i - 255); |
|
uchar *sptr = src_roi.data; |
|
uchar *dptr = dst_roi.data; |
|
short *dCoorptr = (short *)dstCoor_roi.data; |
|
int sstep = (int)src_roi.step; |
|
int dstep = (int)dst_roi.step; |
|
int dCoorstep = (int)dstCoor_roi.step >> 1; |
|
cv::Size size = src_roi.size(); |
|
|
|
for(int i = 0; i < size.height; i++, sptr += sstep - (size.width << 2), |
|
dptr += dstep - (size.width << 2), dCoorptr += dCoorstep - (size.width << 1)) |
|
{ |
|
for(int j = 0; j < size.width; j++, sptr += 4, dptr += 4, dCoorptr += 2) |
|
{ |
|
*((COOR *)dCoorptr) = do_meanShift(j, i, sptr, dptr, sstep, size, sp, sr, maxIter, eps, tab); |
|
} |
|
} |
|
|
|
} |
|
|
|
PARAM_TEST_CASE(ImgprocTestBase, MatType, MatType, MatType, MatType, MatType, bool) |
|
{ |
|
int type1, type2, type3, type4, type5; |
|
cv::Scalar val; |
|
// set up roi |
|
int roicols; |
|
int roirows; |
|
int src1x; |
|
int src1y; |
|
int src2x; |
|
int src2y; |
|
int dstx; |
|
int dsty; |
|
int dst1x; |
|
int dst1y; |
|
int maskx; |
|
int masky; |
|
|
|
//mat |
|
cv::Mat mat1; |
|
cv::Mat mat2; |
|
cv::Mat mask; |
|
cv::Mat dst; |
|
cv::Mat dst1; //bak, for two outputs |
|
|
|
//mat with roi |
|
cv::Mat mat1_roi; |
|
cv::Mat mat2_roi; |
|
cv::Mat mask_roi; |
|
cv::Mat dst_roi; |
|
cv::Mat dst1_roi; //bak |
|
|
|
//ocl mat |
|
cv::ocl::oclMat clmat1; |
|
cv::ocl::oclMat clmat2; |
|
cv::ocl::oclMat clmask; |
|
cv::ocl::oclMat cldst; |
|
cv::ocl::oclMat cldst1; //bak |
|
|
|
//ocl mat with roi |
|
cv::ocl::oclMat clmat1_roi; |
|
cv::ocl::oclMat clmat2_roi; |
|
cv::ocl::oclMat clmask_roi; |
|
cv::ocl::oclMat cldst_roi; |
|
cv::ocl::oclMat cldst1_roi; |
|
|
|
virtual void SetUp() |
|
{ |
|
type1 = GET_PARAM(0); |
|
type2 = GET_PARAM(1); |
|
type3 = GET_PARAM(2); |
|
type4 = GET_PARAM(3); |
|
type5 = GET_PARAM(4); |
|
cv::RNG &rng = TS::ptr()->get_rng(); |
|
cv::Size size(MWIDTH, MHEIGHT); |
|
double min = 1, max = 20; |
|
|
|
if(type1 != nulltype) |
|
{ |
|
mat1 = randomMat(rng, size, type1, min, max, false); |
|
clmat1 = mat1; |
|
} |
|
if(type2 != nulltype) |
|
{ |
|
mat2 = randomMat(rng, size, type2, min, max, false); |
|
clmat2 = mat2; |
|
} |
|
if(type3 != nulltype) |
|
{ |
|
dst = randomMat(rng, size, type3, min, max, false); |
|
cldst = dst; |
|
} |
|
if(type4 != nulltype) |
|
{ |
|
dst1 = randomMat(rng, size, type4, min, max, false); |
|
cldst1 = dst1; |
|
} |
|
if(type5 != nulltype) |
|
{ |
|
mask = randomMat(rng, size, CV_8UC1, 0, 2, false); |
|
cv::threshold(mask, mask, 0.5, 255., type5); |
|
clmask = mask; |
|
} |
|
val = cv::Scalar(rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0)); |
|
} |
|
|
|
void random_roi() |
|
{ |
|
#ifdef RANDOMROI |
|
//randomize ROI |
|
cv::RNG &rng = TS::ptr()->get_rng(); |
|
roicols = rng.uniform(1, mat1.cols); |
|
roirows = rng.uniform(1, mat1.rows); |
|
src1x = rng.uniform(0, mat1.cols - roicols); |
|
src1y = rng.uniform(0, mat1.rows - roirows); |
|
src2x = rng.uniform(0, mat2.cols - roicols); |
|
src2y = rng.uniform(0, mat2.rows - roirows); |
|
dstx = rng.uniform(0, dst.cols - roicols); |
|
dsty = rng.uniform(0, dst.rows - roirows); |
|
dst1x = rng.uniform(0, dst1.cols - roicols); |
|
dst1y = rng.uniform(0, dst1.rows - roirows); |
|
maskx = rng.uniform(0, mask.cols - roicols); |
|
masky = rng.uniform(0, mask.rows - roirows); |
|
#else |
|
roicols = mat1.cols; |
|
roirows = mat1.rows; |
|
src1x = 0; |
|
src1y = 0; |
|
src2x = 0; |
|
src2y = 0; |
|
dstx = 0; |
|
dsty = 0; |
|
dst1x = 0; |
|
dst1y = 0; |
|
maskx = 0; |
|
masky = 0; |
|
#endif |
|
|
|
|
|
if(type1 != nulltype) |
|
{ |
|
mat1_roi = mat1(Rect(src1x, src1y, roicols, roirows)); |
|
clmat1_roi = clmat1(Rect(src1x, src1y, roicols, roirows)); |
|
} |
|
if(type2 != nulltype) |
|
{ |
|
mat2_roi = mat2(Rect(src2x, src2y, roicols, roirows)); |
|
clmat2_roi = clmat2(Rect(src2x, src2y, roicols, roirows)); |
|
} |
|
if(type3 != nulltype) |
|
{ |
|
dst_roi = dst(Rect(dstx, dsty, roicols, roirows)); |
|
cldst_roi = cldst(Rect(dstx, dsty, roicols, roirows)); |
|
} |
|
if(type4 != nulltype) |
|
{ |
|
dst1_roi = dst1(Rect(dst1x, dst1y, roicols, roirows)); |
|
cldst1_roi = cldst1(Rect(dst1x, dst1y, roicols, roirows)); |
|
} |
|
if(type5 != nulltype) |
|
{ |
|
mask_roi = mask(Rect(maskx, masky, roicols, roirows)); |
|
clmask_roi = clmask(Rect(maskx, masky, roicols, roirows)); |
|
} |
|
} |
|
|
|
void Near(double threshold) |
|
{ |
|
cv::Mat cpu_cldst; |
|
cldst.download(cpu_cldst); |
|
EXPECT_MAT_NEAR(dst, cpu_cldst, threshold); |
|
} |
|
}; |
|
////////////////////////////////equalizeHist////////////////////////////////////////// |
|
|
|
struct equalizeHist : ImgprocTestBase {}; |
|
|
|
TEST_P(equalizeHist, Mat) |
|
{ |
|
if (mat1.type() != CV_8UC1 || mat1.type() != dst.type()) |
|
{ |
|
cout << "Unsupported type" << endl; |
|
EXPECT_DOUBLE_EQ(0.0, 0.0); |
|
} |
|
else |
|
{ |
|
for(int j = 0; j < LOOP_TIMES; j++) |
|
{ |
|
random_roi(); |
|
cv::equalizeHist(mat1_roi, dst_roi); |
|
cv::ocl::equalizeHist(clmat1_roi, cldst_roi); |
|
Near(1.1); |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////bilateralFilter//////////////////////////////////////////// |
|
|
|
struct bilateralFilter : ImgprocTestBase {}; |
|
|
|
TEST_P(bilateralFilter, Mat) |
|
{ |
|
double sigmacolor = 50.0; |
|
int radius = 9; |
|
int d = 2 * radius + 1; |
|
double sigmaspace = 20.0; |
|
int bordertype[] = {cv::BORDER_CONSTANT, cv::BORDER_REPLICATE, cv::BORDER_REFLECT, cv::BORDER_WRAP, cv::BORDER_REFLECT_101}; |
|
//const char *borderstr[] = {"BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", "BORDER_WRAP", "BORDER_REFLECT_101"}; |
|
|
|
if (mat1.depth() != CV_8U || mat1.type() != dst.type()) |
|
{ |
|
cout << "Unsupported type" << endl; |
|
EXPECT_DOUBLE_EQ(0.0, 0.0); |
|
} |
|
else |
|
{ |
|
for(size_t i = 0; i < sizeof(bordertype) / sizeof(int); i++) |
|
for(int j = 0; j < LOOP_TIMES; j++) |
|
{ |
|
random_roi(); |
|
if(((bordertype[i] != cv::BORDER_CONSTANT) && (bordertype[i] != cv::BORDER_REPLICATE) && (mat1_roi.cols <= radius)) || (mat1_roi.cols <= radius) || (mat1_roi.rows <= radius) || (mat1_roi.rows <= radius)) |
|
{ |
|
continue; |
|
} |
|
//if((dstx>=radius) && (dsty >= radius) && (dstx+cldst_roi.cols+radius <=cldst_roi.wholecols) && (dsty+cldst_roi.rows+radius <= cldst_roi.wholerows)) |
|
//{ |
|
// dst_roi.adjustROI(radius, radius, radius, radius); |
|
// cldst_roi.adjustROI(radius, radius, radius, radius); |
|
//} |
|
//else |
|
//{ |
|
// continue; |
|
//} |
|
|
|
cv::bilateralFilter(mat1_roi, dst_roi, d, sigmacolor, sigmaspace, bordertype[i] | cv::BORDER_ISOLATED); |
|
cv::ocl::bilateralFilter(clmat1_roi, cldst_roi, d, sigmacolor, sigmaspace, bordertype[i] | cv::BORDER_ISOLATED); |
|
Near(1.); |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
////////////////////////////////copyMakeBorder//////////////////////////////////////////// |
|
|
|
struct CopyMakeBorder : ImgprocTestBase {}; |
|
|
|
TEST_P(CopyMakeBorder, Mat) |
|
{ |
|
int bordertype[] = {cv::BORDER_CONSTANT, cv::BORDER_REPLICATE, cv::BORDER_REFLECT, cv::BORDER_WRAP, cv::BORDER_REFLECT_101}; |
|
//const char *borderstr[] = {"BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", "BORDER_WRAP", "BORDER_REFLECT_101"}; |
|
cv::RNG &rng = TS::ptr()->get_rng(); |
|
int top = rng.uniform(0, 10); |
|
int bottom = rng.uniform(0, 10); |
|
int left = rng.uniform(0, 10); |
|
int right = rng.uniform(0, 10); |
|
if (mat1.type() != dst.type()) |
|
{ |
|
cout << "Unsupported type" << endl; |
|
EXPECT_DOUBLE_EQ(0.0, 0.0); |
|
} |
|
else |
|
{ |
|
for(size_t i = 0; i < sizeof(bordertype) / sizeof(int); i++) |
|
for(int j = 0; j < LOOP_TIMES; j++) |
|
{ |
|
random_roi(); |
|
#ifdef RANDOMROI |
|
if(((bordertype[i] != cv::BORDER_CONSTANT) && (bordertype[i] != cv::BORDER_REPLICATE)) && (mat1_roi.cols <= left) || (mat1_roi.cols <= right) || (mat1_roi.rows <= top) || (mat1_roi.rows <= bottom)) |
|
{ |
|
continue; |
|
} |
|
if((dstx >= left) && (dsty >= top) && (dstx + cldst_roi.cols + right <= cldst_roi.wholecols) && (dsty + cldst_roi.rows + bottom <= cldst_roi.wholerows)) |
|
{ |
|
dst_roi.adjustROI(top, bottom, left, right); |
|
cldst_roi.adjustROI(top, bottom, left, right); |
|
} |
|
else |
|
{ |
|
continue; |
|
} |
|
#endif |
|
cv::copyMakeBorder(mat1_roi, dst_roi, top, bottom, left, right, bordertype[i] | cv::BORDER_ISOLATED, cv::Scalar(1.0)); |
|
cv::ocl::copyMakeBorder(clmat1_roi, cldst_roi, top, bottom, left, right, bordertype[i] | cv::BORDER_ISOLATED, cv::Scalar(1.0)); |
|
|
|
cv::Mat cpu_cldst; |
|
#ifndef RANDOMROI |
|
cldst_roi.download(cpu_cldst); |
|
EXPECT_MAT_NEAR(dst_roi, cpu_cldst, 0.0); |
|
#else |
|
cldst.download(cpu_cldst); |
|
EXPECT_MAT_NEAR(dst, cpu_cldst, 0.0); |
|
#endif |
|
|
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
////////////////////////////////cornerMinEigenVal////////////////////////////////////////// |
|
|
|
struct cornerMinEigenVal : ImgprocTestBase {}; |
|
|
|
TEST_P(cornerMinEigenVal, Mat) |
|
{ |
|
for(int j = 0; j < LOOP_TIMES; j++) |
|
{ |
|
|
|
random_roi(); |
|
int blockSize = 3, apertureSize = 3;//1 + 2 * (rand() % 4); |
|
//int borderType = cv::BORDER_CONSTANT; |
|
//int borderType = cv::BORDER_REPLICATE; |
|
int borderType = cv::BORDER_REFLECT; |
|
cv::cornerMinEigenVal(mat1_roi, dst_roi, blockSize, apertureSize, borderType); |
|
cv::ocl::cornerMinEigenVal(clmat1_roi, cldst_roi, blockSize, apertureSize, borderType); |
|
Near(1.); |
|
} |
|
} |
|
|
|
|
|
|
|
////////////////////////////////cornerHarris////////////////////////////////////////// |
|
|
|
struct cornerHarris : ImgprocTestBase {}; |
|
|
|
TEST_P(cornerHarris, Mat) |
|
{ |
|
for(int j = 0; j < LOOP_TIMES; j++) |
|
{ |
|
|
|
random_roi(); |
|
int blockSize = 3, apertureSize = 3; //1 + 2 * (rand() % 4); |
|
double k = 2; |
|
//int borderType = cv::BORDER_CONSTANT; |
|
//int borderType = cv::BORDER_REPLICATE; |
|
int borderType = cv::BORDER_REFLECT; |
|
cv::cornerHarris(mat1_roi, dst_roi, blockSize, apertureSize, k, borderType); |
|
cv::ocl::cornerHarris(clmat1_roi, cldst_roi, blockSize, apertureSize, k, borderType); |
|
Near(1.); |
|
} |
|
} |
|
|
|
|
|
////////////////////////////////integral///////////////////////////////////////////////// |
|
|
|
struct integral : ImgprocTestBase {}; |
|
|
|
TEST_P(integral, Mat) |
|
{ |
|
for(int j = 0; j < LOOP_TIMES; j++) |
|
{ |
|
random_roi(); |
|
|
|
cv::ocl::integral(clmat1_roi, cldst_roi, cldst1_roi); |
|
cv::integral(mat1_roi, dst_roi, dst1_roi); |
|
Near(0); |
|
|
|
cv::Mat cpu_cldst1; |
|
cldst1.download(cpu_cldst1); |
|
EXPECT_MAT_NEAR(dst1, cpu_cldst1, 0.0); |
|
} |
|
} |
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////// |
|
// warpAffine & warpPerspective |
|
|
|
PARAM_TEST_CASE(WarpTestBase, MatType, int) |
|
{ |
|
int type; |
|
cv::Size size; |
|
int interpolation; |
|
|
|
//src mat |
|
cv::Mat mat1; |
|
cv::Mat dst; |
|
|
|
// set up roi |
|
int src_roicols; |
|
int src_roirows; |
|
int dst_roicols; |
|
int dst_roirows; |
|
int src1x; |
|
int src1y; |
|
int dstx; |
|
int dsty; |
|
|
|
|
|
//src mat with roi |
|
cv::Mat mat1_roi; |
|
cv::Mat dst_roi; |
|
|
|
//ocl dst mat for testing |
|
cv::ocl::oclMat gdst_whole; |
|
|
|
//ocl mat with roi |
|
cv::ocl::oclMat gmat1; |
|
cv::ocl::oclMat gdst; |
|
|
|
virtual void SetUp() |
|
{ |
|
type = GET_PARAM(0); |
|
//dsize = GET_PARAM(1); |
|
interpolation = GET_PARAM(1); |
|
|
|
cv::RNG &rng = TS::ptr()->get_rng(); |
|
size = cv::Size(MWIDTH, MHEIGHT); |
|
|
|
mat1 = randomMat(rng, size, type, 5, 16, false); |
|
dst = randomMat(rng, size, type, 5, 16, false); |
|
|
|
} |
|
|
|
void random_roi() |
|
{ |
|
#ifdef RANDOMROI |
|
//randomize ROI |
|
cv::RNG &rng = TS::ptr()->get_rng(); |
|
src_roicols = rng.uniform(1, mat1.cols); |
|
src_roirows = rng.uniform(1, mat1.rows); |
|
dst_roicols = rng.uniform(1, dst.cols); |
|
dst_roirows = rng.uniform(1, dst.rows); |
|
src1x = rng.uniform(0, mat1.cols - src_roicols); |
|
src1y = rng.uniform(0, mat1.rows - src_roirows); |
|
dstx = rng.uniform(0, dst.cols - dst_roicols); |
|
dsty = rng.uniform(0, dst.rows - dst_roirows); |
|
#else |
|
src_roicols = mat1.cols; |
|
src_roirows = mat1.rows; |
|
dst_roicols = dst.cols; |
|
dst_roirows = dst.rows; |
|
src1x = 0; |
|
src1y = 0; |
|
dstx = 0; |
|
dsty = 0; |
|
#endif |
|
|
|
|
|
mat1_roi = mat1(Rect(src1x, src1y, src_roicols, src_roirows)); |
|
dst_roi = dst(Rect(dstx, dsty, dst_roicols, dst_roirows)); |
|
|
|
gdst_whole = dst; |
|
gdst = gdst_whole(Rect(dstx, dsty, dst_roicols, dst_roirows)); |
|
|
|
|
|
gmat1 = mat1_roi; |
|
} |
|
|
|
}; |
|
|
|
/////warpAffine |
|
|
|
struct WarpAffine : WarpTestBase {}; |
|
|
|
TEST_P(WarpAffine, Mat) |
|
{ |
|
static const double coeffs[2][3] = |
|
{ |
|
{cos(CV_PI / 6), -sin(CV_PI / 6), 100.0}, |
|
{sin(CV_PI / 6), cos(CV_PI / 6), -100.0} |
|
}; |
|
Mat M(2, 3, CV_64F, (void *)coeffs); |
|
|
|
for(int j = 0; j < LOOP_TIMES; j++) |
|
{ |
|
random_roi(); |
|
|
|
cv::warpAffine(mat1_roi, dst_roi, M, size, interpolation); |
|
cv::ocl::warpAffine(gmat1, gdst, M, size, interpolation); |
|
|
|
cv::Mat cpu_dst; |
|
gdst_whole.download(cpu_dst); |
|
EXPECT_MAT_NEAR(dst, cpu_dst, 1.0); |
|
} |
|
|
|
} |
|
|
|
|
|
// warpPerspective |
|
|
|
struct WarpPerspective : WarpTestBase {}; |
|
|
|
TEST_P(WarpPerspective, Mat) |
|
{ |
|
static const double coeffs[3][3] = |
|
{ |
|
{cos(3.14 / 6), -sin(3.14 / 6), 100.0}, |
|
{sin(3.14 / 6), cos(3.14 / 6), -100.0}, |
|
{0.0, 0.0, 1.0} |
|
}; |
|
Mat M(3, 3, CV_64F, (void *)coeffs); |
|
|
|
for(int j = 0; j < LOOP_TIMES; j++) |
|
{ |
|
random_roi(); |
|
|
|
cv::warpPerspective(mat1_roi, dst_roi, M, size, interpolation); |
|
cv::ocl::warpPerspective(gmat1, gdst, M, size, interpolation); |
|
|
|
cv::Mat cpu_dst; |
|
gdst_whole.download(cpu_dst); |
|
EXPECT_MAT_NEAR(dst, cpu_dst, 1.0); |
|
} |
|
|
|
} |
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////// |
|
// remap |
|
////////////////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
PARAM_TEST_CASE(Remap, MatType, MatType, MatType, int, int) |
|
{ |
|
int srcType; |
|
int map1Type; |
|
int map2Type; |
|
cv::Scalar val; |
|
|
|
int interpolation; |
|
int bordertype; |
|
|
|
cv::Mat src; |
|
cv::Mat dst; |
|
cv::Mat map1; |
|
cv::Mat map2; |
|
|
|
//std::vector<cv::ocl::Info> oclinfo; |
|
|
|
int src_roicols; |
|
int src_roirows; |
|
int dst_roicols; |
|
int dst_roirows; |
|
int map1_roicols; |
|
int map1_roirows; |
|
int map2_roicols; |
|
int map2_roirows; |
|
int srcx; |
|
int srcy; |
|
int dstx; |
|
int dsty; |
|
int map1x; |
|
int map1y; |
|
int map2x; |
|
int map2y; |
|
|
|
cv::Mat src_roi; |
|
cv::Mat dst_roi; |
|
cv::Mat map1_roi; |
|
cv::Mat map2_roi; |
|
|
|
//ocl mat for testing |
|
cv::ocl::oclMat gdst; |
|
|
|
//ocl mat with roi |
|
cv::ocl::oclMat gsrc_roi; |
|
cv::ocl::oclMat gdst_roi; |
|
cv::ocl::oclMat gmap1_roi; |
|
cv::ocl::oclMat gmap2_roi; |
|
|
|
virtual void SetUp() |
|
{ |
|
srcType = GET_PARAM(0); |
|
map1Type = GET_PARAM(1); |
|
map2Type = GET_PARAM(2); |
|
interpolation = GET_PARAM(3); |
|
bordertype = GET_PARAM(4); |
|
|
|
cv::RNG &rng = TS::ptr()->get_rng(); |
|
cv::Size srcSize = cv::Size(MWIDTH, MHEIGHT); |
|
cv::Size map1Size = cv::Size(MWIDTH, MHEIGHT); |
|
double min = 5, max = 16; |
|
|
|
if(srcType != nulltype) |
|
{ |
|
src = randomMat(rng, srcSize, srcType, min, max, false); |
|
} |
|
if((map1Type == CV_16SC2 && map2Type == nulltype) || (map1Type == CV_32FC2 && map2Type == nulltype)) |
|
{ |
|
map1 = randomMat(rng, map1Size, map1Type, min, max, false); |
|
} |
|
else if (map1Type == CV_32FC1 && map2Type == CV_32FC1) |
|
{ |
|
map1 = randomMat(rng, map1Size, map1Type, min, max, false); |
|
map2 = randomMat(rng, map1Size, map1Type, min, max, false); |
|
} |
|
|
|
else |
|
{ |
|
cout << "The wrong input type" << endl; |
|
return; |
|
} |
|
|
|
dst = randomMat(rng, map1Size, srcType, min, max, false); |
|
switch (src.channels()) |
|
{ |
|
case 1: |
|
val = cv::Scalar(rng.uniform(0.0, 10.0), 0, 0, 0); |
|
break; |
|
case 2: |
|
val = cv::Scalar(rng.uniform(0.0, 10.0), rng.uniform(0.0, 10.0), 0, 0); |
|
break; |
|
case 3: |
|
val = cv::Scalar(rng.uniform(0.0, 10.0), rng.uniform(0.0, 10.0), rng.uniform(0.0, 10.0), 0); |
|
break; |
|
case 4: |
|
val = cv::Scalar(rng.uniform(0.0, 10.0), rng.uniform(0.0, 10.0), rng.uniform(0.0, 10.0), rng.uniform(0.0, 10.0)); |
|
break; |
|
} |
|
|
|
} |
|
void random_roi() |
|
{ |
|
cv::RNG &rng = TS::ptr()->get_rng(); |
|
|
|
dst_roicols = rng.uniform(1, dst.cols); |
|
dst_roirows = rng.uniform(1, dst.rows); |
|
|
|
src_roicols = rng.uniform(1, src.cols); |
|
src_roirows = rng.uniform(1, src.rows); |
|
|
|
|
|
srcx = rng.uniform(0, src.cols - src_roicols); |
|
srcy = rng.uniform(0, src.rows - src_roirows); |
|
dstx = rng.uniform(0, dst.cols - dst_roicols); |
|
dsty = rng.uniform(0, dst.rows - dst_roirows); |
|
map1_roicols = dst_roicols; |
|
map1_roirows = dst_roirows; |
|
map2_roicols = dst_roicols; |
|
map2_roirows = dst_roirows; |
|
map1x = dstx; |
|
map1y = dsty; |
|
map2x = dstx; |
|
map2y = dsty; |
|
|
|
if((map1Type == CV_16SC2 && map2Type == nulltype) || (map1Type == CV_32FC2 && map2Type == nulltype)) |
|
{ |
|
map1_roi = map1(Rect(map1x, map1y, map1_roicols, map1_roirows)); |
|
gmap1_roi = map1_roi; |
|
} |
|
|
|
else if (map1Type == CV_32FC1 && map2Type == CV_32FC1) |
|
{ |
|
map1_roi = map1(Rect(map1x, map1y, map1_roicols, map1_roirows)); |
|
gmap1_roi = map1_roi; |
|
map2_roi = map2(Rect(map2x, map2y, map2_roicols, map2_roirows)); |
|
gmap2_roi = map2_roi; |
|
} |
|
src_roi = src(Rect(srcx, srcy, src_roicols, src_roirows)); |
|
dst_roi = dst(Rect(dstx, dsty, dst_roicols, dst_roirows)); |
|
gsrc_roi = src_roi; |
|
gdst = dst; |
|
gdst_roi = gdst(Rect(dstx, dsty, dst_roicols, dst_roirows)); |
|
} |
|
}; |
|
|
|
TEST_P(Remap, Mat) |
|
{ |
|
if((interpolation == 1 && map1Type == CV_16SC2) || (map1Type == CV_32FC1 && map2Type == nulltype) || (map1Type == CV_16SC2 && map2Type == CV_32FC1) || (map1Type == CV_32FC2 && map2Type == CV_32FC1)) |
|
{ |
|
cout << "Don't support the dataType" << endl; |
|
return; |
|
} |
|
int bordertype[] = {cv::BORDER_CONSTANT, cv::BORDER_REPLICATE/*,BORDER_REFLECT,BORDER_WRAP,BORDER_REFLECT_101*/}; |
|
//const char *borderstr[] = {"BORDER_CONSTANT", "BORDER_REPLICATE"/*, "BORDER_REFLECT","BORDER_WRAP","BORDER_REFLECT_101"*/}; |
|
// for(int i = 0; i < sizeof(bordertype)/sizeof(int); i++) |
|
for(int j = 0; j < LOOP_TIMES; j++) |
|
{ |
|
random_roi(); |
|
cv::remap(src_roi, dst_roi, map1_roi, map2_roi, interpolation, bordertype[0], val); |
|
cv::ocl::remap(gsrc_roi, gdst_roi, gmap1_roi, gmap2_roi, interpolation, bordertype[0], val); |
|
cv::Mat cpu_dst; |
|
gdst.download(cpu_dst); |
|
|
|
if(interpolation == 0) |
|
EXPECT_MAT_NEAR(dst, cpu_dst, 1.0); |
|
EXPECT_MAT_NEAR(dst, cpu_dst, 2.0); |
|
|
|
} |
|
} |
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////// |
|
// resize |
|
|
|
PARAM_TEST_CASE(Resize, MatType, cv::Size, double, double, int) |
|
{ |
|
int type; |
|
cv::Size dsize; |
|
double fx, fy; |
|
int interpolation; |
|
|
|
//src mat |
|
cv::Mat mat1; |
|
cv::Mat dst; |
|
|
|
// set up roi |
|
int src_roicols; |
|
int src_roirows; |
|
int dst_roicols; |
|
int dst_roirows; |
|
int src1x; |
|
int src1y; |
|
int dstx; |
|
int dsty; |
|
|
|
//src mat with roi |
|
cv::Mat mat1_roi; |
|
cv::Mat dst_roi; |
|
|
|
//ocl dst mat for testing |
|
cv::ocl::oclMat gdst_whole; |
|
|
|
//ocl mat with roi |
|
cv::ocl::oclMat gmat1; |
|
cv::ocl::oclMat gdst; |
|
|
|
virtual void SetUp() |
|
{ |
|
type = GET_PARAM(0); |
|
dsize = GET_PARAM(1); |
|
fx = GET_PARAM(2); |
|
fy = GET_PARAM(3); |
|
interpolation = GET_PARAM(4); |
|
|
|
cv::RNG &rng = TS::ptr()->get_rng(); |
|
|
|
cv::Size size(MWIDTH, MHEIGHT); |
|
|
|
if(dsize == cv::Size() && !(fx > 0 && fy > 0)) |
|
{ |
|
cout << "invalid dsize and fx fy" << endl; |
|
return; |
|
} |
|
|
|
if(dsize == cv::Size()) |
|
{ |
|
dsize.width = (int)(size.width * fx); |
|
dsize.height = (int)(size.height * fy); |
|
} |
|
|
|
mat1 = randomMat(rng, size, type, 5, 16, false); |
|
dst = randomMat(rng, dsize, type, 5, 16, false); |
|
|
|
} |
|
|
|
void random_roi() |
|
{ |
|
#ifdef RANDOMROI |
|
//randomize ROI |
|
cv::RNG &rng = TS::ptr()->get_rng(); |
|
src_roicols = rng.uniform(1, mat1.cols); |
|
src_roirows = rng.uniform(1, mat1.rows); |
|
dst_roicols = (int)(src_roicols * fx); |
|
dst_roirows = (int)(src_roirows * fy); |
|
src1x = rng.uniform(0, mat1.cols - src_roicols); |
|
src1y = rng.uniform(0, mat1.rows - src_roirows); |
|
dstx = rng.uniform(0, dst.cols - dst_roicols); |
|
dsty = rng.uniform(0, dst.rows - dst_roirows); |
|
#else |
|
src_roicols = mat1.cols; |
|
src_roirows = mat1.rows; |
|
dst_roicols = dst.cols; |
|
dst_roirows = dst.rows; |
|
src1x = 0; |
|
src1y = 0; |
|
dstx = 0; |
|
dsty = 0; |
|
#endif |
|
dsize.width = dst_roicols; |
|
dsize.height = dst_roirows; |
|
mat1_roi = mat1(Rect(src1x, src1y, src_roicols, src_roirows)); |
|
dst_roi = dst(Rect(dstx, dsty, dst_roicols, dst_roirows)); |
|
|
|
gdst_whole = dst; |
|
gdst = gdst_whole(Rect(dstx, dsty, dst_roicols, dst_roirows)); |
|
|
|
dsize.width = (int)(mat1_roi.size().width * fx); |
|
dsize.height = (int)(mat1_roi.size().height * fy); |
|
|
|
gmat1 = mat1_roi; |
|
} |
|
|
|
}; |
|
|
|
TEST_P(Resize, Mat) |
|
{ |
|
for(int j = 0; j < LOOP_TIMES; j++) |
|
{ |
|
random_roi(); |
|
|
|
// cv::resize(mat1_roi, dst_roi, dsize, fx, fy, interpolation); |
|
// cv::ocl::resize(gmat1, gdst, dsize, fx, fy, interpolation); |
|
if(dst_roicols < 1 || dst_roirows < 1) continue; |
|
cv::resize(mat1_roi, dst_roi, dsize, fx, fy, interpolation); |
|
cv::ocl::resize(gmat1, gdst, dsize, fx, fy, interpolation); |
|
|
|
cv::Mat cpu_dst; |
|
gdst_whole.download(cpu_dst); |
|
EXPECT_MAT_NEAR(dst, cpu_dst, 1.0); |
|
} |
|
|
|
} |
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////// |
|
//threshold |
|
|
|
PARAM_TEST_CASE(Threshold, MatType, ThreshOp) |
|
{ |
|
int type; |
|
int threshOp; |
|
|
|
//src mat |
|
cv::Mat mat1; |
|
cv::Mat dst; |
|
|
|
// set up roi |
|
int roicols; |
|
int roirows; |
|
int src1x; |
|
int src1y; |
|
int dstx; |
|
int dsty; |
|
|
|
//src mat with roi |
|
cv::Mat mat1_roi; |
|
cv::Mat dst_roi; |
|
|
|
//ocl dst mat for testing |
|
cv::ocl::oclMat gdst_whole; |
|
|
|
//ocl mat with roi |
|
cv::ocl::oclMat gmat1; |
|
cv::ocl::oclMat gdst; |
|
|
|
virtual void SetUp() |
|
{ |
|
type = GET_PARAM(0); |
|
threshOp = GET_PARAM(1); |
|
|
|
cv::RNG &rng = TS::ptr()->get_rng(); |
|
cv::Size size(MWIDTH, MHEIGHT); |
|
|
|
mat1 = randomMat(rng, size, type, 5, 16, false); |
|
dst = randomMat(rng, size, type, 5, 16, false); |
|
} |
|
|
|
void random_roi() |
|
{ |
|
#ifdef RANDOMROI |
|
//randomize ROI |
|
cv::RNG &rng = TS::ptr()->get_rng(); |
|
roicols = rng.uniform(1, mat1.cols); |
|
roirows = rng.uniform(1, mat1.rows); |
|
src1x = rng.uniform(0, mat1.cols - roicols); |
|
src1y = rng.uniform(0, mat1.rows - roirows); |
|
dstx = rng.uniform(0, dst.cols - roicols); |
|
dsty = rng.uniform(0, dst.rows - roirows); |
|
#else |
|
roicols = mat1.cols; |
|
roirows = mat1.rows; |
|
src1x = 0; |
|
src1y = 0; |
|
dstx = 0; |
|
dsty = 0; |
|
#endif |
|
|
|
mat1_roi = mat1(Rect(src1x, src1y, roicols, roirows)); |
|
dst_roi = dst(Rect(dstx, dsty, roicols, roirows)); |
|
|
|
gdst_whole = dst; |
|
gdst = gdst_whole(Rect(dstx, dsty, roicols, roirows)); |
|
|
|
|
|
gmat1 = mat1_roi; |
|
} |
|
|
|
}; |
|
|
|
TEST_P(Threshold, Mat) |
|
{ |
|
for(int j = 0; j < LOOP_TIMES; j++) |
|
{ |
|
random_roi(); |
|
double maxVal = randomDouble(20.0, 127.0); |
|
double thresh = randomDouble(0.0, maxVal); |
|
|
|
cv::threshold(mat1_roi, dst_roi, thresh, maxVal, threshOp); |
|
cv::ocl::threshold(gmat1, gdst, thresh, maxVal, threshOp); |
|
|
|
cv::Mat cpu_dst; |
|
gdst_whole.download(cpu_dst); |
|
EXPECT_MAT_NEAR(dst, cpu_dst, 1); |
|
} |
|
|
|
} |
|
|
|
PARAM_TEST_CASE(meanShiftTestBase, MatType, MatType, int, int, cv::TermCriteria) |
|
{ |
|
int type, typeCoor; |
|
int sp, sr; |
|
cv::TermCriteria crit; |
|
//src mat |
|
cv::Mat src; |
|
cv::Mat dst; |
|
cv::Mat dstCoor; |
|
|
|
//set up roi |
|
int roicols; |
|
int roirows; |
|
int srcx; |
|
int srcy; |
|
int dstx; |
|
int dsty; |
|
|
|
//src mat with roi |
|
cv::Mat src_roi; |
|
cv::Mat dst_roi; |
|
cv::Mat dstCoor_roi; |
|
|
|
//ocl dst mat |
|
cv::ocl::oclMat gdst; |
|
cv::ocl::oclMat gdstCoor; |
|
|
|
//ocl mat with roi |
|
cv::ocl::oclMat gsrc_roi; |
|
cv::ocl::oclMat gdst_roi; |
|
cv::ocl::oclMat gdstCoor_roi; |
|
|
|
virtual void SetUp() |
|
{ |
|
type = GET_PARAM(0); |
|
typeCoor = GET_PARAM(1); |
|
sp = GET_PARAM(2); |
|
sr = GET_PARAM(3); |
|
crit = GET_PARAM(4); |
|
|
|
cv::RNG &rng = TS::ptr()->get_rng(); |
|
|
|
// MWIDTH=256, MHEIGHT=256. defined in utility.hpp |
|
cv::Size size = cv::Size(MWIDTH, MHEIGHT); |
|
|
|
src = randomMat(rng, size, type, 5, 16, false); |
|
dst = randomMat(rng, size, type, 5, 16, false); |
|
dstCoor = randomMat(rng, size, typeCoor, 5, 16, false); |
|
|
|
} |
|
|
|
void random_roi() |
|
{ |
|
#ifdef RANDOMROI |
|
cv::RNG &rng = TS::ptr()->get_rng(); |
|
|
|
//randomize ROI |
|
roicols = rng.uniform(1, src.cols); |
|
roirows = rng.uniform(1, src.rows); |
|
srcx = rng.uniform(0, src.cols - roicols); |
|
srcy = rng.uniform(0, src.rows - roirows); |
|
dstx = rng.uniform(0, dst.cols - roicols); |
|
dsty = rng.uniform(0, dst.rows - roirows); |
|
#else |
|
roicols = src.cols; |
|
roirows = src.rows; |
|
srcx = 0; |
|
srcy = 0; |
|
dstx = 0; |
|
dsty = 0; |
|
#endif |
|
src_roi = src(Rect(srcx, srcy, roicols, roirows)); |
|
dst_roi = dst(Rect(dstx, dsty, roicols, roirows)); |
|
dstCoor_roi = dstCoor(Rect(dstx, dsty, roicols, roirows)); |
|
|
|
gdst = dst; |
|
gdstCoor = dstCoor; |
|
|
|
gsrc_roi = src_roi; |
|
gdst_roi = gdst(Rect(dstx, dsty, roicols, roirows)); //gdst_roi |
|
gdstCoor_roi = gdstCoor(Rect(dstx, dsty, roicols, roirows)); |
|
} |
|
}; |
|
|
|
/////////////////////////meanShiftFiltering///////////////////////////// |
|
struct meanShiftFiltering : meanShiftTestBase {}; |
|
|
|
TEST_P(meanShiftFiltering, Mat) |
|
{ |
|
|
|
for(int j = 0; j < LOOP_TIMES; j++) |
|
{ |
|
random_roi(); |
|
|
|
cv::Mat cpu_gdst; |
|
gdst.download(cpu_gdst); |
|
|
|
meanShiftFiltering_(src_roi, dst_roi, sp, sr, crit); |
|
cv::ocl::meanShiftFiltering(gsrc_roi, gdst_roi, sp, sr, crit); |
|
|
|
gdst.download(cpu_gdst); |
|
EXPECT_MAT_NEAR(dst, cpu_gdst, 0.0); |
|
} |
|
} |
|
|
|
///////////////////////////meanShiftProc////////////////////////////////// |
|
struct meanShiftProc : meanShiftTestBase {}; |
|
|
|
TEST_P(meanShiftProc, Mat) |
|
{ |
|
|
|
for(int j = 0; j < LOOP_TIMES; j++) |
|
{ |
|
random_roi(); |
|
|
|
cv::Mat cpu_gdst; |
|
cv::Mat cpu_gdstCoor; |
|
|
|
meanShiftProc_(src_roi, dst_roi, dstCoor_roi, sp, sr, crit); |
|
cv::ocl::meanShiftProc(gsrc_roi, gdst_roi, gdstCoor_roi, sp, sr, crit); |
|
|
|
gdst.download(cpu_gdst); |
|
gdstCoor.download(cpu_gdstCoor); |
|
EXPECT_MAT_NEAR(dst, cpu_gdst, 0.0); |
|
EXPECT_MAT_NEAR(dstCoor, cpu_gdstCoor, 0.0); |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////////////// |
|
//hist |
|
void calcHistGold(const cv::Mat &src, cv::Mat &hist) |
|
{ |
|
hist.create(1, 256, CV_32SC1); |
|
hist.setTo(cv::Scalar::all(0)); |
|
|
|
int *hist_row = hist.ptr<int>(); |
|
for (int y = 0; y < src.rows; ++y) |
|
{ |
|
const uchar *src_row = src.ptr(y); |
|
|
|
for (int x = 0; x < src.cols; ++x) |
|
++hist_row[src_row[x]]; |
|
} |
|
} |
|
|
|
PARAM_TEST_CASE(histTestBase, MatType, MatType) |
|
{ |
|
int type_src; |
|
|
|
//src mat |
|
cv::Mat src; |
|
cv::Mat dst_hist; |
|
//set up roi |
|
int roicols; |
|
int roirows; |
|
int srcx; |
|
int srcy; |
|
//src mat with roi |
|
cv::Mat src_roi; |
|
//ocl dst mat, dst_hist and gdst_hist don't have roi |
|
cv::ocl::oclMat gdst_hist; |
|
//ocl mat with roi |
|
cv::ocl::oclMat gsrc_roi; |
|
|
|
virtual void SetUp() |
|
{ |
|
type_src = GET_PARAM(0); |
|
|
|
cv::RNG &rng = TS::ptr()->get_rng(); |
|
cv::Size size = cv::Size(MWIDTH, MHEIGHT); |
|
|
|
src = randomMat(rng, size, type_src, 0, 256, false); |
|
|
|
} |
|
|
|
void random_roi() |
|
{ |
|
#ifdef RANDOMROI |
|
cv::RNG &rng = TS::ptr()->get_rng(); |
|
|
|
//randomize ROI |
|
roicols = rng.uniform(1, src.cols); |
|
roirows = rng.uniform(1, src.rows); |
|
srcx = rng.uniform(0, src.cols - roicols); |
|
srcy = rng.uniform(0, src.rows - roirows); |
|
#else |
|
roicols = src.cols; |
|
roirows = src.rows; |
|
srcx = 0; |
|
srcy = 0; |
|
#endif |
|
src_roi = src(Rect(srcx, srcy, roicols, roirows)); |
|
|
|
gsrc_roi = src_roi; |
|
} |
|
}; |
|
///////////////////////////calcHist/////////////////////////////////////// |
|
struct calcHist : histTestBase {}; |
|
|
|
TEST_P(calcHist, Mat) |
|
{ |
|
for(int j = 0; j < LOOP_TIMES; j++) |
|
{ |
|
random_roi(); |
|
|
|
cv::Mat cpu_hist; |
|
|
|
calcHistGold(src_roi, dst_hist); |
|
cv::ocl::calcHist(gsrc_roi, gdst_hist); |
|
|
|
gdst_hist.download(cpu_hist); |
|
EXPECT_MAT_NEAR(dst_hist, cpu_hist, 0.0); |
|
} |
|
} |
|
/////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
// CLAHE |
|
namespace |
|
{ |
|
IMPLEMENT_PARAM_CLASS(ClipLimit, double) |
|
} |
|
|
|
PARAM_TEST_CASE(CLAHE, cv::Size, ClipLimit) |
|
{ |
|
cv::Size size; |
|
double clipLimit; |
|
|
|
cv::Mat src; |
|
cv::Mat dst_gold; |
|
|
|
cv::ocl::oclMat g_src; |
|
cv::ocl::oclMat g_dst; |
|
|
|
virtual void SetUp() |
|
{ |
|
size = GET_PARAM(0); |
|
clipLimit = GET_PARAM(1); |
|
|
|
cv::RNG &rng = TS::ptr()->get_rng(); |
|
src = randomMat(rng, size, CV_8UC1, 0, 256, false); |
|
g_src.upload(src); |
|
} |
|
}; |
|
|
|
TEST_P(CLAHE, Accuracy) |
|
{ |
|
cv::Ptr<cv::CLAHE> clahe = cv::ocl::createCLAHE(clipLimit); |
|
clahe->apply(g_src, g_dst); |
|
cv::Mat dst(g_dst); |
|
|
|
cv::Ptr<cv::CLAHE> clahe_gold = cv::createCLAHE(clipLimit); |
|
clahe_gold->apply(src, dst_gold); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 1.0); |
|
} |
|
|
|
///////////////////////////Convolve////////////////////////////////// |
|
PARAM_TEST_CASE(ConvolveTestBase, MatType, bool) |
|
{ |
|
int type; |
|
//src mat |
|
cv::Mat mat1; |
|
cv::Mat mat2; |
|
cv::Mat dst; |
|
cv::Mat dst1; //bak, for two outputs |
|
// set up roi |
|
int roicols; |
|
int roirows; |
|
int src1x; |
|
int src1y; |
|
int src2x; |
|
int src2y; |
|
int dstx; |
|
int dsty; |
|
//src mat with roi |
|
cv::Mat mat1_roi; |
|
cv::Mat mat2_roi; |
|
cv::Mat dst_roi; |
|
cv::Mat dst1_roi; //bak |
|
//ocl dst mat for testing |
|
cv::ocl::oclMat gdst_whole; |
|
cv::ocl::oclMat gdst1_whole; //bak |
|
//ocl mat with roi |
|
cv::ocl::oclMat gmat1; |
|
cv::ocl::oclMat gmat2; |
|
cv::ocl::oclMat gdst; |
|
cv::ocl::oclMat gdst1; //bak |
|
virtual void SetUp() |
|
{ |
|
type = GET_PARAM(0); |
|
|
|
cv::RNG &rng = TS::ptr()->get_rng(); |
|
|
|
cv::Size size(MWIDTH, MHEIGHT); |
|
|
|
mat1 = randomMat(rng, size, type, 5, 16, false); |
|
mat2 = randomMat(rng, size, type, 5, 16, false); |
|
dst = randomMat(rng, size, type, 5, 16, false); |
|
dst1 = randomMat(rng, size, type, 5, 16, false); |
|
} |
|
void random_roi() |
|
{ |
|
cv::RNG &rng = TS::ptr()->get_rng(); |
|
|
|
#ifdef RANDOMROI |
|
//randomize ROI |
|
roicols = rng.uniform(1, mat1.cols); |
|
roirows = rng.uniform(1, mat1.rows); |
|
src1x = rng.uniform(0, mat1.cols - roicols); |
|
src1y = rng.uniform(0, mat1.rows - roirows); |
|
dstx = rng.uniform(0, dst.cols - roicols); |
|
dsty = rng.uniform(0, dst.rows - roirows); |
|
#else |
|
roicols = mat1.cols; |
|
roirows = mat1.rows; |
|
src1x = 0; |
|
src1y = 0; |
|
dstx = 0; |
|
dsty = 0; |
|
#endif |
|
src2x = rng.uniform(0, mat2.cols - roicols); |
|
src2y = rng.uniform(0, mat2.rows - roirows); |
|
mat1_roi = mat1(Rect(src1x, src1y, roicols, roirows)); |
|
mat2_roi = mat2(Rect(src2x, src2y, roicols, roirows)); |
|
dst_roi = dst(Rect(dstx, dsty, roicols, roirows)); |
|
dst1_roi = dst1(Rect(dstx, dsty, roicols, roirows)); |
|
|
|
gdst_whole = dst; |
|
gdst = gdst_whole(Rect(dstx, dsty, roicols, roirows)); |
|
|
|
gdst1_whole = dst1; |
|
gdst1 = gdst1_whole(Rect(dstx, dsty, roicols, roirows)); |
|
|
|
gmat1 = mat1_roi; |
|
gmat2 = mat2_roi; |
|
//end |
|
} |
|
|
|
}; |
|
struct Convolve : ConvolveTestBase {}; |
|
|
|
void conv2( cv::Mat x, cv::Mat y, cv::Mat z) |
|
{ |
|
int N1 = x.rows; |
|
int M1 = x.cols; |
|
int N2 = y.rows; |
|
int M2 = y.cols; |
|
|
|
int i, j; |
|
int m, n; |
|
|
|
|
|
float *kerneldata = (float *)(x.data); |
|
float *srcdata = (float *)(y.data); |
|
float *dstdata = (float *)(z.data); |
|
|
|
for(i = 0; i < N2; i++) |
|
for(j = 0; j < M2; j++) |
|
{ |
|
float temp = 0; |
|
for(m = 0; m < N1; m++) |
|
for(n = 0; n < M1; n++) |
|
{ |
|
int r, c; |
|
r = min(max((i - N1 / 2 + m), 0), N2 - 1); |
|
c = min(max((j - M1 / 2 + n), 0), M2 - 1); |
|
temp += kerneldata[m * (x.step >> 2) + n] * srcdata[r * (y.step >> 2) + c]; |
|
} |
|
dstdata[i * (z.step >> 2) + j] = temp; |
|
} |
|
} |
|
TEST_P(Convolve, Mat) |
|
{ |
|
if(mat1.type() != CV_32FC1) |
|
{ |
|
cout << "\tUnsupported type\t\n"; |
|
} |
|
for(int j = 0; j < LOOP_TIMES; j++) |
|
{ |
|
random_roi(); |
|
cv::ocl::oclMat temp1; |
|
cv::Mat kernel_cpu = mat2(Rect(0, 0, 7, 7)); |
|
temp1 = kernel_cpu; |
|
|
|
conv2(kernel_cpu, mat1_roi, dst_roi); |
|
cv::ocl::convolve(gmat1, temp1, gdst); |
|
|
|
cv::Mat cpu_dst; |
|
gdst_whole.download(cpu_dst); |
|
EXPECT_MAT_NEAR(dst, cpu_dst, .1); |
|
|
|
} |
|
} |
|
|
|
//////////////////////////////// ColumnSum ////////////////////////////////////// |
|
PARAM_TEST_CASE(ColumnSum, cv::Size) |
|
{ |
|
cv::Size size; |
|
cv::Mat src; |
|
|
|
virtual void SetUp() |
|
{ |
|
size = GET_PARAM(0); |
|
} |
|
}; |
|
|
|
TEST_P(ColumnSum, Accuracy) |
|
{ |
|
cv::Mat src = randomMat(size, CV_32FC1); |
|
cv::ocl::oclMat d_dst; |
|
cv::ocl::oclMat d_src(src); |
|
|
|
cv::ocl::columnSum(d_src, d_dst); |
|
|
|
cv::Mat dst(d_dst); |
|
|
|
for (int j = 0; j < src.cols; ++j) |
|
{ |
|
float gold = src.at<float>(0, j); |
|
float res = dst.at<float>(0, j); |
|
ASSERT_NEAR(res, gold, 1e-5); |
|
} |
|
|
|
for (int i = 1; i < src.rows; ++i) |
|
{ |
|
for (int j = 0; j < src.cols; ++j) |
|
{ |
|
float gold = src.at<float>(i, j) += src.at<float>(i - 1, j); |
|
float res = dst.at<float>(i, j); |
|
ASSERT_NEAR(res, gold, 1e-5); |
|
} |
|
} |
|
} |
|
///////////////////////////////////////////////////////////////////////////////////// |
|
|
|
INSTANTIATE_TEST_CASE_P(ImgprocTestBase, equalizeHist, Combine( |
|
ONE_TYPE(CV_8UC1), |
|
NULL_TYPE, |
|
ONE_TYPE(CV_8UC1), |
|
NULL_TYPE, |
|
NULL_TYPE, |
|
Values(false))); // Values(false) is the reserved parameter |
|
|
|
//INSTANTIATE_TEST_CASE_P(ImgprocTestBase, bilateralFilter, Combine( |
|
// ONE_TYPE(CV_8UC1), |
|
// NULL_TYPE, |
|
// ONE_TYPE(CV_8UC1), |
|
// NULL_TYPE, |
|
// NULL_TYPE, |
|
// Values(false))); // Values(false) is the reserved parameter |
|
INSTANTIATE_TEST_CASE_P(ImgprocTestBase, bilateralFilter, Combine( |
|
Values(CV_8UC1, CV_8UC3), |
|
NULL_TYPE, |
|
Values(CV_8UC1, CV_8UC3), |
|
NULL_TYPE, |
|
NULL_TYPE, |
|
Values(false))); // Values(false) is the reserved parameter |
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(ImgprocTestBase, CopyMakeBorder, Combine( |
|
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32SC1, CV_32SC3, CV_32SC4, CV_32FC1, CV_32FC3, CV_32FC4), |
|
NULL_TYPE, |
|
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32SC1, CV_32SC3, CV_32SC4, CV_32FC1, CV_32FC3, CV_32FC4), |
|
NULL_TYPE, |
|
NULL_TYPE, |
|
Values(false))); // Values(false) is the reserved parameter |
|
|
|
INSTANTIATE_TEST_CASE_P(ImgprocTestBase, cornerMinEigenVal, Combine( |
|
Values(CV_8UC1, CV_32FC1), |
|
NULL_TYPE, |
|
ONE_TYPE(CV_32FC1), |
|
NULL_TYPE, |
|
NULL_TYPE, |
|
Values(false))); // Values(false) is the reserved parameter |
|
|
|
INSTANTIATE_TEST_CASE_P(ImgprocTestBase, cornerHarris, Combine( |
|
Values(CV_8UC1, CV_32FC1), |
|
NULL_TYPE, |
|
ONE_TYPE(CV_32FC1), |
|
NULL_TYPE, |
|
NULL_TYPE, |
|
Values(false))); // Values(false) is the reserved parameter |
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(ImgprocTestBase, integral, Combine( |
|
ONE_TYPE(CV_8UC1), |
|
NULL_TYPE, |
|
ONE_TYPE(CV_32SC1), |
|
ONE_TYPE(CV_32FC1), |
|
NULL_TYPE, |
|
Values(false))); // Values(false) is the reserved parameter |
|
|
|
INSTANTIATE_TEST_CASE_P(Imgproc, WarpAffine, Combine( |
|
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1, CV_32FC3, CV_32FC4), |
|
Values((MatType)cv::INTER_NEAREST, (MatType)cv::INTER_LINEAR, |
|
(MatType)cv::INTER_CUBIC, (MatType)(cv::INTER_NEAREST | cv::WARP_INVERSE_MAP), |
|
(MatType)(cv::INTER_LINEAR | cv::WARP_INVERSE_MAP), (MatType)(cv::INTER_CUBIC | cv::WARP_INVERSE_MAP)))); |
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Imgproc, WarpPerspective, Combine |
|
(Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1, CV_32FC3, CV_32FC4), |
|
Values((MatType)cv::INTER_NEAREST, (MatType)cv::INTER_LINEAR, |
|
(MatType)cv::INTER_CUBIC, (MatType)(cv::INTER_NEAREST | cv::WARP_INVERSE_MAP), |
|
(MatType)(cv::INTER_LINEAR | cv::WARP_INVERSE_MAP), (MatType)(cv::INTER_CUBIC | cv::WARP_INVERSE_MAP)))); |
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Imgproc, Resize, Combine( |
|
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1, CV_32FC3, CV_32FC4), Values(cv::Size()), |
|
Values(0.5, 1.5, 2), Values(0.5, 1.5, 2), Values((MatType)cv::INTER_NEAREST, (MatType)cv::INTER_LINEAR))); |
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Imgproc, Threshold, Combine( |
|
Values(CV_8UC1, CV_32FC1), Values(ThreshOp(cv::THRESH_BINARY), |
|
ThreshOp(cv::THRESH_BINARY_INV), ThreshOp(cv::THRESH_TRUNC), |
|
ThreshOp(cv::THRESH_TOZERO), ThreshOp(cv::THRESH_TOZERO_INV)))); |
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Imgproc, meanShiftFiltering, Combine( |
|
ONE_TYPE(CV_8UC4), |
|
ONE_TYPE(CV_16SC2), |
|
Values(5), |
|
Values(6), |
|
Values(cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 5, 1)) |
|
)); |
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Imgproc, meanShiftProc, Combine( |
|
ONE_TYPE(CV_8UC4), |
|
ONE_TYPE(CV_16SC2), |
|
Values(5), |
|
Values(6), |
|
Values(cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 5, 1)) |
|
)); |
|
|
|
INSTANTIATE_TEST_CASE_P(Imgproc, Remap, Combine( |
|
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1, CV_32FC3, CV_32FC4), |
|
Values(CV_32FC1, CV_16SC2, CV_32FC2), Values(-1, CV_32FC1), |
|
Values((int)cv::INTER_NEAREST, (int)cv::INTER_LINEAR), |
|
Values((int)cv::BORDER_CONSTANT))); |
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(histTestBase, calcHist, Combine( |
|
ONE_TYPE(CV_8UC1), |
|
ONE_TYPE(CV_32SC1) //no use |
|
)); |
|
|
|
INSTANTIATE_TEST_CASE_P(ImgProc, CLAHE, Combine( |
|
Values(cv::Size(128, 128), cv::Size(113, 113), cv::Size(1300, 1300)), |
|
Values(0.0, 40.0))); |
|
|
|
INSTANTIATE_TEST_CASE_P(OCL_ImgProc, ColumnSum, DIFFERENT_SIZES); |
|
|
|
#endif // HAVE_OPENCL
|
|
|